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DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a conse-
quence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or
repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-
damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival
when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but
behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal
deletion that includes the gene encoding cytosolic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a
wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleo-
mycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile
sites. In addition, a Trxh1–�-glucuronidase fusion protein translocated to the nucleus in response to treatment
with MMS. However, somewhat surprisingly, Trxh1 failed to correct the Ble-1 hypersensitivity to H2O2.
Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to
MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in
oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1
in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These
observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas
isoform (Trxh2) does not compensate for the lack of Trxh1.

Genome integrity and stability, key components in the sur-
vival of an organism, are constantly threatened by DNA dam-
age. Endogenous sources of DNA lesions include, among oth-
ers, replication errors, spontaneous depurination, and
alterations caused by reactive oxygen species (ROS) generated
during normal metabolism (83). DNA damage can also result
from exposure to environmental agents such as UV light, ion-
izing radiation, and chemical mutagens, including methyl
methanesulfonate (MMS), bleomycin, and H2O2 (70). Many
DNA lesions, if left unrepaired, can lead to mutations, chro-
mosomal aberrations, aneuploidy, or cell death (22, 58).

A complex cellular system composed of an intricate network
of surveillance and repair pathways has evolved to monitor and
mend DNA damage. DNA lesions are detected by molecular
sensors that signal the delay or arrest of cell cycle progression
as well as an array of transcriptional and DNA repair responses
(83). DNA repair responses include direct repair, base excision
repair (BER), nucleotide excision repair (NER), mismatch
repair, and DNA double-strand break (DSB) repair (22, 58).
Base excision repairs oxidized, alkylated (usually methylated),
or deaminated bases and single-strand breaks (SSBs) (48),
whereas NER is the major repair system for removing bulky,

helix-distorting DNA lesions (58). However, despite the pref-
erential role of certain systems in the repair of specific lesions,
DNA repair pathways are often partly redundant (4, 22, 58). In
addition, cells have evolved DNA damage tolerance mecha-
nisms that allow the replicative bypass of base damage, a pro-
cess called postreplication repair (22, 50, 65).

Organisms have also developed scavenging mechanisms to
detoxify genotoxic agents. For instance, ROS are produced
continuously as by-products of several metabolic pathways but
their toxicity is minimized by a variety of antioxidant systems,
some depending on glutathione or thioredoxins (Trxs) for re-
ducing power (44). Trxs contain two redox-active cysteine res-
idues and display two main functions: (i) as a substrate for
catalytic enzymes like those involved in the reduction of ribo-
nucleotides, methionine sulfoxide, or peroxides and (ii) as reg-
ulators that modulate the activity or other functional proper-
ties of interacting proteins, including a variety of signaling and
transcription factors (2, 3, 51). Through these activities, Trxs
have been implicated in ROS detoxification, redox-sensitive
signal transduction, transcriptional activation of stress re-
sponse genes, and apoptosis (14, 35, 37). Trxs can also modu-
late the activity of the mammalian apurinic/apyrimidinic endo-
nuclease 1 (APE-1)/Redox factor 1, a multifunctional protein
involved in BER (26, 34). However, the effect of thioredoxins
in the repair of DNA damage has remained unexplored.

Our understanding of cellular responses to DNA damage is
largely derived from genetic and biochemical studies in animal,
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fungal, and prokaryotic systems (22, 30, 58). By comparison,
relatively little is known about DNA repair pathways in plant
and algal systems, although an analysis of the completely se-
quenced Arabidopsis thaliana genome revealed numerous ho-
mologs of yeast and mammalian DNA repair genes (1, 5).
Photosynthetic organisms may also have evolved novel DNA
damage repair and sensing and transduction mechanisms since
they face distinct challenges, such as recurring exposure to
solar UV radiation and DNA-damaging by-products of photo-
synthetic metabolism (5). To gain insight into these pathways,
we have used the unicellular green alga Chlamydomonas rein-
hardtii as a model system to isolate insertional mutants sensi-
tive to DNA-damaging agents. We report here the character-
ization of one such mutant, named Ble-1 for its hypersensitivity
to bleomycin.

Ble-1 survival was severely compromised by exposure to
MMS or bleomycin, but it behaved like the wild type when it
was irradiated with UVC light. Integration of the mutagenic
plasmid resulted in a deletion of nearly 60 kb in the Ble-1
genome. Complementation of Ble-1 with cosmid subclones
identified the gene encoding one of the cytosolic isoforms of
thioredoxin (Trxh1) as responsible for the sensitivity to MMS.
Ble-1 is deficient in the repair of MMS-induced strand breaks
and alkali-labile abasic sites, and this phenotype was also partly
corrected by introduction of a genomic copy of Trxh1. More-
over, strains where Trxh1 expression was suppressed by RNA
interference (RNAi) showed MMS hypersensitivity and de-
fects in DNA damage repair. Consistent with a role of Trxh1 in
the response to DNA damage, a fusion protein between Trxh1
and Escherichia coli �-glucuronidase (GUS) localized predom-
inantly in the cytosol under normal conditions but redistrib-
uted to the nucleus following exposure to several genotoxic
agents. Further, the hypersensitivity to MMS of a Saccharomy-
ces cerevisiae trx1 trx2 double mutant was also complemented
by ectopic expression of Chlamydomonas Trxh1, provided that
it contained an intact redox catalytic site. Our findings indicate
(i) a role for Chlamydomonas Trxh1 in DNA repair pathways
coping with MMS-induced abasic sites and/or SSBs and (ii)
functional specialization of Chlamydomonas cytosolic thiore-
doxins, since Trxh2 does not compensate for the deficiency in
Trxh1.

MATERIALS AND METHODS

Culture conditions, Ble-1 isolation, and genetic analysis. Unless noted other-
wise, C. reinhardtii cells were grown under moderate light in Tris-acetate-phos-
phate (TAP) medium (28). To isolate insertional mutants hypersensitive to
DNA-damaging agents, the wild-type strain CC-124 was transformed by the glass
bead procedure with a plasmid containing a mutant form of protoporphyrinogen
oxidase (rs-3 marker) conferring resistance to diphenyl ether herbicides (32).
Herbicide-resistant transformants were tested for their ability to survive in the
presence of 1.5 �g of bleomycin (Invitrogen)/ml or 2.5 mM MMS (Sigma). By
using this approach, we recovered a mutant strain, Ble-1, very sensitive to geno-
toxic agents. For genetic analysis, Ble-1 was crossed to the wild-type strain of the
opposite mating type (CC-125) and tetrads were dissected as previously de-
scribed (27). The phenotype of the meiotic tetrad products was evaluated by spot
tests on TAP medium containing 2.5 mM MMS (32). Five-microliter aliquots of
appropriately diluted cells were pipetted onto the plates and incubated as pre-
viously reported (32).

