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Abstract

Despite decades of work by structural biologists, there are still ~5200 protein families with 

unknown structure outside the range of comparative modeling. We show that Rosetta structure 

prediction guided by residue-residue contacts inferred from evolutionary information can 

accurately model proteins that belong to large families, and that metagenome sequence data more 

than triples the number of protein families with sufficient sequences for accurate modeling. We 

then integrate metagenome data, contact based structure matching and Rosetta structure 

calculations to generate models for 614 protein families with currently unknown structures; 206 

are membrane proteins and 137 have folds not represented in the PDB. This approach provides the 

representative models for large protein families originally envisioned as the goal of the protein 

structure initiative at a fraction of the cost.

There are 14849 protein families in the PFAM (1) database with 50 or more residues, of 

which 4752 have at least one member with experimentally determined x-ray crystal or NMR 

structure, and an additional 3984 for which reliable comparative models can be built based 

on homologues of known structure detected using the powerful HHsearch fold recognition 

program (2; there are an additional 902 for which less confident comparative models can be 

built). There is no structural information available for 5211 of the remaining 6113 families 
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(HHsearch E-value ≥ 1). Until recently, computational methods could not generate accurate 

models for these 5211 families as they lack homologues of known structure for comparative 

modeling, and the very large number of conformations accessible to a polypeptide chain 

made the sampling problem in de novo protein structure prediction intractable for all but the 

smallest proteins. The original goal of the protein structure initiative was to determine 

structures for at least one representative of such families, but this proved to be extremely 

challenging and the focus of the initiative shifted to targets of immediate biological interest 

(3).

The increase in the number of known amino acid sequences has enabled the accurate 

prediction of residue-residue contacts using evolutionary data (4 – 10) -- substitutions at 

positions close in space in the three dimensional structure covary. Such contact predictions 

have been used for a wide range of protein modeling efforts (11 – 22). Accurate contact 

prediction requires large numbers of aligned sequences so that residue-residue covariance is 

clearly distinguished from lineage effects. While coevolution based structure modeling has 

been used to generate models for individual proteins with fold-level accuracy (TMscore (23) 

> 0.5; 5, 7 – 8, 10 – 11, 14 – 18, 21, 22), it has not been clear whether such data combined 

with structure prediction methodology can generate accurate models on a larger scale.

Rosetta de novo structure prediction calculations guided by evolutionary information were 

recently used to generate models for 58 large protein families (21). The structures of 

proteins in six of these families have since been published, providing an opportunity to 

assess this medium scale prediction effort. Recently solved structures of the Lipoprotein 

signal peptidase II (24), Prolipoprotein diacylglyceryl transferase (25), the fluoride ion 

transporter (26), cytochrome bd oxidase (27), DMT superfamily transporter YddG (28), and 

fumerate hydratase (29) a re all very close to computational models published and publicly 

released well before the structures were solved (Fig. 1). In the case of the three subunit 

cytochrome bd oxidase, the computational model of the 788 residue complex generated 

using both inter and intra subunit contact information was used together with experimental 

phase information obtained from the 3 heme irons and a single methionine to solve the 

structure. Because the phase information was weak, it was only possible to place the 

transmembrane helices and a subset of the side-chains based on the density, but the loops, 

connectivity, location of the CydX subunit, and registration of the amino acid sequence on 

many of the helices were unclear. Our E. coli protein model closely overlapped with the 

traced helices, and Phenix-Rosetta refinement (30) of a model built for the Geobacillus 

thermodenitrificans protein resolved the above ambiguities enabling rapid completion of 

structure determination. The final deposited structure is very similar to our previously 

published model of the E. coli protein (Fig. 1A; TMalign score (23) of 0.8). The power of 

Rosetta structure prediction calculations coupled with coevolution data for soluble proteins 

is illustrated by an extremely accurate blind de novo prediction for a quite complex protein 

structure in the CASP11 structure prediction experiment (31) (Fig. 1E). In all of the cases 

shown in Fig. 1, standard threading or fold recognition methods fail to identify the correct 

fold. Taken together, these data show that Rosetta modeling guided by coevolutionary 

constraints generates quite accurate models (in all 6 cases, the TMalign score is greater than 

