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Abstract

The first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate

synthase (DAH7PS), adopts a range of distinct allosteric regulation mechanisms in different

organisms, related to different quaternary assemblies. DAH7PS from Mycobacterium tuber-

culosis (MtuDAH7PS) is a homotetramer, with the allosteric sites in close proximity to the

interfaces. Here we examine the importance of the quaternary structure on catalysis and

regulation, by amino acid substitution targeting the tetramer interface of MtuDAH7PS. Using

only single amino acid substitutions either in, or remote from the interface, two dimeric

variants of MtuDAH7PS (MtuDAH7PSF227D and MtuDAH7PSG232P) were successfully

generated. Both dimeric variants maintained activity due to the distance between the sites

of amino acid substitution and the active sites, but attenuated catalytic efficiency was

observed. Both dimeric variants showed significantly disrupted allosteric regulation with

greatly impaired binding affinity for one of the allosteric ligands. Molecular dynamics simula-

tions revealed changes in protein dynamics and average conformations in the dimeric vari-

ant caused by amino acid substitution remote to the tetramer interface (MtuDAH7PSG232P),

which are consistent with the observed reduction in catalytic efficiency and loss of allosteric

response.

Introduction

Protein complexes with different quaternary structures are essential functional modules within

protein interaction networks in the cellular environment [1]. Quaternary structure may be

involved in protein function and allosteric regulation, and this has been demonstrated in vari-

ous protein families such as receptor heteromers, cGMP-dependent protein kinases, transport
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proteins, and the human ribonuclease H2 complex [2–5]. Here, we have investigated the

importance of the quaternary structure for the function and regulation of the biosynthetic

enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS).

DAH7PS catalyzes an aldol condensation reaction between phosphoenolpyruvate (PEP)

and erythrose 4-phosphate (E4P) to produce 3-deoxy-D-arabino-heptulosonate 7-phosphate

(DAH7P), which is the first committed step of the shikimate pathway. The shikimate path-

way operates in microorganisms and plants and is responsible for the de novo biosynthesis

of aromatic amino acids [6]. As the first enzyme of a critical biosynthetic pathway, DAH7PS

is a major flux control point for the shikimate pathway. DAH7PS can be classified into two

types [7]. Type I enzymes are smaller with molecular masses less than 40 kDa, and many

have been well characterized [8–13]. Type II enzymes are larger with molecular masses over

50 kDa. The only member of type II DAH7PS that has been structurally characterized is the

DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) [14]. Previous studies have

shown that MtuDAH7PS, unlike the DAH7PS enzymes characterized so far from other

organisms, adopts a highly sophisticated mechanism of allosteric control [15–18]. Whilst

remaining insensitive to individual aromatic amino acids, binary combinations that involve

Trp (Trp+Phe and Trp+Tyr) result in a significant loss of enzyme activity, and the ternary

combination of all three aromatic amino acids completely abolishes the reaction, revealing

synergy in the response to different allosteric effectors [18, 19]. Moreover, MtuDAH7PS

forms a complex and shares its allostery with M. tuberculosis chorismate mutase (MtuCM),

which acts at the branch point that connects the shikimate pathway to Phe and Tyr produc-

tion [20–22].

Crystal structures of ligand-free MtuDAH7PS revealed a homotetramer quaternary struc-

ture assembled from (β/α)8 TIM barrel subunits [14]. Each of the core barrels hosts an active

site and is decorated by accessory structural elements, including a two-stranded β-sheets (β0),

a three helix extension at the N-terminus (α0a, α0b and α0c) and two inserted helices (α2a

and α2b) [18]. These accessory structural elements contribute to the formation of the dimer

and tetramer interfaces (Fig 1A). Previous studies have identified active site residues of

Fig 1. Crystal structure of MtuDAH7PS. (A) Tetramer of MtuDAH7PS (PDB 5CKV), dimer and tetramer interfaces are indicated with dashed lines.

Residues contributing to the dimer and tetramer interfaces are colored pink and blue respectively. (B) Monomeric unit of MtuDAH7PS in complex with

allosteric ligands Phe, Trp and Tyr (PDB 5CKV), the three aromatic amino acids are displayed as spheres with green carbon atoms, the active site

metal ion Mn2+ is shown as cyan sphere.

https://doi.org/10.1371/journal.pone.0180052.g001
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MtuDAH7PS that are responsible for the binding of substrates PEP and E4P through crystal-

lography [11, 12, 23]. Residues Arg126, Lys306, Arg337, Arg284 and Glu283 stabilize the bind-

ing of PEP. Residues from the β2-α2 loop of the active site, including Arg135 and Ser136, play

key roles in the positioning of the E4P phosphate. The dynamics of residues in the β2-α2 loop

have been shown to strongly affect the enzyme’s response to E4P [24].

Crystal structures of MtuDAH7PS in complex with different ligands showed that there are

three distinct allosteric binding sites [19, 21, 22]. Two of these are located directly at the dimer

and tetramer interfaces, and bind Phe and Trp respectively. The third binding site, which is

selective for Tyr, is located on the exterior surface of the enzyme near the dimer interface (Fig

1B) [18, 19].

MtuCM binds to MtuDAH7PS across the tetramer interface to form a hetero-octameric

complex, which results in the substantial activation of chorismate mutase activity [20]. Binding

of Phe and/or Tyr to their allosteric sites at or near the dimer interface of MtuDAH7PS has

been shown to destabilize the MtuCM interaction, leading to dissociation of the hetero-octa-

mer, and a reduction of MtuCM activity [21, 22]. The intricate network of interconnecting

binding sites displayed by MtuDAH7PS creates a highly sophisticated allosteric system con-

trolling both entry into the pathway for aromatic amino acid biosynthesis and branch point

partitioning. It should be noted that while DAH7PS enzymes from other sources share similar

catalytic barrels, this combination of quaternary structure and allosteric binding sites appears

to be unique to MtuDAH7PS [18, 19, 25–27]. Due to a lack of structural information about

other type II DAH7PS, this as yet unique quaternary structure may yet prove to be a feature of

all type II DAH7PS enzymes.