Plasmid rescue, cosmid library screening, deletion mapping, and sequence
analyses. The genomic sequence flanking one end of the integrated rs-3 marker
in Ble-1 was recovered by plasmid rescue in E. coli (32). A 1.5-kb BamHI-NotI
fragment from this flanking DNA was used as a probe to screen a Chlamydo-
monas genomic library (57, 78). Twelve hybridizing cosmid clones were isolated

and mapped by restriction enzyme analysis. The longest one (cosmid 1) was
cotransformed into Ble-1 together with plasmid pJK7, containing a genetically
engineered acetolactate synthase gene conferring resistance to the herbicide
sulfometuron methyl (36). However, none of the herbicide-resistant transfor-
mants showed complementation of Ble-1’s hypersensitivity to genotoxic agents.
Moreover, Southern hybridization with a 1.4-kb EcoRI-XhoI fragment from the
3� end of cosmid 1 (distal to the cloned rs-3 flanking sequence) revealed a large
chromosomal deletion in Ble-1. Thus, a combination of genome walking and
Southern blot analyses (57, 78) was used to construct a contig of partly overlap-
ping cosmid clones that spanned the deleted region. A subset of these clones, as
well as several subclones, was used in complementation assays as described
above. Some subclones were also partially sequenced, and putative transcrip-
tional units were identified by searching the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov) and the Chlamydomonas genome
(http://genome.jgi-psf.org/chlre2/chlre2.home.html) databases.

DNA and RNA analyses. Standard techniques were used to isolate nucleic
acids from Chlamydomonas cells (32, 57). Electrophoretic fractionation of nu-
cleic acids, transfer to nylon membranes, and hybridization with 32P-labeled
probes were carried out as previously described (32, 57).

Immunoblot analysis. Cells resuspended in sample buffer (30 mM Tris-HCl
[pH 7.9], 1 mM phenylmethylsulfonyl fluoride) were lysed in a French press cell
at 1,380 lb/in2. After cellular debris was pelleted by consecutive centrifugations
at 20,000 � g for 20 min and 45,000 � g for 45 min, soluble polypeptides were
recovered from the supernatant. Samples were standardized for total protein
concentration with the bicinchoninic acid assay (62). Next, 100-�g aliquots of
proteins were boiled for 3 min in gel loading buffer (10% glycerol, 1.4% sodium
dodecyl sulfate, 100 mM dithiothreitol, 30 mM Tris-HCl [pH 6.8]) and fraction-
ated in sodium dodecyl sulfate–15% polyacrylamide gels (57). Electrophoreti-
cally separated samples were blotted onto nitrocellulose filters (Amersham) and
blocked with Tris-buffered saline–Tween 20 (TBS-T) buffer (10 mM Tris-HCl
[pH 7.4], 150 mM NaCl, 0.01% Tween 20) containing 5% nonfat dry milk.
Further steps were performed in TBS-T buffer containing 1% milk. Membranes
were incubated overnight at 4°C with primary antisera against Chlamydomonas
Trxh1 and then reacted for 1 h at room temperature with anti-rabbit immuno-
globulin G conjugated to horseradish peroxidase (Amersham). Signals were
visualized by enhanced chemiluminescence (17).

Phenotypic characterization of Ble-1, complemented strains, and transgenic
lines where Trxh1 expression was suppressed by RNAi. RNAi epi-mutants of
Trxh1 were generated as previously described (56). Cell survival upon exposure
to MMS or UVC irradiation was examined as already reported (32). To test for
hypersensitivity to H2O2 or bleomycin, Chlamydomonas cells were grown to
logarithmic phase, serially diluted, and spotted on TAP plates containing 1 mM
H2O2 or 1.5 �g of bleomycin/ml. Cell growth was evaluated after 7 to 10 days of
incubation under moderate light.

DNA damage repair analysis. Cells in logarithmic phase were collected by
centrifugation, resuspended in TAP medium, and treated with 25 mM MMS for
30 min in the dark (8). Untreated control cells were incubated in TAP medium
without MMS (8). Immediately afterwards, aliquots of control and MMS-treated
cells were frozen for isolation of DNA corresponding to the zero time points.
After three washes with TAP medium to remove unreacted MMS, the remaining
cells were allowed to recover in the dark, with moderate shaking, for different
time periods and aliquots were frozen as described before (8). Genomic DNA
was isolated from the frozen samples, separated by denaturing gel electrophore-
sis (8), and hybridized with a 32P-labeled probe corresponding to the TOC1
retroelement (32) present at about 15 to 20 copies per haploid nuclear genome.
The distribution of radioactivity in each lane was quantified with a phosphorim-
ager and Quantity One software (Amersham). For the analysis of DNA repair by
PCR (33), cells were treated with 5 or 10 mM MMS and incubated as described
above. Thirty nanograms of genomic DNA was used for the amplification of a
2.1-kb fragment corresponding to the Chlamydomonas Lsm5 (Like Sm 5) gene
with primers Mut3-1 (5�-AGAGCTAGGGACCGTGGAGT-3�) and Mut3-2 (5�-
TGTTCTCTGTTGCTTGTCTGACG-3�). The number of cycles showing a lin-
ear relationship between input DNA and the final product were determined in
preliminary experiments. The PCR conditions consisted of 30 cycles at 93°C for
30 s, at 55°C for 30 s, and at 71°C for 180 s. Five-microliter aliquots of each PCR
were resolved on 1% agarose gels and visualized by ethidium bromide staining,
and signal intensities were quantified with Quantity One software (Bio-Rad).
DNA lesion frequency was calculated, assuming a random Poisson distribution,
as previously described (11, 33). Under the experimental conditions used (i.e.,
incubation of concentrated cells in the dark) and without MMS treatment, DNA
replication associated with cell cycle progression in the asynchronous Chlamy-
domonas cultures increased the DNA content by less than 1.5-fold after 24 h
(data not shown).
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Subcellular localization of a GUS-Trxh1 fusion protein in transiently trans-
formed onion epidermal cells. The coding sequence of Trxh1 was amplified by
PCR from a full-length cDNA in plasmid CrTRXh1 (64) with primers Trx-cod-3�
(5�-CATGCCATGGCCGCGGCGGCGTGCTTGGC-3�, adding an NcoI site)
and Trx-cod-5� (5�-CATGCCATGGGCGGTTCTGTTATTGTG-3�, adding an
NcoI site). The Trxh1 PCR fragment was then cloned in frame with the GUS
start codon in plasmid pPTN134 (82). The transgenes GUS-Trxh1 and GUS
alone were transformed into onion epidermal cells by microprojectile bombard-
ment with DNA-coated tungsten particles (82). After bombardment, cells were
allowed to recover for 20 h on regular Murashige and Skoog (MS) medium or on
MS medium containing 1 mM MMS, 0.2 mM H2O2, or 0.5 �g of bleomycin/ml.
Some epidermal peels, after 20 h of recovery on MS medium, were incubated for
1 h in liquid MS medium containing 8 mM MMS. GUS activity was detected by
staining with X-glucuronide, whereas nuclei were identified with propidium
iodide (PI) (82). Stained cells were observed by bright-field microscopy for
distribution of GUS activity and by epifluorescent microscopy for PI labeling of
the nucleus (71, 82).

