Skip to main content
. 2017 Jun 30;19:150. doi: 10.1186/s13075-017-1336-7

Table 4.

Analysis of upstream regulators of interactome networks generated from protein changes between Stages I (SI) and II (SII) in either responders or non-responders to ACI were identified using Ingenuity Pathway Analysis software

Upstream regulators Activation z score (SII v SI) p value of overlap Target molecules in dataset
Non-responders
TGFB1 –1.595 9.46E–10 APOB,APOC2,APOE,CD44,COL1A1,COL1A2,COL5A1,COMP,CSPG4,CTSD,ECM1,FETUB,FN1,FTL,GSN,HINT1,HSPG2,HTRA1,IGFBP6,LCAT,MYLK,PCOLCE2,PDXK,POSTN,RAP1A,S100A4,TGFBI
DYSF NP 2.01E–09 CFD,FN1,FTL,LCP1,LYZ,PROS1,S100-A13,S100A4
MYC 3.046 2.20E–09 ALDOA,ANXA5,CCT3,CD44,COL1A1,COL1A2,COL5A1,CSPG4,CTSD,ECM1,FN1,HSPA9,LYZ,NCL,NUCB1,NUDC,PAM,PTN,RPL22,RPL30,TF
COL9A1 1.308 2.79E–09 COMP,FN1,HSPG2,TGFBI,THBS4
Beta-estradiol 2.271 5.01E–09 ALDOA,APOE,CD44,COL1A1,COL1A2,COMP,CTSD,F7,FN1,GMFB,HSPA2,HSPA8,HSPA9,HTRA1,IGFBP6,LTF,LYZ,MYLK,PAM,PDIA3,QSOX1,RAP1A,RPS13,S100-A13,SLC9A3R1,TF,THBS4
Lipopolysaccharide –0.104 5.96E–09 ANXA5,APOB,APOC2,APOE,CD44,CFD,COL1A1,COL1A2,COL5A1,CSPG4,FN1,GSN,HDGFRP3,HMGB2,HSPA8,HTRA1,ITIH2,LBP,LTF,LYZ,PARK7,PCOLCE,PCOLCE2,PDIA3,PLG,TF
Dihydrotestosterone –1.091 1.03E–08 ALDOA,APOE,CCT3,FN1,FTL,GSN,HINT1,LYZ,MYLK,NUCB1,PAM,POSTN,PROS1,RPL30,TF
HRAS 0.623 2.52E–08 CD44,COL1A1,COL1A2,ERP29,FN1,GSN,HSPA8,HTRA1,LYZ,MYH10,PDIA5,PLTP,POSTN,RPL30,S100A4
KRAS 2.226 3.99E–08 ALDOA,CD44,COL1A1,FN1,GBA,GSN,MYLK,PCOLCE,PDIA3,PSMA7,RNASE4,S100A4
SMARCB1 –1.195 4.82E–08 APOC4,CD44,COL1A1,COL1A2,GSN,LBP,POSTN,PTN,RAB14
Responders
CEBPB –1.067 2.03E–07 APOB,CFD,COL1A1,COL1A2,F7,HSPA8,PLG
FLI1 NP 3.82E–07 COL1A1,COL1A2,HSPA8,PF4
S-adenosylhomocysteine NP 1.21E–06 COL1A1,COL1A2
SCX NP 1.65E–06 COL1A1,COMP,POSTN
Tgf beta (group) –1.454 5.16E–06 COL1A1,COL1A2,LCAT,POSTN,TGFBI
ENTPD5 NP 1.21E–05 COL1A1,COL1A2
MKX NP 1.21E–05 COL1A1,COL1A2
GATA4 NP 2.86E–05 COL1A1,COL1A2,POSTN,TGFBI
Nilotinib NP 3.39E–05 COL1A1,COL1A2
TBX5 NP 5.50E–05 COL1A1,COL1A2,POSTN

The 10 upstream regulators with the lowest p values are demonstrated for both responders and non-responders. The p value of overlap is calculated based on the overlap between protein changes within the dataset with known targets of the transcriptional regulator, calculated using a Fisher’s exact test. The activation z score can be used to infer likely activation states of the upstream regulators based on the direction of protein abundance change in the dataset, i.e. a negative activation z score indicates that the upstream regulator is downregulated at Stage II compared to stage I, thus eliciting the specific directions of protein changes of the target molecules at Stage II compared to Stage I of ACI. NP indicates no prediction of activation status could be generated by the software