0.7; the models also illustrate some of the limitations of the approach, including the lack of 

explicit modeling of ligands, cofactors, and lipids, see supplemental text).
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Structure models with the accuracy of those in Fig. 1 would have broad utility for framing 

biological hypotheses about function and interpreting mutational data, as well as guiding 

experimental structure determination. To determine the number of aligned sequences 

required for contact prediction accuracy sufficient to guide generation of accurate 3D 

models we carried out Rosetta structure prediction calculations for a benchmark set of 27 

large protein families (Table S1) with known structure. We used both the full sequence 

alignments as well as alignments of subsets of the sequences for contact prediction. We also 

performed structure prediction calculations using Rosetta to hybridize and refine (32) partial 

structural matches identified by matching predicted contacts with the contact patterns of 

known protein structures. To do this, we developed an algorithm (map_align; see 

Supplementary info) that employs iterative double dynamic programming (33). The two 

approaches are complementary: de novo structure prediction (using only sequence 

information) (34) can succeed where there are no related structures in the PDB (Protein Data 

Bank), while making use of matches to known structures can help for large complex proteins 

that otherwise present a convergence challenge for de novo structure prediction (structural 

matches can occur in the absence of detectable sequence similarity since structural similarity 

is retained over larger evolutionary distances). For large sequence families, combining de 
novo structure prediction models and map_align structure matches using the Rosetta 

iterative hybridization protocol improved accuracy in 14 cases and decreased accuracy in 

only one (Fig. 2A solid line; Fig. S1; see Supplementary info). Contact prediction accuracy 

and hence predicted structure accuracy depends on the number of sequences in the family, 

the diversity of these sequences, and the length of the protein. A measure that incorporates 

all three factors (Nf, the number of sequence clusters at an 80% sequence identity clustering 

threshold divided by the square root of the protein length (21)) correlates well with contact 

prediction accuracy (21) and model accuracy (Fig. 2A, Fig. S1) over a broad range of 

families.

How many protein families with currently unknown structure have Nf values in the range 

where accurate models can be built? The models in Fig. 1 were all generated for families 

with Nf > 64; accuracy falls off for lower values of Nf (Fig. 2A). As shown in Fig. 2B, less 

than 8% of families have Nf values of 64 or better. Modeling the remaining 92% of families 

of unknown structure at reasonable accuracy is not currently possible using the sequence 

information in the UniRef100 database (35).

This limitation in structure modeling can be largely overcome by taking advantage of 

progress in a completely different research area. Metagenome sequencing projects, in which 

complex biological samples are shotgun sequenced, have provided insights into biological 

communities and provide a treasure trove of new sequence data (36, 37). The number of 

protein sequences determined in metagenome sequence projects is growing considerably 

faster than the UniRef100 database (Fig. 2B, solid versus dashed line). With the inclusion of 

metagenome sequence data, the number of sequences increases by as much as 100 fold for 

some families (Table S2), and the fraction of families with unknown structure that can be 

accurately modeled using coevolution guided structure prediction methods increases 

dramatically. At Nf ≥ 64, the fraction increases from 0.08 to 0.25, and at Nf ≥ 32 (where fold 

level accuracy can be achieved (Fig. 2A)), the fraction increases from 0.16 to 0.33. To assess 

structure prediction and model evaluation accuracy using metagenome data, we carried out a 

Ovchinnikov et al. Page 3

Science. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



second benchmark of 81 PFAMs with recently solved structures and Nf ≥ 64 (Fig. S1E–F, 

Table S5). Structure prediction accuracy was correlated with the extent of convergence of the 

lowest energy models and the fraction of predicted contacts present in these models (Fig. 

S1F and S2). For 42 families, the predictions converged with most of the predicted contacts 

satisfied (see Supplementary information for convergence criteria) and of these, 25 had a 

TMscore > 0.7 and 13 a TMscore > 0.6 (in 3 of the 4 remaining cases, NMR structures of 

small transmembrane proteins, our models fit the predicted contacts much better, and in the 

last case, an intertwined dimer, our monomer model contained all the correct contacts (Fig. 

S13)).

We generated coevolution based contact predictions using GREMLIN (4, 12) for the 1297 

protein families with Nf ≥ 64, and built models for the 921 protein families (1024 domains) 

with many contacts between positions separated by more than five residues along the linear 

sequence (number of long range contacts > half the number of residues in protein). The 

structure prediction calculations converged on models with predicted TM scores greater than 

0.65 for 614 of the 1024 domains according to the benchmarks. A list of the PFAM families 

covered by these models is in Table S3; the models are available at <https://

gremlin2.bakerlab.org/meta.php>, along with an interactive 3D interface powered by 

3Dmol.js (38) and D3.js (39) for visualization of coevolution contacts on the models. These 

structures provide close templates for comparative modeling of 487,306 UniRef100 and 

3,868,268 IMG metagenomic unique (less than 80% pairwise identity) sequences.