Plasmid construction for the expression of Chlamydomonas Trxh1 in S. cerevi-
siae. EMY63 (MATa ade2-1 ade3-100 his3-11 leu2-3 lys2-801 trp1-1 ura3-1
trx1::TRP1 trx2::LEU2), a yeast strain with both genes encoding cytosolic Trxs
deleted, has been previously described (47). EMY63 cells were transformed by
the lithium chloride method (24) with constructs for conditional expression of S.
cerevisiae Trx1 or C. reinhardtii Trxh1 (CrTrxh1) in both its wild-type and redox-
inactive C36S forms (25). Each thioredoxin sequence was amplified from the
corresponding cDNA by PCR. The upstream primer allowed introduction of an
MluI site and a start codon at the position corresponding to the N terminus of
each protein, whereas the downstream primer allowed introduction of a BamHI
restriction site after the stop codon. The PCR products were cloned under the
control of the yeast Gal1 promoter into the centromere plasmid YCpGal2
containing the URA3 selectable marker (12). Sequence-verified recombinant
plasmids were transformed into EMY63, and clones were selected and main-
tained on standard synthetic minimal medium (lacking uracil) supplemented
with 2% glucose as the carbon source. For induction of recombinant Trx expres-
sion, 2% galactose was substituted for glucose.

Examination of tolerance of yeast strains to MMS or H2O2. Transformed
EMY63 cells were grown to mid-log phase in glucose medium at 30°C and then
diluted and transferred to inducing galactose medium. Growth was continued at
30°C, and cells in mid-log phase were used for tolerance tests. After dilution to
an optical density at 600 nm of 0.2, cell growth and survival in the presence of
genotoxic agents was evaluated by the halo assay (31). Cells were mixed with
galactose top agar and spread on plates to obtain a uniform lawn. Disks con-
taining 10 �l of MMS (1.36 M) or H2O2 (500 mM) were placed on the center of
the yeast lawns, and cell growth was monitored after 3 to 5 days of incubation at
30°C.

Flow cytometry analysis. Yeast cells were grown in synthetic minimal medium
(lacking uracil) supplemented with 2% galactose to an optical density at 600 nm
of 0.5, centrifuged, and washed in 2 ml of 50 mM Tris-HCl (pH 8). Cells were
then fixed in 70% ethanol for 1 h at room temperature, centrifuged, and resus-
pended in 1 ml of the Tris-HCl buffer containing 1 mg of RNase A/ml. After
incubation for 2 h at 37°C, cells were pelleted (12,000 � g, 1 min), resuspended
in 1 ml of Tris-HCl buffer containing PI (50 mg/ml), and allowed to stain in the
dark at 4°C overnight under mild agitation. Analysis was performed on a fluo-
rescence-activated cell sorter (Vantage; Becton Dickinson, Le pont de Claix,
France). Nuclei were excited at 488 nm with an argon laser (Spectra-Physics,
Mountain View, Calif.), and FL1-Height and FL1-Area were collected through
a band-pass filter allowing light between 620 and 630 nm to reach the detector.
Ten thousand nuclei were analyzed per sample. Data were collected with
Cellquest software (Becton Dickinson, Mansfield, Mass.) and analyzed with
MODFIT (Verity Software House, Inc., Topsham, Maine).

RESULTS

Isolation and genetic analysis of Ble-1. To identify C. rein-
hardtii genes involved in the cellular response to DNA damage,
we carried out random insertional mutagenesis on the wild-
type strain CC-124 (28). Cells from CC-124 were transformed
with the rs-3 gene, which encodes a mutated form of proto-
porphyrinogen oxidase, conferring resistance to diphenyl ether
herbicides (32). Herbicide-resistant transformants were then
tested by replica plating for their ability to grow on media

containing DNA-damaging agents. Since Chlamydomonas is
haploid, nonlethal mutations in genes required for DNA dam-
age repair and tolerance will result in reduced survival in the
presence of genotoxic agents. By using this approach, we iso-
lated a mutant strain (Ble-1) that is very sensitive to bleomycin
and MMS. Ble-1 contained a single, although partly rear-
ranged, copy of the rs-3 plasmid integrated into the nuclear
genome (Fig. 1 and data not shown).

To test whether the mutant phenotypes cosegregated with
the rs-3 marker, Ble-1 was crossed with the wild-type strain of
the opposite mating type, CC-125. The meiotic tetrad products
were examined for survival on medium containing MMS or
bleomycin (Fig. 1A and data not shown). Only tetrad products
containing the rs-3 gene, as detected by Southern blot hybrid-
ization (Fig. 1B), were hypersensitive to MMS (Fig. 1A). In
contrast, the tetrad products that did not carry the integrated
mutagenic plasmid behaved like the wild type (Fig. 1). The
analysis of 10 complete tetrads indicated that hypersensitivity
to MMS and bleomycin segregated as a single Mendelian locus
genetically linked (within five map units) to the integrated rs-3
marker.

FIG. 1. Hypersensitivity to MMS cosegregates with the tagging rs-3
marker. (A) Growth and survival of cells on TAP medium or on TAP
medium containing 2.5 mM MMS (TAP � MMS). The parental strains
and the meiotic products of three tetrads from the cross between the
wild-type (CC-125) and mutant Ble-1 strains are shown. Strains grown
to logarithmic phase were diluted in TAP medium to 5 � 104 cells per
5 �l, spotted on plates, and incubated as described in Materials and
Methods. CTRL, control. (B) Southern blot analysis of the indicated
strains. Genomic DNA was digested with HindIII and probed with the
pBluescript sequence, the vector backbone of the rs-3 tagging plasmid.
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Cloning and identification of the disrupted gene conferring
MMS hypersensitivity on Ble-1. The chromosomal sequence
flanking one end of the introduced rs-3 gene was obtained by
plasmid rescue (66) and used as a probe to screen a Chlamy-
domonas genomic library. Although several partly overlapping
cosmid clones were isolated, none complemented the Ble-1
mutant phenotype (Fig. 2A, e.g., Cosmid 1). These clones were
mapped by restriction enzyme digestion, and the end of the
longest one (distal to the cloned rs-3 flanking sequence) was
used as a probe for Southern hybridization analysis of Ble-1
and CC-124. Lack of hybridization of this sequence to Ble-1
DNA revealed that integration of the rs-3 marker caused a
large deletion in the nuclear genome of the mutant strain (Fig.
2A and data not shown). By using a genome walking approach,
we next isolated an overlapping set of cosmids that encom-
passed the Ble-1 chromosomal deletion (Fig. 2A). The left end
of this deletion was precisely defined by sequencing of the
chromosome-plasmid junction. The right junction was not se-
quenced, but restriction enzyme mapping of the cosmid contig
together with Southern blot analyses of the wild-type and mu-
tant strains indicated that the deleted chromosomal region
spans approximately 60 kb (Fig. 2A and data not shown).