The observation that MtuDAH7PS interfaces are closely associated with the allosteric sites

implies the significance of the quaternary structure for delivery of the allostery and possibly

function. Here, we investigate the role of quaternary structure in the function and regulation

of MtuDAH7PS using dimeric variants of MtuDAH7PS generated by amino acid substitution

targeting the tetramer interface. Our results demonstrate that changing the quaternary struc-

ture of MtuDAH7PS not only significantly reduces its allosteric response to aromatic amino

acids, but also impairs catalytic function, exposing the dynamic connections between remote

sites.

Results

Identification of target residues for mutagenesis

While the asymmetric unit in the X-ray crystal structures of MtuDAH7PS is a dimer, the bio-

logical assembly of this enzyme is tetrameric. In addition, solution phase experiments such as

small angle X-ray scattering (SAXS) experiments have confirmed that the tetramer is observed

in solution [24]. In the ligand-free MtuDAH7PS crystal structure (PDB 3NV8), the dimer

interface involves more than 50 residues from each chain and has a buried area of 1860 Å2.

The tetramer interface, in contrast, is less extensive with a buried area of 990 Å2 and the

involvement of only 24 residues from each chain [28, 29].

The larger dimer interface is formed between residues from the N-termini, part of helix

α0b and the α0b-α0c loop, part of the β1-α1 loop, and helix α2 (Fig 2A). Backbone hydrogen

bonds can be found between the N-terminal residues to stabilize the anti-parallel β-sheet that

caps the allosteric binding sites for Phe. Other polar interactions contributing to the dimer

interface include a hydrogen bond between the side chains of Asn181 of chain A and Arg184

of chain B, and hydrogen bonds between Asn181 and the backbone carbonyl groups of Pro57

and Val58 from the other chain. Salt bridge interactions are formed between Asp10 of chain A

and Arg171 of chain B.

Quaternary structure of DAH7PS from Mycobacterium tuberculosis
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Fig 2. Analysis of the dimer and tetramer interfaces in MtuDAH7PS. (A) Surface representation of the dimer interface of MtuDAH7PS (PDB

3NV8). Residues contributing to this interface are displayed as red sticks. Residues identified to contribute to the dimer interface by PISA include

residues 2–13, 15, 44, 47–48, 51, 54–58, 60, 62–63, 92, 94–96, 99, 165–167, 170–171, 173–175, 177–178, 180–182, 184–186, 189, 260, 263 and

265 of chain A, and residues 1, 3–13, 47–48, 51, 54–58, 60, 62–63, 91–92, 94–97, 99–100, 165, 167–168, 170–171, 173–175, 177–182, 184–186,

188–190,296, and 260 of chain B. (B) Surface representation of the tetramer interface of MtuDAH7PS (PDB 3NV8). Residues contributing to this

interface are displayed as blue sticks. Residue numbers are described in the main text. (C) Hydrophobic grove in the tetramer interface and the

interaction with Phe227 from the other chain. (D) Positions of the two Gly232 residues on the tetramer interface, succeeding helices α2a and α2b.

https://doi.org/10.1371/journal.pone.0180052.g002
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The tetramer interface consists of residues mostly from the inserted helices α2a to α2b (resi-

dues 194, 220, 221, 223–233, 237, 238) and part of the α1 helix (residues 111, 114, 115, 117–

120) (Fig 2B). The tetramer interface is largely hydrophobic, with only 6 hydrogen bonds iden-

tified when analyzed using PISA [28, 29]. These include the two equivalent hydrogen bonds

formed between the side chain of Arg223 and the backbone carbonyl of Arg461, the two equiv-

alent hydrogen bonds formed between side chains of Arg226 and Ser118, and the two equiva-

lent hydrogen bonds formed between the side chain of Tyr115 and backbone carbonyl of

Glu220. Inspection of the tetramer interface also reveals a small hydrophobic groove. Residues

contributing to this hydrophobic groove include those from the α1 helix (Val111 and Tyr115),

the α2-α2a loop (Leu194) and the inserted helices α2a (His198) and α2b (Ile221, Leu225 and

Met228). Phe227 located on the α2b helix of the subunit across the tetramer interface pro-

trudes into this groove (Fig 2C).

In order to investigate the influence of quaternary structure on catalytic function and allo-

steric response, variant enzymes of MtuDAH7PS were proposed to favor dimeric over tetra-

meric states of the enzyme. Two approaches to disrupt the tetramer interface were explored.

The first was to disrupt physical interactions formed at the tetramer interface; for this purpose

Phe227 was substituted by Asp (variant MtuDAH7PSF227D) to disturb the hydrophobic inter-

actions formed at this position, and weaken the tetramer interface. The second approach taken

was to disrupt the dynamic properties of regions involved in forming the tetramer interface,

based on the observations from previous studies that molecular dynamics play a critical role

in the allosteric regulation and communication networks of MtuDAH7PS [24]. Therefore,

Gly232 located on the loop succeeding the two inserted helices (α2a and α2b) that contribute

to the tetramer interface, was identified as a potential target to effect dynamic disruption to the

tetramer (Fig 2D). Hence, Gly232 was substituted by Pro (creating MtuDAH7PSG232P). Both

variant enzymes were expressed and purified using standard procedures developed for the

wild-type protein [14, 18, 21].

Tetramer formation is disrupted in variant enzymes of MtuDAH7PS

The quaternary structures of the variant enzymes in solution were analyzed by small angle X-

ray scattering (SAXS). The scattering profiles of MtuDAH7PSG232P and MtuDAH7PSF227D

were found to be very similar to each other, but quite distinct from the that of the WT enzyme

and the profile predicted from the MtuDAH7PS tetrameric crystal structure (Fig 3). In con-

trast, the profile predicted for a dimer generated by disrupting the tetramer interface, provided

a better fit to the data. Consistent with a change in quaternary structure in the two variants,

Dmax values (a measure of the maximum dimension of the scattering species) of 98 Å and 96 Å
were observed for MtuDAH7PSG232P and MtuDAH7PSF227D respectively (in comparison with

Dmax of 125 Å for the wild type [24]).