The converged models for the 614 PFAM families (Table S3) provide a view of the hitherto 

unseen protein universe. To determine if the models belong to known protein folds, we 

carried out structure-structure comparisons against the SCOP (40) domain database. For 477 

of the families, the models matched a protein of known structure over nearly the entire 

length and hence can be assigned to SCOP folds (52 distinct all alpha, 29 alpha/beta, 51 

alpha+beta, and 28 all beta folds). In a number of cases, the SCOP classifications are 

consistent with previous functional information, for example the restriction endonuclease 

Xho1 is assigned to the restriction enzyme fold, and a family of prokaryotic putative 

ubiquitin like proteins is assigned the beta-grasp fold (to which ubiquitin belongs). For 137 

of the domains, there were no significant structure matches of the models to the PDB 

(TMalign score < 0.5) and hence these have new folds. Space limitations preclude showing 

here even a small number of the 614 models; instead we show a small selection of the 3D 

structures in Fig. 3. They include the key developmental regulator Chordin, CobS a key 

enzyme in cobalbumin synthesis, a metalloendopeptidase, and mercury and iron 

transporters; six are transmembrane proteins, four have new folds and several have quite 

complex topologies. These and the remaining 590 structure models not shown in Fig. 3 

should provide a basis for understanding molecular function, mechanism and guide 

experimental structure determination (such efforts should be informed of the limitations of 

the modeling approach described in the Supplementary text). While this manuscript was in 

preparation, crystal structures of members of five of the 614 families were published and are 

very similar to the corresponding models (TMalign score ≥ 0.7; See Fig. S3 and Table S4).

The models presented in this paper fill in about 12% of the structural information missing 

for known protein families. That this could be accomplished using computational modeling 
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methods was not at all apparent five years ago. This progress required integration of 

advances in quite disparate research areas: metagenome sequencing, coevolutionary 

analysis, and de novo protein structure prediction methodology. This combined approach has 

a bright future: extrapolating from the data in Fig. 2B suggests that in several years the 

majority of families will have sufficient number of sequences for accurate structure 

modeling. A current limitation is that most sequence data is for prokaryotes, but as fungal 

and other simple eukaryote genome sequencing projects ramp up the approach should 

become applicable to eukaryote specific protein families.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of Rosetta models (left) to subsequently published crystal structures (right). The 

models accurately recapitulate the structural details of A) the Cytochrome bd oxidase 

(TMalign score 0.88) B) the Lipoprotein signal peptidase II (TMalign score 0.70) C) the 

DMT superfamily transporter YddG (TMalign score 0.70) D) the Fluoride ion transporter 

dimer (TMalign score 0.69) E) the CASP11 target T0806 F) Prolipoprotein diacylglyceryl 

transferase (TMalign score 0.69) and G) Fumarate hydratase (TMalign score 0.80 for 

monomer (top) and 0.76 for dimer (bottom)).
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Fig. 2. 
Metagenome data greatly increased fraction of structures which can be accurately modeled. 

A) Dependence of coevolution guided Rosetta structure prediction accuracy on the effective 

number of sequences Nf (a function of both sequence number and diversity; see Methods 

definition) in the protein family. For each of 27 proteins of known structure, the multiple 

sequence alignment was subsampled and residue-residue contacts predicted using 

GREMLIN. Rosetta structure prediction calculations were then used to generate ~20,000 

models, and a single model was selected based on the Rosetta energy and the fit to the 

coevolution constraints; the average TMscore of these selected models over all 27 cases is 

shown on the y axis (dashed line). Hybridization based refinement of the top 20 models 

together with the top 10 map_align based models for each case increases the average 

accuracy (solid line); models with fold-level accuracy (TMscore > 0.5) are obtained for Nf ≥ 

16, and models with accuracy typical of comparative modeling, for Nf of 64. B) Fraction of 

protein families of unknown structure with at least 64 Nf. Dashed line: including only 

sequences in UniRef100 database; solid line: including sequences in UniRef100 database 

together with metagenome sequence data from JGI (37). C) Distribution of Nf values for 

5211 PFAM families with currently unknown structure, after the addition of metagenomic 

sequences; 25% of the protein-families have Nf > 64, 34% have Nf > 32 and 45% have Nf > 

16.
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Fig. 3. 
Representative structure models for selected PFAM families. Membrane proteins are on the 

top row; new folds on the bottom right. The multidomain models of the iron transporter and 

RNA helicase and the dimeric model of CobS, an enzyme in vitamin B synthesis, are guided 

by both intra- and inter-chain coevolution restraints.
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