To identify the gene(s) responsible for the hypersensitivity
of Ble-1 to DNA-damaging agents, individual cosmid clones
were tested for their ability to complement the mutant pheno-
types. Ble-1 cells were cotransformed with each cosmid clone
and with plasmid pJK7, encoding resistance to the herbicide
sulfometuron methyl (36). Herbicide resistance transformants
were then examined for their survival on medium containing
MMS or bleomycin. This analysis showed that cosmid 4 com-
plemented the hypersensitivity of Ble-1 to MMS but had only
a partial effect on restoring bleomycin tolerance (Fig. 2A and
3). To define precisely the gene required for this phenotypic
correction, several cosmid 4 subclones were cotransformed
into Ble-1. In addition, partial sequence analysis of cosmid 4
revealed that it included the Trxh1 gene, which encodes cyto-
solic thioredoxin h1. Therefore, we also tested the complemen-
tation capability of a 3-kb PstI fragment exclusively containing
Trxh1 (64). In all cases, transformation of Ble-1 with fragments
that included a full-length Trxh1 gene reversed the MMS hy-
persensitivity, but the survival defect upon exposure to bleo-
mycin was only partly corrected (Fig. 2A and 3).

To evaluate further whether Trxh1 was required for toler-
ance to genotoxic agents, we examined its expression in the
wild-type strain and the mutant Ble-1 strain, as well as two
strains complemented with the 3-kb PstI fragment, Ble-
1(Trxh1)-10 and Ble-1(Trxh1)-33. Northern blot analysis of to-
tal RNA revealed no detectable Trxh1 transcripts in Ble-1,
whereas one complemented strain, Ble-1(Trxh1)-33, had RNA
levels similar to those of the wild type (Fig. 2B). The other
complemented strain, Ble-1(Trxh1)-10, had slightly reduced
amounts of Trxh1 mRNA in comparison with CC-124 (Fig.
2B). Corresponding variations in Trxh1 protein levels were
observed among these strains by immunoblot assay of total
protein extracts probed with an anti-Trxh1 antibody (Fig. 2C).
Interestingly, the Trxh1 expression level in independently com-
plemented strains negatively correlated with their sensitivity to
MMS (data not shown). Moreover, if Trxh1 is required for
tolerance to MMS exposure, Trxh1 suppression by RNAi
should result in a phenotype similar to that of Ble-1. To test

this hypothesis, we transformed wild-type Chlamydomonas
cells with inverted repeat constructs designed to produce dou-
ble-stranded RNA homologous to Trxh1 (56). In several inde-
pendent transformants, Trxh1 transcript levels were specifically
down-regulated, whereas mRNA amounts for the closely re-
lated cytosolic thioredoxin h2 gene (Trxh2) (40) remained un-
perturbed (Fig. 2D, Trxh1-IR-3 and Trxh1-IR-4). Like Ble-1,
these RNAi strains (Trxh1 epi-mutants) were hypersensitive to
MMS treatment (Fig. 2E). However, they showed only mild
survival defects when they were grown on bleomycin-contain-
ing medium (data not shown). These results, taken together,
suggested a role for the cytosolic Trxh1 isoform in the cellular
response to certain genotoxic agents such as MMS. Yet, Trxh1
did not fully complement the defect in the survival of Ble-1
when it was exposed to bleomycin or H2O2 (see below). There-
fore, we hypothesize that disruption of another yet-to-be-
identified gene(s) within the 60-kb deletion is responsible for
the latter phenotypes.

Effect of genotoxic agents on cell survival and DNA damage
repair in Ble-1, the Trxh1-complemented strains, and the
Trxh1 RNAi-induced epi-mutants. To gain insight into the mo-
lecular role of Trxh1, we exposed cells to a variety of genotoxic
agents causing different kinds of DNA lesions and requiring
distinct pathways for their repair. In all cases, we compared the
survival of the wild-type CC-124 strain, the Ble-1 mutant, a
strain complemented with cosmid 4 [Ble-1(Cos4)-20], and a
strain complemented with the Trxh1-containing 3-kb PstI frag-
ment [Ble-1(Trxh1)-33]. All strains behaved similarly to the
wild type when they were irradiated with UVC light and al-
lowed to recover under nonphotoreactivating conditions (Fig.
3A). In contrast, Ble-1 was very sensitive to treatment with
MMS and this phenotype was nearly fully complemented by
ectopic expression of Trxh1 (Fig. 3A). In addition, as already
discussed, strains where Trxh1 was suppressed by RNAi dis-
played hypersensitivity to MMS (Fig. 2E). Ble-1 survival was
also compromised by exposure to H2O2 or bleomycin (Fig. 2E
and 3B). However, bleomycin sensitivity was only partly re-
versed by transformation with a wild-type copy of Trxh1 (Fig.
3B), whereas the defect in H2O2 tolerance was not corrected
(Fig. 2E). Conversely, down-regulation of Trxh1 expression by
RNAi caused only mild hypersensitivity to bleomycin (data not
shown) and did not affect survival in the presence of H2O2

(Fig. 2E). Somewhat surprisingly, given the known role of
thioredoxins in the oxidative-stress response (14, 35, 38), these
findings indicated that Trxh1 plays a key role in cellular pro-
tection against MMS and, to some extent, bleomycin but has
no apparent effect on the tolerance to H2O2.