To further analyze the changes in quaternary structures at low protein concentrations, ana-

lytical ultracentrifugation (AUC) was used to further investigate the quaternary structure of

one of the dimeric variants, MtuDAH7PSG232P, in solution. Sedimentation velocity experi-

ments were carried out at three protein concentrations under the conditions previously

described for the wild type enzyme [21]. At the lowest analyzed concentration, 0.09 mg/mL, a

major species with a sedimentation coefficient of 4.0 S can be observed (Fig 4A). The calcu-

lated molecular mass for this species is 54 kDa, which is in good agreement with monomeric

mass of MtuDAH7PS (~51 kDa). At a protein concentration of 0.6 mg/mL, a broadened peak

with sedimentation coefficient of 5.6 S is observed indicating the presence of a mixture of

monomeric and dimeric species. At 0.9 mg/mL, two species are observed. The major species

has a sedimentation coefficient of 5.7 S and a minor species has a sedimentation coefficient of

Quaternary structure of DAH7PS from Mycobacterium tuberculosis
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4.1 S (which corresponded to the monomeric species). The increase in sedimentation coeffi-

cient as protein concentration increases suggests the presence of a concentration dependent

equilibrium between monomeric and dimeric species of MtuDAH7PSG232P.

When samples of MtuDAH7PSG232P were spiked with 100 μM each of Trp and Phe, analysis

showed only one major species with sedimentation coefficient of 6.1 S for all three tested pro-

tein concentrations (Fig 4B). This species has a calculated molecular mass of ~92 kDa in close

agreement with the molecular mass of dimeric MtuDAH7PS (~102 kDa). Hence, the addition

of Trp and Phe had shifted the equilibrium towards the dimeric form of MtuDAH7PSG232P.

As Phe binds at the dimer interface, Phe was most likely to be primarily responsible for the

Fig 3. SAXS profiles of MtuDAH7PSWT (blue), MtuDAH7PSG232P (green), and MtuDAH7PSF227D (red). Also shown is the

theoretical scattering for the tetrameric (full biological assembly, black) and dimer (asymmetric unit, black dash) of MtuDAH7PS

from PDB code 3NV8, and the corresponding pair-wise distribution profiles. The lowest χ values calculated by CRYSOL were

determined to be 0.986 and 2.36 for MtuDAH7PSG232P and MtuDAH7PSF227D respectively.

https://doi.org/10.1371/journal.pone.0180052.g003
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stabilization of the MtuDAH7PSG232P dimer by strengthening the interactions between the

two monomers.

Dimeric MtuDAH7PS variants are catalytically active, but poorly inhibited

by aromatic amino acids

Both dimeric MtuDAH7PSG232P and MtuDAH7PSF227D variants were found to be catalytically

active (Table 1). For both enzymes, a significant change of the E4P Michaelis constant (Km
E4P)

Fig 4. Normalized sedimentation coefficient distribution functions from AUC data for MtuDAH7PSG232P. AUC data were collected in the (A)

absence and (B) presence of 100 μM Trp and 100 μM Phe. MtuDAH7PSG232P was analyzed at 0.09 mg/mL (violet), 0.6 mg/mL (purple) and 0.9 mg/mL

(pink).

https://doi.org/10.1371/journal.pone.0180052.g004
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was noted, with increases of 11-fold and 20-fold relative to the wild-type enzyme for Mtu-
DAH7PSG232P and MtuDAH7PSF227D respectively. The Km values for PEP for both variants

also showed large increases of approximately 5-6-fold relative to the wild-type enzyme. Previous

studies have shown that upon binding of allosteric regulators (100 μM Phe and 100 μM Trp) to

wild-type enzyme, the reaction rate response with respect to E4P concentration changed from

typical hyperbolic Michaelis-Menten curve to a sigmoidal response indicating homotropic

cooperativity with respect to E4P, and a shift of apparent Km
E4P from 37 μM to a E4P0.5 of

382 μM was observed [18]. In this study, the signature homotropic cooperativity with respect to

E4P is not observed in either dimeric variants. Although the large increase in measured Km val-

ues for PEP and E4P in the dimeric variants suggests that dimerization may partially mimic the

effect of allosteric ligand binding, the lack of homotropic cooperativity response with respect to

E4P indicates that dimerization does not result in the same effect as that observed in the alloste-

rically inhibited state of the wild-type enzyme. The turnover number (kcat) determined for both

MtuDAH7PS variants was elevated, however, the relatively large changes to the Km values mean

that the efficiency of both dimeric variants is considerably impaired.

As expected from the known site of interaction of MtuCM [20], disruption of the tetramer

interface of MtuDAH7PS significantly reduced its ability to activate MtuCM in comparison to

tetrameric wild-type (Fig 5A).

In order to investigate the impact of the quaternary structure change on the allosteric regu-

lation of MtuDAH7PS, inhibition studies were conducted on both variant enzymes (Fig 5B–

5D). Due to dimerization of E4P at high concentrations, the inhibition assay was conducted

with a standard saturating E4P concentration for the wild-type enzyme (150 μM); this same

concentration of E4P for the dimeric variants was not saturating, given the large increase in

Km values. DAH7PS activity was determined in the presence of both single and binary combi-

nations of the aromatic amino acids. Combinations of amino acids including Trp and Phe,

which caused 90% inhibition in the wild-type enzyme (95% inhibition with unsaturated E4P

concentration of 50 μM [18]), did not have a substantial effect on activity of the two dimeric

variants (~50% inhibition, but only at relatively high ligand concentrations, Fig 5B–5D). Com-

binations involving Trp and Tyr had even smaller inhibitory effects, showing only 30%-40%

inhibition in comparison with the 50% inhibition (84% inhibition with 50 μM E4P [18])

observed for the wild-type enzyme. For both dimeric variants, some inhibition by Phe (50%

inhibition), and to a lesser extent by Tyr (40% inhibition), was observed. Although no inhibi-

tion was observed for wild-type enzyme by Phe or Tyr alone under saturating E4P concentra-

tions, small inhibitory effect can be observed (50% inhibition with 200 μM of Phe and 47%

inhibition with 200 μM of Tyr) at unsaturated E4P concentration of 50 μM, caused by small

shifts in E4P Km values in the presence of single aromatic amino acids [18].