To test whether Trxh1 is required for the repair of MMS-
induced DNA damage, cells were briefly treated with this
chemical and then allowed to recover for different periods of
time. The extent of induced or residual DNA damage was
evaluated by alkaline gel electrophoresis (8). Under these con-
ditions, both SSBs and DSBs as well as alkali-labile sites (i.e.,
abasic sites) arising from BER (21) are detectable by the en-
hanced electrophoretic mobility of fragmented DNA. Exami-
nation of DNA isolated immediately after the treatment re-
vealed similar extents of MMS-induced nuclear DNA damage
in the wild-type, Ble-1, and Ble-1(Trxh1)-33 strains (Fig. 4).
However, after incubation in drug-free medium, Ble-1 cells
repaired DNA strand breaks very slowly in comparison with
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FIG. 2. Genomic structure of the region affected by integration of the rs-3 marker in Ble-1 and phenotypic defects associated with a lack of
cytosolic Trxh1. (A) The open-box diagram represents chromosomal DNA, whereas the dashed line immediately below indicates a deletion of �60
kb in Ble-1. The 3� end of this deletion (dotted line) has not been precisely defined. Genes encoding a hybrid-cluster protein (HCP) and Trxh1
(Trxh1) are depicted by solid boxes. Cosmids and cosmid subclones used for complementation of Ble-1’s hypersensitivity to MMS are also
indicated. Southern blots of Ble-1 and the wild-type CC-124 strains are shown above the diagram. Genomic DNA was digested with the indicated
enzymes and hybridized with different sequences (depicted as solid bars) to examine the deleted chromosomal region. Restriction enzyme sites:
B, BamHI; E, EcoRI; P, PstI; X, XhoI. (B) Northern blot analysis of CC-124, Ble-1, and two independent transformants of Ble-1 complemented
with a 3-kb PstI fragment containing Trxh1 [Ble-1(Trxh1)-10 and Ble-1(Trxh1)-33]. Total cell RNA was separated by denaturing agarose gel
electrophoresis and sequentially probed with the coding sequence of Trxh1 (top panel) and with the coding sequence of the small subunit of the
Rubisco gene (RbcS2, bottom panel) as a control for equal loadings in the lanes. (C) Immunoblot analysis of total soluble proteins, from the
indicated strains, probed with polyclonal antibodies raised against Chlamydomonas Trxh1 (top panel) or the Rubisco holoenzyme (bottom panel).
LS, large subunit of Rubisco. (D) RNA gel blot analysis of CC-124 and two independent strains where Trxh1 expression was suppressed by RNAi
(Trxh1-IR-3 and Trxh1-IR-4). Total cell RNA was fractionated and sequentially hybridized with the Trxh1 probe (top panel), the coding sequence
of the cytosolic thioredoxin h2 gene (Trxh2) (middle panel), and a fragment of the 25S rRNA gene (bottom panel) as a control for comparable
sample loadings. (E) Growth and survival of the indicated strains on TAP medium or on TAP medium containing 2.5 mM MMS (TAP � MMS)
or 1 mM hydrogen peroxide (TAP � H2O2).
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the wild type, as indicated by the smaller average molecular
mass of DNA molecules at each time point (Fig. 4). The
complemented strain, Ble-1(Trxh1)-33, showed an intermedi-
ate phenotype (Fig. 4). This partial correction of the DNA
repair capacity differs from the nearly full reversal of the sur-
vival defect in the same strain when it is exposed to MMS (Fig.
3A).

MMS induces high levels of N-methylpurines and secondary
lesions resulting from DNA damage processing and replica-
tion, such as SSBs and DSBs (21). We speculate that, at the
higher MMS concentration (25 mM) used to cause DNA dam-
age in the repair experiments (in comparison with the concen-
trations employed to test for cell survival), a greater proportion
of MMS-induced lesions corresponds to secondary DSBs. In-
deed, at relatively high concentrations, MMS behaves as a
radiomimetic agent in a manner similar to that of DSB-induc-
ing bleomycin (43). Hence, considering also that Ble-1 shows
hypersensitivity to bleomycin and that this phenotype is only
partly corrected by the expression of Trxh1, Ble-1 is likely
defective in the repair of DSBs, but this deficiency is not a
consequence of the lack of Trxh1.

We also tested the role of Trxh1 in the repair of DNA

FIG. 3. Effect of genotoxic agents on the survival of the mutant
(Ble-1), the wild-type strain (CC-124), and transformants of Ble-1
containing the 3-kb Trxh1 fragment [Ble-1(Trxh1)-33] or all of cosmid
4 [Ble-1(Cos4)-20]. (A) The panels show the survival of cells grown on
TAP medium containing increasing concentrations of MMS or ex-
posed to increasing levels of UVC irradiation. Each graph point rep-
resents the mean (� standard deviation) of results of nine replicates
(three independent experiments). Where the error bars are not visible,
they are smaller than the symbols [�, CC-124; F, Ble-1; Œ, Ble-
1(Cos4)-20; �, Ble-1(Trxh1)-33]. (B) Growth and survival of the indi-
cated strains on TAP medium with (TAP � Ble) or without (TAP) 1.5
�g of bleomycin/ml.

FIG. 4. Analysis of nuclear DNA repair after MMS-induced dam-
age in the wild-type, Ble-1, and Ble-1(Trxh1)-33 strains. (A) Southern
blot showing DNA repair after exposure to 25 mM MMS for 30 min.
Genomic DNA was isolated from untreated control cells (CTRL) and
MMS-treated cells either immediately after the treatment (0 h) or
after recovery in the absence of MMS for 6, 12, or 24 h. The DNA was
separated by alkaline gel electrophoresis and hybridized with a se-
quence corresponding to the TOC1 transposable element. (B) In the
same kind of experiment described above, the relative distribution of
radioactivity in each lane (indicative of the DNA mass distribution)
was analyzed with a phosphorimager and plotted as a function of
migration distance. Graphs represent the average of results of two
independent experiments. CC-124 is indicated by dotted lines, Ble-1 is
indicated by solid lines, and Ble-1(Trxh1)-33 is indicated by dashed
lines. The vertical solid line indicates the average molecular mass of
damaged DNA (similar in all strains) immediately after MMS treat-
ment.
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lesions induced by a lower concentration of MMS, one com-
parable to that employed in the survival experiments (see Ma-
terial and Methods), by using a semiquantitative PCR ap-
proach (11, 33). The ability of a DNA fragment to support
PCR amplification is an indicator of its in vivo intactness, since
DNA sequences containing DNA polymerase-blocking or -ter-
minating lesions will not be amplified in this assay (11, 33).
However, removal of DNA lesions through DNA repair will
enhance the template integrity of genomic DNA, enabling
more PCR amplification. The MMS treatment generated sim-
ilar levels of DNA lesions in the wild-type and Trxh1 RNAi
epi-mutants (Fig. 5), suggesting that Trxh1 does not play a
major role in the detoxification of MMS and prevention of
alkylation DNA damage. In contrast, the strains where Trxh1
expression was suppressed by RNAi showed a lower rate of
DNA repair (measured as the recovery of amplification signal
at 6 and 12 h after treatment) in comparison with the wild type
(Fig. 5). It is unlikely that the increase in DNA amplification
over time results predominantly from the replication of intact
DNA molecules since, under the conditions used, even in the
absence of treatment with genotoxic agents, measured DNA
replication was less than 1.5-fold after 24 h (data not shown).
Therefore, our results suggest that Chlamydomonas Trxh1 is
required, either directly or indirectly (see discussion), for the

repair of alkali-labile abasic sites and/or SSBs induced by treat-
ment with alkylating agents.

Relocalization of a Trxh1-GUS fusion protein to the nucleus
in cells exposed to genotoxic agents. The Chlamydomonas
Trxh1 isoform does not contain a canonical nuclear localiza-
tion signal, and it has been assumed to localize to the cytosol
(64). However, if Trxh1 were directly involved in DNA repair,
it would be expected to localize to the nucleus and/or to re-
distribute to the nucleus in response to treatment with geno-
toxic agents. To test this hypothesis, we examined the subcel-
lular partitioning of a fusion polypeptide consisting of the
Trxh1 coding sequence linked to the N terminus of the E. coli
GUS protein. A transgene expressing GUS alone was used as
a control, since this 68-kDa polypeptide is largely excluded
from the nucleus (71). Both constructs were placed under the
control of the Cauliflower mosaic virus 35S promoter and in-
troduced into onion epidermal cells by particle bombardment.
Onion epidermal peels were used as a transient gene expres-
sion system because the large, transparent (chlorophyll-less)
cells facilitate the imaging of subcellular structures (71). In
addition, we and others have previously demonstrated the cor-
rect subcellular localization of Chlamydomonas fusion proteins
in this system (79, 82).

After particle bombardment, the onion peels were incubated
for 18 to 20 h on MS medium with or without MMS, bleomy-
cin, or H2O2. In other cases, epidermal peels were incubated
overnight on MS and then transferred for a short period to
medium containing genotoxic agents. The subcellular distribu-
tion of the expressed proteins was determined histochemically
by the X-glucuronide assay (71). Regardless of treatment, the
GUS polypeptide was predominantly localized in the cyto-
plasm of onion cells (Fig. 6B and D). Likewise, in the absence
of genotoxic agents or upon treatment with H2O2, the Trxh1-
GUS protein was largely found in the cytosol (Fig. 6A and C).
In contrast, after treatment with MMS or bleomycin, the fusion
polypeptide showed dual localization, in both the nucleus and
the cytoplasm, in the majority of the examined cells (Fig. 6A
and C and data not shown). Thus, consistent with a role of
Trxh1 in DNA repair, our data indicated that the protein
relocalizes to the nucleus in response to certain DNA-damag-
ing agents.

Functional complementation of a S. cerevisiae trx1 trx2 dou-
ble mutant by expression of C. reinhardtii Trxh1. Budding
yeast contains two genes encoding cytoplasmic thioredoxins
(Trx1 and Trx2), which are dispensable during normal growth
conditions (47). However, deletion of both Trx genes results in
hypersensitivity to oxidative agents and defects in the cell cycle,
particularly a prolonged S phase (47, 69). Trx functions as a
reductant for ribonucleotide reductase, an essential enzyme in
deoxyribonucleotide biosynthesis (69), but the alterations in
the cell cycle do not result from reduced levels of deoxyribo-
nucleotides (46). In fact, glutaredoxin can also function as an
electron donor for ribonucleotide reductase (54) and the thi-
oredoxin and glutathione-glutaredoxin systems appear to have
overlapping functions, since only one is required for S. cerevi-
siae viability (16, 68). The actual role of Trxs in the yeast cell
cycle has remained elusive, but we hypothesize that lack of
cytosolic Trxs may result in increased DNA damage by endo-
genously produced ROS and/or a slower repair of spontaneous

FIG. 5. Repair of MMS-induced DNA lesions in the wild type
(CC-124) and a Trxh1 RNAi epi-mutant (Trxh1-IR-3) as examined by
semiquantitative PCR. (A) Amplification of a 2.1-kb genomic DNA
fragment (Lsm5) by using, as the template, DNA isolated from cells
immediately after treatment with 10 mM MMS (0 h) or after allowing
the cells to recover for 6 or 12 h in the absence of MMS. Untreated
control cells (CTRL) were also analyzed. The amplified products were
resolved by agarose gel electrophoresis and stained with ethidium
bromide. (B) Relative amplification of the 2.1-kb fragment calculated
by dividing the amount of amplification from damaged samples (AD)
by the amount of amplification from nondamaged controls (AC). Each
graph point represents the mean (� standard error) of results of three
independent experiments. Symbols: Œ, CC-124; ■ , Trxh1-IR-3.
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DNA lesions that activate the S-phase DNA damage check-
point, preventing entry into mitosis (42, 67).

Little is known about a potential function of yeast Trxs in
response to monofunctional alkylating agents, although Trx2
and the thioredoxin reductase 1 gene are transcriptionally ac-
tivated by MMS treatments (10, 35). Therefore, we examined
whether the S. cerevisiae trx1 trx2 double mutant was hypersen-
sitive to a variety of genotoxic agents and whether Chlamydo-
monas Trxh1 could complement the phenotypic deficiencies,
suggestive of evolutionary conservation of function. S. cerevi-
siae cells with both Trx1 and Trx2 deleted showed defects in
survival (although to different degrees) when they were ex-
posed to MMS or H2O2 (Fig. 7A). Expression of Chlamydo-

monas Trxh1 from a yeast-replicating vector, under the control
of a galactose-inducible promoter, resulted only in reversion of
MMS hypersensitivity. However, a mutant form of Chlamydo-
monas Trxh1 where a cysteine residue in the redox-active site
was replaced by serine (C36S) (25) failed to complement this
phenotype (Fig. 7A). In flow cytometry analysis of asynchro-
nous cultures, the yeast trx1 trx2 mutant also displays a consid-
erably lengthened S phase that becomes apparent by a marked
decrease in the proportion of cells having a G1 (1N) or, to a
lower degree, G2 (2N) DNA content (47). Expression of
Chlamydomonas Trxh1 partly corrected this deficiency in cell
cycle progression, provided that the protein contained the
wild-type cysteine residues in its catalytic site (Fig. 7B). Thus,