MtuDAH7PSG232P and MtuDAH7PSF227D bind Trp and Phe

Isothermal titration calorimetry (ITC) was performed to assess the binding of Trp and Phe

to the dimeric variant enzymes. Despite the attenuated inhibitory response to the amino

acids, binding was observed (Table 2). The dissociation constants for Phe binding, known

Table 1. Kinetic parameters of wild-type MtuDAH7PS, MtuDAH7PSG232P and MtuDAH7PSF227D determined from ternary complex rate equation.

MtuDAH7PS Km
E4P

(μM)

Km
PEP

(μM)

kcat

(s-1)

Wild-type 29 ± 5 15 ± 4 6.7 ± 0.4

G232P 330 ± 10 90 ± 20 15 ± 7

F227D 590 ± 60 80 ± 20 8 ± 3

https://doi.org/10.1371/journal.pone.0180052.t001
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Fig 5. Activities of MtuCM, wild type and variant MtuDAH7PS. (A) Activation of MtuCM activity in the presence of ten-fold molar excess of wild-type

MtuDAH7PS, MtuDAH7PSG232P or MtuDAH7PSF227D. The dashed line indicates the activity of MtuCM alone. Assays conducted with 150 μM

chorismic acid and 60 nM MtuCM except for MtuCM alone where 90 nM was used. Specific activity of (B) wild-type MtuDAH7PS and (C)

MtuDAH7PSG232P and (D) MtuDAH7PSF227D in the presence of various single and binary combinations of aromatic amino acids. For binary

combinations, the background concentration of the indicated ligand was held at 100 μM. Assays conducted in the presence of 150 μM PEP and

150 μM E4P.

https://doi.org/10.1371/journal.pone.0180052.g005

Table 2. Dissociation constants (Kd) of Phe and Trp binding to MtuDAH7PSG232P and MtuDAH7PSF227D determined from ITC.

Titrated ligand Background ligand MtuDAH7PSG232P

Kd (μM)

MtuDAH7PSF227D

Kd (μM)

Phe 17 ± 2 a 15.9 ± 0.9 c

Trp 150 ± 10 b 200 ± 20 d

Trp Phe 210± 30 e 220± 20 f

a28 μM of MtuDAH7PSG232P with 900 μM Phe titrant.
b30 μM MtuDAH7PSG232P with 3 mM Trp titrant.
c32 μM of MtuDAH7PSF227D with 600 μM Phe titrant.
d32 μM MtuDAH7PSF227D with 5 mM Trp titrant.
e24 μM MtuDAH7PSG232P and a background of 50 μM Phe present in the cell with a 5 mM Trp titrant.
f28 μM MtuDAH7PSF227D and a background of 50 μM Phe present in the cell with a 5 mM Trp titrant.

https://doi.org/10.1371/journal.pone.0180052.t002
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to bind at the preserved dimeric interface, were very similar to that for the wild-type enzyme

(Kd = 21 ± 1 μM) [24]. On the other hand, Trp binding was significantly attenuated in com-

parison with wild-type enzyme (Kd = 4.7 ± 0.1 μM) [24], consistent with the proximity of

the Trp binding site to the disrupted interface. Interestingly, the binding of Trp was not

improved when either dimeric variant was pre-incubated with Phe (in contrast to a 4-fold

reduction in Kd of Trp in wild-type enzyme after pre-incubated with Phe [24]), suggesting

that the communication between Phe and Trp binding sites that was observed in the wild

type enzyme had been disrupted by the loss of the tetrameric quaternary structure.

Dimerization is accompanied by changes in protein dynamics

The cause of dimerization in MtuDAH7PSF227D variant is quite clear as the amino acid substi-

tution introduced directly breaks contacts involved in the formation of the tetramer interface.

However, the reasons for dimerization, and the effects of this change in quaternary structure

were not immediately obvious for the MtuDAH7PSG232P variant. Given that protein dynamics

has previously been shown to play an important role in the allosteric regulation of Mtu-
DAH7PS, molecular dynamics (MD) simulations were conducted for the dimeric variant Mtu-
DAH7PSG232P, the theoretical wild-type dimer MtuDAH7PSWT

dimer and the tetrameric

MtuDAH7PSWT in order to examine the effects of dimerization on the dynamic properties of

this enzyme. As no experimental structures are available, both dimeric species were generated

in silico based on the crystal structure of wild-type protein MtuDAH7PS (PDB 3NV8). The

MD simulations were conducted for 464.1 ns, 429.9 ns and 540.9 ns for MtuDAH7PSG232P,

MtuDAH7PSWT and MtuDAH7PSWT
dimer systems respectively. All systems were equilibrated

and analysis were conducted using only trajectories from the equilibrated time period (S1 Fig).

RMSF values were calculated for all three systems. Due to the presence of multiple chains,

the chain-averaged RMSF values were calculated for comparison. A comparison between the

calculated average RMSF values for MtuDAH7PSWT and temperature factors obtained from

ligand-free crystal structure of MtuDAH7PSWT (PDB 3NV8) showed good correlation in pre-

dicted flexible regions (S2 Fig). For both dimeric systems (MtuDAH7PSWT
dimer and Mtu-

DAH7PSG232P), RMSF values were measured using the α-carbons for each individual residue

and compared to those measured for the tetrameric wild-type protein (Fig 6, and calculated

Fig 6. Percentage difference in residue RMSF values. Percentage difference in residue RMSF values between (A) tetrameric MtuDAH7PSWT and

dimeric variant MtuDAH7PSG232P and (B) tetrameric MtuDAH7PSWT and theoretical dimer MtuDAH7PSwt
dimer. The dashed line indicates the position

of the substitution G232P along the amino acid sequence of MtuDAH7PS. Residue RMSF values were measured in reference to the corresponding

MD average conformation using trajectories obtained from equilibrated time period in the MD simulation for each system (50–464.1 ns, 70–429.9 ns

and 120–540.9 ns for MtuDAH7PSG232P, MtuDAH7PSWT and theoretical dimer MtuDAH7PSwt
dimer, respectively). Chain-average RMSF values were

calculated and compared. Percentage difference is calculated by (RMSFdimer −RMSFtetramer)�RMSFtetramer × 100.

https://doi.org/10.1371/journal.pone.0180052.g006
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RMSF values for MtuDAH7PSWT is provided in Figure A in S2 Fig). The change in flexibility

is then reflected by calculating the differences in average RMSF values. Due to the loss of

restraint from the tetramer interface, both dimeric systems appeared to be more flexible in

general compared to the tetrameric wild type. Interestingly, residues 300–462 did not show

large increases in flexibility in the theoretical dimer compared to those calculated for Mtu-
DAH7PSG232P, which suggests that whereas the general increase in flexibility in Mtu-
DAH7PSG232P is likely to be contributed by the loss of the tetramer interface, the increase

in flexibility for residues 300–462 appears to arise from the G232P substitution.

Residues 130 to 164, which comprise the β2-α2 loop in the active site, showed reduced flexi-

bility in the dimeric systems. This loop is responsible for the binding of E4P and has been

shown to bind to the E4P-mimicking portion of an MtuDAH7PS inhibitor designed to resem-

ble the reaction intermediate [23]. Further examination of the backbone conformational

ensembles sampled by the β2-α2 loop (residues 130 to 153) was conducted by measuring the

α-carbon RMSD values in comparison to β2-α2 loop conformations in both the ligand free

crystal structure of MtuDAH7PSWT (PDB 3NV8) and the MD average conformation of chain

A in MtuDAH7PSG232P (Fig 7A). The results showed that the β2-α2 loop in MtuDAH7PSWT

samples a large range of conformations; only upon dimerization in the theoretical dimer Mtu-
DAH7PSWT

dimer, a decrease in the number of accessible conformations is observed; whereas

in the dimeric variant MtuDAH7PSG232P the effect is more pronounced with an even smaller

subset of conformations accessible. The decreasing number of accessible conformations for

the β2-α2 loop in the dimeric species may mean that the catalytically relevant conformations

of loop 2 for E4P binding and reaction with PEP (as represented by the conformations with

low RMSD values to ligand free MtuDAH7PSWT crystal structure) are not being sampled,

which may contribute to the observed impairment of the catalytic efficiency in the dimeric

species.

Dimerization is accompanied by changes in average conformations

around regions involved in tetramer interface formation

Out of the two mutated residues that disrupted quaternary structures (G232 and F227), F227

is directly involved in physical interactions within the tetramer interface, and the amino acid

substitution impairs dimerization directly. However, it is not apparent from an inspection of

the crystal structure of ligand free MtuDAH7PSWT how the substitution of Gly232 to Pro

may affect tetramer formation. The MD average conformations for MtuDAH7PSWT, Mtu-
DAH7PSG232P and MtuDAH7PSWT

dimer were compared with the crystal structure of ligand

free MtuDAH7PSWT (PDB 3NV8). Each chain within these MD average structures sampled

slightly different average conformations and are all superimposed with chain A of the ligand

free crystal structure for comparison, allowing conformational differences particularly

around the regions involved in forming the tetramer interfaces to be closely examined (Fig

7C). Helices α2a and α2b in the MD average structure of MtuDAH7PSWT mostly main-

tained similar conformations to those observed in the ligand free crystal structure (Fig 7C).

A range of slightly different conformations were observed around the α2b-β3 loop due to its

flexibility, corresponding to the larger RMSD values calculated for this region (residue 235–

240) compared to the preceding helical regions (Fig 7B). In contrast to MtuDAH7PSWT,

both dimeric systems showed much greater changes in the positions of helices α2a and α2b

as well as the conformation of the flexible α2b-β3 loop (Fig 7B and 7C). The theoretical

dimer MtuDAH7PSWT
dimer showed similar tilting of the inserted helices to the dimeric vari-

ant MtuDAH7PSG232P (Fig 7C), with slightly larger conformational changes in α2a helix and

the first half of α2b helix (residues 194–218) in comparison to MtuDAH7PSG232P (Fig 7B).
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However, for regions that were actively involved in forming the tetramer interface in Mtu-
DAH7PSWT, i.e. the second half of helix α2b (residues 223–232) and the α2b-β3 loop (resi-

dues 233–237), MtuDAH7PSG232P showed larger deviations in conformation compared to

MtuDAH7PSWT
dimer, suggesting that in addition to the changes of positions of the inserted

helices caused by purely dimerization, the G232P substitution could contribute to further

movements in this region.

In order to investigate the effect on the formation of interfaces caused by the seemingly slight

change in conformations in the regions α2a-β3, the tight dimer interface in MtuDAH7PSG232P

was analyzed and compared to the dimer interface observed in MtuDAH7PSWT. The MD

average conformations for both MtuDAH7PSG232P and MtuDAH7PSWT were subjected to

interface analysis using PISA (Table 3). Results from PISA showed that the dimer interface in

Fig 7. Analysis of conformational ensembles from MD simulations. (A) MD conformational ensemble sampled by loop 2 (residues 130 to 153)

during equilibrated time period of MD simulations for tetrameric MtuDAH7PSWT (blue), dimeric variant MtuDAH7PSG232P (red) and the theoretical

dimer MtuDAH7PSWT
dimer (green). RMSD values of Cα atoms on loop 2 residues (130 to 153) were measured in reference to both the MD average of

MtuDAH7PSG232P variant and crystal structure of ligand free MtuDAH7PSWT. (B) Chain-averaged α-carbon RMSD values of MD average

conformations of MtuDAH7PSWT, MtuDAH7PSwt
dimer, and MtuDAH7PSG232P in comparison with crystal structure of ligand free MtuDAH7PS (PDB

3NV8), for residue range 189–247. (C) Superimposition between ligand free crystal structure of MtuDAH7PS (PDB 3NV8, grey) and MD average

conformations of each chain from MD simulations of MtuDH7PSWT (blue), MtuDAH7PSG232P (red) and MtuDAH7PSWT
dimer (green), only residues