FIG. 6. Subcellular distribution of GUS and GUS-Trxh1 fusion proteins in transiently transformed onion epidermal cells. Polypeptides were
localized histochemically by the X-glucuronide assay. (A) Representative cellular staining patterns corresponding to GUS-Trxh1. Onion epidermal
peels bombarded with DNA-coated tungsten particles were incubated on MS medium alone (No treatment) or with the indicated concentrations
of MMS, bleomycin (Ble), or hydrogen peroxide (H2O2). Tissues were simultaneously analyzed by X-glucuronide staining (left panels, blue color)
and nucleus-specific PI staining (right panels, orange color). Nuclei are indicated with arrowheads. (B) Representative staining patterns in onion
epidermal cells transiently transformed with GUS and treated as described for panel A. Panels stained with X-glucuronide (left) and PI (right) are
shown. (C) Frequency analysis of GUS-Trxh1 subcellular distribution under the indicated treatments. Transformed cells were classified as showing
exclusive cytoplasmic localization (black bars) or dual, nuclear, and cytoplasmic localization (red bars) of GUS activity. The results show the
averages (� standard deviations) of results of three independent experiments (300 cells analyzed per treatment). (D) Frequency analysis of GUS
subcellular localization under the indicated treatments as described for panel C.
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these results suggest functional conservation between budding
yeast and Chlamydomonas cytosolic thioredoxins as key com-
ponents in the cellular response to alkylating DNA-damaging
agents. Moreover, a redox-active Cys-X-X-Cys site is necessary
for this function.

DISCUSSION

Thioredoxins are small (�12 kDa), ubiquitous proteins with
thiol:disulfide oxidoreductase activity and a consensus WC(G/
P)PC active site. In their reduced state, Trxs reduce disulfide
bridges in target polypeptides and thereby modulate the activ-
ity of proteins involved in a variety of cellular processes (7, 23,
37). Eukaryotes often contain multiple cytosolic thioredoxin
isoforms (38, 41, 53)—for instance, S. cerevisiae and the uni-
cellular green alga C. reinhardtii contain two each (2, 51)—but
the functional specificity or redundancy of these proteins is for

the most part unknown (23, 38). In mammals and yeast, Trxs
are clearly involved in the response to oxidative stress via
ROS-scavenging mechanisms and modulation of the activity of
signaling and transcription factors (14, 35, 37). Plant and
Chlamydomonas cytosolic Trxs also interact with ROS-detoxi-
fying enzymes, such as ascorbate peroxidase, catalase, gluta-
thione peroxidase, peroxiredoxins, and superoxide dismutase
(3, 23, 41, 80). However, only Arabidopsis Trxh5 has been
implicated in vivo in a response to oxidative stress, whereas
other Trxh genes are not induced by oxidative agents (38, 53).
Moreover, expression studies of Arabidopsis and differential
complementation of thioredoxin-deficient phenotypes in yeast
have suggested functional specialization among plant cytosolic
Trxs (38, 45, 53). Yet, this issue has been difficult to address
experimentally because mutants deficient in individual Trxs
often do not show any obvious phenotype, an effect attributed
to compensation by other thioredoxins and/or glutaredoxins
(38).

While conducting a screen for Chlamydomonas mutants hy-
persensitive to DNA-damaging agents, we isolated a strain
(Ble-1) with a large genomic deletion that included Trxh1.
Ble-1 showed hypersensitivity to treatment with MMS, bleo-
mycin, or H2O2. The strain’s poor tolerance to MMS and, to a
lower degree, its deficient survival in the presence of bleomycin
were complemented by transformation with a wild-type copy of
Trxh1. In contrast, the hypersensitivity to H2O2 was not res-
cued by the ectopic expression of Trxh1. Conversely, in wild-
type cells, suppression of Trxh1 expression by RNAi resulted in
reduced survival upon exposure to MMS and, to a lower ex-
tent, bleomycin but no enhanced sensitivity to H2O2. These
findings indicated that (i) an unidentified gene(s) within the
deleted chromosomal region of Ble-1 is likely responsible for
part of the bleomycin and virtually all of the H2O2 hypersen-
sitivity and (ii) Trxh1 is essential for the cellular response to
certain DNA-damaging agents, including monofunctional al-
kylating chemicals such as MMS, but it is not required for
coping with H2O2-induced oxidative stress. Consistent with
these observations, C. reinhardtii Trxh1 expression is not en-
hanced by exposure to H2O2 or diamide (39). Moreover,
Chlamydomonas Trxh1 cannot correct the hypersensitivity to
H2O2 of a yeast trx1 trx2 double mutant.

To gain insight into the molecular mechanism(s) uniquely
dependent on Trxh1 (Fig. 8), we examined the phenotypic
defects associated with a lack of this protein upon exposure to
an array of DNA-damaging agents. UVC irradiation leads pri-
marily to the formation of bulky pyrimidine dimers (61). In
contrast, MMS generates mainly N7-methylguanine and N3-
methyladenine, but DNA lesion processing and replication of
damaged templates can produce SSBs and DSBs as secondary
lesions (15, 59). Bleomycin consists of a mixture of glycopep-
tides that intercalate between DNA bases and generate an
activated oxygen species (most likely a hydroxyl radical) that
causes SSBs and DSBs (77). We found that neither Ble-1 nor
Trxh1-suppressed RNAi strains were hypersensitive to UVC
irradiation. Thus, since UV-induced pyrimidine dimers are
mended by direct repair and/or NER (5, 22, 58), Trxh1 does
not appear to be required for the correct function of these
pathways (Fig. 8). Similarly, Trxh1 does not seem to be nec-
essary for the homologous recombination or nonhomologous
end-joining pathways (19, 58) because, although Ble-1 appears

FIG. 7. Phenotypic complementation of an S. cerevisiae trx1 trx2
double mutant (EMY63) by expression of Chlamydomonas Trxh1.
(A) Expression of Trxh1, under the control of a galactose-inducible
promoter in a centromeric plasmid restored the tolerance of the mu-
tant to MMS to the same extent that transformation with S. cerevisiae
Trx1 did (left panel). In contrast, Trxh1 did not complement the hy-
persensitivity to H2O2 (right panel). Yeast cells were transformed with
the empty plasmid (YCpGal2), with S. cerevisiae Trx1 (Yeast Trx1),
with Chlamydomonas Trxh1 (CrTrxh1), or with a mutant form of Trxh1
lacking a catalytically active cysteine (CrTrxh1 C36S). Cells were
plated, forming a lawn, and exposed to a gradient of MMS or H2O2
concentrations, established by diffusion from a centrally placed disk
containing 1.36 M MMS or 500 mM H2O2. The size of the halo where
cell growth was suppressed was used as an estimation of the sensitivity
to genotoxic agents. The results show the averages (� standard devi-
ations) of three to five independent experiments. (B) Relative DNA
content in asynchronous cultures of transformed trx1 trx2 mutant cells.
Yeast cells of the indicated transformants were grown to logarithmic
phase, stained with PI, and analyzed by flow cytometry. Relative flu-
orescence intensity (DNA content) is plotted against the number of
counted events (Nuclei counts). Relative DNA contents corresponding
to 1N (G1) and 2N (G2) are indicated.
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to be defective in the repair of DSBs generated by bleomycin
as well as exposure to high concentrations of MMS, Trxh1 does
not complement this defect. This interpretation is also sup-
ported by the mild hypersensitivity to bleomycin of the Trxh1-
suppressed RNAi strains. An unidentified gene(s) within the
deleted chromosomal region of Ble-1 is likely responsible for
the putative defect in DSB repair and the much greater sen-
sitivity to bleomycin of this mutant.