190–243 are displayed for clarity. Regions that are responsible for forming the tetramer interface are highlighted in black circles.

https://doi.org/10.1371/journal.pone.0180052.g007
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MtuDAH7PSG232P is more extensive and hydrophobic than that of MtuDAH7PSWT, as indi-

cated by a larger interface area, a more negative ΔiG value and fewer salt bridges across the

interface. This increase in dimer interface area was mainly contributed by the conformational

changes in α2a-β3 loop in MtuDAH7PSG232P. It is possible that the conformational and

dynamic changes caused by the G232P substitution favors a more extensive dimer interface, at

the expense of disruption to the formation of the tetramer interface. In order to investigate the

effect on tetramer formation by the G232P substitution, the potential tetramer interface that

would be formed if MtuDAH7PSG232P were tetrameric was also analyzed using PISA. A

“pseudo-tetramer” of MtuDAH7PSG232P was generated by aligning two dimers of the Mtu-
DAH7PSG232P MD average conformations to the tetramer crystal structure of MtuDAH7PSWT

(PDB 3NV8). The calculations show that this pseudo-tetramer interface in MtuDAH7PSG232P

would have reduced interface area and be more polar compared to the tetramer interface in

MtuDAH7PSWT. The calculated solvation free energy gain upon formation of this pseudo-

interface (ΔiG) decreased more than 2-fold, in line with it being a less hydrophobic interface in

comparison with MtuDAH7PSWT. Furthermore, the P-value (a measure of interface specificity)

for ΔiG of the pseudo-tetramer interface in MtuDAH7PSG232P is greater than 0.5 (0.651 in con-

trast to P-value of 0.087 in MtuDAH7PSWT), which indicates the pseudo-tetramer interface is

unlikely to form.

Discussion

The importance of quaternary structure has been noted for both enzyme function and regula-

tion. For example, oligomeric states were found to affect the activity of secondary transport

proteins [5] and (β/α)8 barrel enzymes [30]; quaternary structures also contribute to the regu-

lation of D-3-phosphoglycerate dehydrogenase (PGDH) from Mycobacterium tuberculosis [31]

and thymidine kinases [32]. MtuDAH7PS has previously been shown to adopt a highly sophis-

ticated mechanism for its allosteric regulation [18, 19, 21]. This homotetrameric enzyme hosts

allosteric binding sites that are selective for each of the three aromatic amino acids (Phe, Tyr

and Trp), two of which (the Phe and Trp binding sites) are mainly formed by additional struc-

tural elements to the main barrel, and are located at interfaces that are only formed upon oligo-

merization. It is not inhibited by individual aromatic amino acids, but rather by binary or

ternary combinations that include Trp. In this study, we have explored directly the role of qua-

ternary structure in the function and allosteric regulation of MtuDAH7PS.

Dimeric variants of MtuDAH7PS were successfully generated by either disrupting the phys-

ical interactions that stabilize the tetramer interface (MtuDAH7PSF227D) or by altering the

dynamic properties of regions around the tetramer interface via a remote amino acid substitu-

tion (MtuDAH7PSG232P). It was found, as expected, that allosteric inhibition was significantly

impeded upon loss of the tetramer interface. Combinations of aromatic amino acids involving

Trp did not show substantial inhibitory effect on the dimeric variants. The binding of Phe

was largely unaffected, but, in contrast, the binding of Trp was shown to be significantly

Table 3. Interface analysis results for MtuDAH7PS WT and G232P from PISA [29]. ΔiG indicates the solvation free energy gain upon formation of the

interface. P-value indicates the probability to obtain solvation energy gain lower than the observed value ΔiG, if interface atoms were picked randomly from

protein surface such as to amount to the observed interface area. An interface with P>0.5 is likely to be an artefact and interfaces with P<0.5 are likely to be

interaction specific. NNH and NSB indicate the number of potential hydrogen bonds and salt bridge interactions across the interface, respectively.

Dimer interface (Pseudo) tetramer interface

Interface area (Å2) ΔiG (kcal/mol) ΔiG P-value NHB NSB Interface area (Å) ΔiG (kcal/mol) ΔiG P-value NHB NSB

MtuDAH7PSWT 2054.4 -25.7 0.220 28 15 915.1 -15.9 0.087 4 1

MtuDAH7PSG232P 2123.6 -27.8 0.240 28 10 839.7 -6.8 0.651 27 6

https://doi.org/10.1371/journal.pone.0180052.t003
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attenuated, which was not surprising due to the close proximity of the tetramer interface and

the Trp allosteric site in the tetrameric structure of the wild type enzyme.

The dimeric variants also showed impaired catalytic efficiency. Large increases in Km values

of both PEP and E4P observed in the dimeric variants may suggest that dimerization partially

mimics the effect of allosteric inhibition. However, the lack of the homotropic cooperativity

behavior with respect to E4P, which was observed for the allosterically inhibited wild type

enzyme [18], suggests that the effect of dimerization is not the same as that caused by allosteric

ligand binding. Previous study has established that protein dynamics plays an important role

in communication between the allosteric and the active sites [24]. In this study, molecular

dynamics simulations suggested that the dynamic properties of the enzyme were changed

upon dimerization, therefore it is not surprising that the catalytic properties of the active site

are also altered in the dimeric variants.

Given the ease of breaking the tetramer interface with just single amino acid substitution as

shown in this study, it is reasonable to consider whether a dimer-tetramer equilibrium could

be part of the allosteric regulation mechanism of MtuDAH7PS. However, all of the existing

experimental evidences suggest that this is not the case. Firstly, combinations of aromatic

amino acids that include Trp are required for allosteric regulation of wild type MtuDAH7PS,

but the presence of Trp alone is not inhibitory [18]. Trp binds tightly in the tetramer interface

in the wild-type enzyme and its binding is significantly attenuated in the dimeric variants.

Therefore, the tetrameric species of MtuDAH7PS is both fully active and the inhibited species

involved in allosteric regulation. Secondly, chorismate mutase is activated by formation of an

enzyme complex with MtuDAH7PS across the tetramer interface, which further stabilizes the

tetrameric species of MtuDAH7PS [21, 22]. This species is also fully active and responsive to

allosteric regulation of DAH7PS activity. Thirdly, tetrameric wild-type MtuDAH7PS is more

active than the dimeric variants created in this study, suggesting that tetramer formation is

required for efficient catalysis. Therefore, while it is conceivable that dimeric species of the

wild type enzyme may exist under low protein concentrations, the existing experimental evi-

dence suggest that the tetrameric species of MtuDAH7PS is the biologically relevant species,

and the dimer-tetramer equilibrium is not required for effective allosteric regulation of

MtuDAH7PS.

However, there appears to be an intimate relationship between quaternary structure and

allostery in DAH7PS enzymes. The accessory structural elements to the core barrel have

been shown to contribute to the formation of interfaces and to be closely linked to allostery.

DAH7PS from Thermotoga maritima (TmaDAH7PS, type 1β) contains an ACT domain (small

domain of 60–70 residues with a βαββαβ topology [33, 34]) attached to the main barrel via a

flexible linker. Two of the ACT domains come together to form allosteric binding sites for Tyr

[25]. DAH7PS from Neisseria meningitidis (NmeDAH7PS, type 1α) has an N-terminal exten-

sion and inserted β-sheets added to the main barrel, and these additional structural elements

contribute to the dimer and tetramer interfaces as well as forming the binding site for allosteric

ligand Phe [35]. MtuDAH7PS is the only type II DAH7PS so far with a known structure and

extensive studies have shown that the N-terminal extension and the inserted helices contribute

to the interfaces and are responsible for the highly sophisticated allosteric regulation observed

for this enzyme [14, 18, 19, 21, 24]. However, a group of type II DAH7PS enzymes, which are

involved in secondary-metabolite biosynthesis, lack the region corresponding to the inserted

helices in MtuDAH7PS that are responsible for the formation of the tetramer interface and the

Trp binding site [36]. For example, Pseudomonas aeruginosa contains two forms of type II

DAH7PS (PaeDAH7PS), which could be named long and short forms based on the length of

their amino acid sequence. The long form PaeDAH7PS highly resembles MtuDAH7PS,

whereas the short form omits the sequence corresponding to the inserted helices (α2a and
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α2b) in MtuDAH7PS. Knowing the essential role of these inserted helices in forming the tetra-

mer interface and hosting the allosteric binding site for Trp in MtuDAH7PS, the lack of the

inserted helices in the short form PaeDAH7PS suggests that it may adopt a different, perhaps

dimeric, quaternary structure, and may not be sensitive to inhibition by Trp. Future studies to

obtain structural information for other type II DAH7PS may help to further clarify the impor-

tance of these additional structural elements and further our understanding of the relationship

between quaternary structure and allostery.

Materials and methods

Generation of variant MtuDAH7PS, protein expression and purification

The variants of MtuDAH7PS were produced using the QuikChange Lightning Site-Directed

Mutagenesis Kit (Stratagene) in accordance with the manufacturer’s instructions and

using the pPro-Ex-HTa wild-type plasmid as the template. Primers used to produce Mtu-
DAH7PSF227D were Fwd: 5´-CCACAGGCACTCATGTCCCGCAGCCCACGATC-3´and Rev:

5´- GATCGTGGGCTGCGGGACATGAGTGCCTGTGG-3´, and the primers used to produce

MtuDAH7PSG232P were Fwd: 5´-GCGGTTCATGAGTGCCTGTCCGGTGGCCGAC-3´ and Rev:

5´-GTCGGCCACCGGACAGGCAGGCACTCATBAACCGC-3´.The resulting PCR products

were transformed into chemically competent One Shot TOP10 (Invitrogen) and electrocom-

petent BL21 (DE3) pGroESL E. coli cell lines for plasmid storage and protein expression,

respectively. The protein expression and purification of both MtuDAH7PS (including variant

MtuDAH7PS) and MtuCM were carried out as previously described by Webby et al. and

Blackmore et al. respectively [14, 18, 21].

Enzyme assays and kinetic measurements

The MtuDAH7PS activity assays were conducted at 30˚C as reported previously reported [14,

18]. Enzyme activity was monitored by following the loss of absorbance at 232 nm due to con-

sumption of PEP. The reaction mixtures contained E4P (25–150 μM), MnSO4 (100 μM), and

PEP (fixed at 150 μM or varied to determine kinetic parameters) in assay buffer (50 mM BTP,

pH 7.5, and 1 mm tris(2-carboxyethyl) phosphine)). PEP and E4P solutions were prepared in

assay buffer, and the MnSO4 solution was prepared in ultrapure water. The reaction was initi-

ated by the addition of purified MtuDAH7PS. Initial reaction rates were determined by a least

squares fit of the initial-rate data.

Km and kcat values for MtuDAH7PS were determined by fitting the data to the appropri-

ate ternary complex kinetic equation using the program Prism 6 (Graphpad). Kinetic data

were obtained at three different E4P concentrations (25, 50 and 100 μM for MtuDAH7PS

and 50, 75 and 100 μM for the variant enzymes) and at least five different PEP concentra-

tions for each set of assayed E4P concentration (10, 20, 40, 90, 150 and 300 μM for wild-type

enzyme; 5, 20, 40, 90, 150 and 300 μM for MtuDAH7PSG232P; and 10, 20, 40, 150 and

300 μM for MtuDAH7PSF227D).

Measurement of MtuCM activity

The MtuCM activity assays in the presence of MtuDAH7PS monitored the loss of chorismate

by loss of absorbance at 274 nm and were conducted at 30˚C as previously reported [21].

Assays to determine the activation of MtuCM were performed with 1:10 molar ratio MtuCM

to MtuDAH7PS. Assays were conducted with 150 μM chorismic acid and 60 nM MtuCM.

When assayed alone the MtuCM concentration was increased to 90 nM and the results

normalised.