Both Ble-1 and the RNAi strains showed significant defects
in survival when they were exposed to MMS, and transforma-
tion of Ble-1 with a wild-type copy of Trxh1 complemented the
hypersensitivity to MMS and partly restored the capacity to
repair MMS-induced DNA damage. Moreover, based on het-
erologous complementation in S. cerevisiae, a wild-type Trx
redox site appears to be necessary for this function. Enhanced
MMS-induced cytotoxicity in Chlamydomonas lacking Trxh1
may be due to a defect in the detoxification of this genotoxic
agent. However, at least in vitro, MMS preferentially modifies
lysine and histidine protein residues rather than cysteines (the
critical amino acids in the Trx active site) (49). Further, glu-
tathione, which is present at a millimolar concentration in cells,
has been implicated in the detoxification of alkylating electro-
philes in eukaryotes (6, 9, 73, 75). In addition, Chlamydomonas
Trxh1 RNAi epi-mutants do not show an enhanced level of
MMS-induced DNA lesions (Fig. 5), as would be expected for
strains with a defect in a scavenging function.

In a number of organisms, the predominant pathway in-
volved in mending MMS-induced DNA lesions is BER (4, 21,
55). Therefore, the phenotypes of the mutant and RNAi
strains strongly suggest that Trxh1 is required, directly or in-

directly, for BER (Fig. 8). Yet a role for Trxh1 in BER might
seem counterintuitive since this pathway is also expected to
participate in the repair of H2O2-generated oxidized bases (18,
21, 58), but a lack of Trxh1 does not result in hypersensitivity
to H2O2 in Chlamydomonas. However, in mammals, BER is
carried out by several distinct subpathways. BER is commonly
initiated by a DNA N-glycosylase that removes a damaged base
to form an apurinic/apyrimidinic (AP) site (48). This is fol-
lowed by strand scission by APEs, DNA resynthesis, and liga-
tion (4, 13, 58). In mammalian cells, short-patch BER is de-
pendent on DNA polymerase � (Pol�) whereas long-patch
BER requires Pol� or DNA Pol�/Polε (13, 58). The choice of
repair subpathway is at least in part determined by the nature
of the DNA N-glycosylase and the nature of the resultant AP
site (13, 58). Interestingly, short-patch BER is the favored
pathway for the repair of MMS-induced N-methylpurines,
while long-patch BER preferentially repairs oxidation-medi-
ated base loss (21). Mouse cells deficient in Pol� are hyper-
sensitive to a variety of monofunctional alkylating chemicals
but much less sensitive to other DNA-damaging agents, includ-
ing H2O2 (21, 63). These phenotypes are remarkably similar to
those of Trxh1-defective Chlamydomonas. Moreover, short-
patch BER is likely operative in C. reinhardtii since the ho-
mologs of key enzymes in this pathway, mammalian APE 1/Re-
dox factor 1 (APE-1/Ref-1) and Pol�, are encoded by the
Chlamydomonas genome (http://genome.jgi-psf.org/chlre2/chlre2
.home.html).

Consistent with a role for Trxh1 in DNA damage repair, in
transient-expression assays, a Trxh1-GUS fusion protein redis-
tributed to the nucleus after treatment with certain genotoxic
agents. Similarly, wheat Trxh proteins localized predominantly
to the nuclei of aleurone and scutellum cells in maturating
seeds, a feature that has been correlated with oxidative stress
in these tissues (60). Exposure to UV light, ionizing radiation,
or alkylhydroxyperoxides also increases the translocation of
Trx from the cytoplasm to the nucleus in mammalian cells (14,
72, 74), but a potential role of Trx in the repair of DNA lesions
has not been examined. Mammalian Trx has been implicated
mostly in modulating the transcriptional activity of a number of
factors, in some cases in association with APE-1/Ref-1, and in
the activation of stress response genes (20, 29, 52, 74). APE-
1/Ref-1 is a multifunctional protein that possesses both DNA
repair and redox-regulatory activities (20), and it can control
BER by regulating the assembly, function, and/or expression of
other enzymes in this pathway (52, 76). Some APE-1/Ref-1
activities can be modulated posttranslationally by direct inter-
action with thioredoxin (26, 34).

Thioredoxins have been implicated in genotoxic stress re-
sponses mostly via their role in damage prevention, by provid-
ing reducing power to detoxifying enzymes and/or by regulat-
ing their expression (14, 51, 81). Although we cannot entirely
rule out a scavenging function for Chlamydomonas Trxh1 in
the response to MMS treatment, our results indicate that a
lack of Trxh1 results in the defective repair of alkylation-
induced DNA lesions. We propose that Chlamydomonas Trxh1
could have at least two, not mutually exclusive, roles in DNA
damage repair (Fig. 8). Trxh1 may modulate DNA repair ac-
tivities by direct interaction with BER components, such as the
Chlamydomonas APE-1/Ref-1 homolog. Alternatively, Trxh1
may regulate the expression of BER enzymes by controlling

FIG. 8. Proposed role(s) of Chlamydomonas Trxh1 in the response
to DNA-damaging agents. A function of Trxh1 in DNA damage avoid-
ance (detoxification of genotoxic agents) and the transcriptional acti-
vation of stress response genes is inferred from the well-documented
role of cytosolic thioredoxins in other eukaryotes. Our results suggest
a specialized function of Chlamydomonas Trxh1 in the repair of alky-
lation-induced DNA damage (see the text for details). DSBR, DNA
DSB repair; HR, homologous recombination; MMR, mismatch repair;
TLS, translesion DNA synthesis.
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the activity of redox-dependent transcription factors. Although
we have emphasized the potential role of Trxh1 in BER, since
this is the primary mechanism for removal of DNA lesions that
cause minor helix distortion (4, 13, 58), Trxh1 may also func-
tion in mismatch repair and/or translesion DNA synthesis (Fig.
8). Nonetheless, our findings demonstrate an essential require-
ment for Chlamydomonas Trxh1 in DNA damage repair.
Moreover, they also indicate functional specialization among
Chlamydomonas cytosolic thioredoxins since Trxh2 does not
compensate for this role.
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