Quaternary structure of DAH7PS from Mycobacterium tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0180052 June 30, 2017 15 / 21

https://doi.org/10.1371/journal.pone.0180052


Feedback inhibition studies

Solutions of L-Phe (Sigma), L-Tyr (Sigma), and L-Trp (Sigma) in ultrapure water were added

to standard MtuDAH7PS assay reaction mixtures. Inhibition study assays were conducted in

the presence of none, one or two aromatic amino acids. MtuDAH7PS steady-state kinetic

assay solutions contained PEP (150 μM), E4P (150 μM), MnSO4 (100 μM) and amino acid

(0–200 μM) in assay buffer. For assays with two amino acids, the background concentration of

the indicated amino acid was held at 100 μM. Reactions were initiated by the addition of

MtuDAH7PS.

Isothermal titration calorimetry

ITC experiments were performed using a VP-ITC microcalorimeter (Microcal, GE Health-

care) at 25˚C. Ligands were dissolved into the SEC buffer and pH adjusted to match the pH of

the original buffer solution. Prior to each experiment, the protein was buffer exchanged into

the SEC buffer used to prepare the ligand solution. The protein concentration was measured

by UV absorption at 280 nm. All solutions were filtered and degassed in a vacuum immedi-

ately before use. For all experiments, the cell contained a solution of MtuDAH7PS and the

syringe contained the ligand solution. Each experiment consisted of 29 injections, one 2 μL

injection and 28 subsequent 10 μL injections. The initial data point was deleted to allow for dif-

fusion of the ligand across the needle tip during the initial equilibration period. Heats of dilu-

tion were measured independently and subtracted from the titration data before curve fitting

of the data using Origin (version 7.0, OriginLab1) using the single-site binding model sup-

plied by MicroCal. ITC data is provided in S3 Fig.

SAXS

SAXS measurements were performed using methods previously described at the SAXS/WAXS

beamline located at the Australian Synchrotron [24]. Protein samples at concentrations of

6 mg/mL were added to size-exclusion chromatography column.

Scattering intensity (I) was plotted against s [where s is the magnitude of the scattering

vector, which is related to the scattering angle (2θ) and the wavelength (λ) as follows:

s = (4π/λ)sinθ]. All samples were assessed for non-linearity in the increase of intensity at low

s to check for aggregation or concentration dependent scattering. 1D profiles were back-

ground subtracted and Guinier fits were made using PRIMUS and found to be linear for

s�Rg<1.3 (Rg is the radius of gyration). An indirect Fourier transform was performed by

GNOM to provide a pair wise distribution function (P(r)) which determined both the rela-

tive probability of scattering centres being separated by a given distance and the maximum

dimension of the scattering particle (Dmax). Theoretical scattering curves were generated

from atomic coordinates (PDB 3NV8) and compared with experimental scattering curves

using CRYSOL [37]. SAXS parameters from the analyses are presented in Table 4.

Analytical ultracentrifugation (AUC)

Sedimentation velocity experiments were performed in a Beckman Coulter XL-1 analytical

ultracentrifuge equipped with UV/Vis scanning optics at 20˚C. All protein samples were pre-

pared by dialysis overnight into the buffer solution (50 mM Tris buffer with 150 mM NaCl

and 200 μM MnSO4 at pH 7.5). Reference buffer solution (400 μL) and sample solution

(380 μL) were loaded into 12 mm double-sector cells with quartz windows, and mounted in

an An-50 Ti 8-hole rotor. Protein samples at concentrations of 0.09, 0.6 and 0.9 mg/mL (corre-

sponding to 1.8, 12 and 18 μM respectively) were centrifuged at 50,000 rpm and the

Quaternary structure of DAH7PS from Mycobacterium tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0180052 June 30, 2017 16 / 21

https://doi.org/10.1371/journal.pone.0180052


absorbance data was collected at 280 or 290 nm without averaging. For AUC experiments in

the presence of 100 μM Phe and 100 μM Trp, both the protein sample and the buffer reference

were spiked with the amino acid just prior to analysis. AUC data was fitted to a continuous dis-

tribution c(s) model using SEDFIT [38, 39]. The partial specific volume (v) of the protein sam-

ples, butter density (1.005 gmL-1) and buffer viscosity (1.021 cp) were calculated using the

program SEDTERP [40]. Sedimentation velocity data for MtuDAH7PSG232P in the absence

and presence of 100 μM Trp and 100 μM Phe is provided in S4 Fig.

Molecular dynamics simulations

The MD simulations were carried out with NAMD running on the BlueFern supercomputer

at the University of Canterbury [41]. For MD simulation of MtuDAH7PSWT
dimer, the dimeric

molecule found in the asymmetric unit of ligand free wild type MtuDAH7PS (PDB 3NV8) was

used as starting structure. The crystal structure of ligand free MtuDAH7PS (PDB 3NV8), was

also used to prepare input structures for MD simulations of the wild-type MtuDAH7PS tetra-

mer and the dimeric variant MtuDAH7PSG232P. For the wild-type tetramer, the quaternary

structure was generated from the dimer in the asymmetric unit based on the 2-fold crystallo-

graphic symmetry operation. For MtuDAH7PSG232P, in silico amino acid substitutions were

conducted on corresponding residues based on the dimer present in the unit cell of the wild

type crystal structure. Each system was solvated with explicit TIP3 water molecules in a box in

VMD [42], Na+ and Cl- ions were added to balance the net charge of the water box. The ions

were added with a minimum distance of 5 Å to the enzyme molecule and to each other. All

MD simulations conducted in this study and in previous studies of MtuDAH7PS enzymes [24]

contain Mn2+ ions at the metal binding sites in the active sites. When Mn2+ ions were not pres-

ent in the initial crystal structures, they were included by manually adding the ions to the

Table 4. SAXS parameters calculated from analysis of the scattering profiles of MtuDAH7PS variants using PRIMUS, GNOM, MoW, and CRYSOL.

Values were obtained by analysis of one set of SAXS data.

MtuDAH7PSWT MtuDAH7PSG232P MtuDAH7PSF227D

Data points 379 207 297

q-range 0.014–0.265 0.019–0.269 0.014–0.269

Guinier analysis

Rg (Å) 41.6 ± 0.3 29.8 ± 0.1 29.8 ± 0.1

I (0) (cm-1) 0.168 ± 0.001 0.074 ± 0.001 0.066 ± 0.001

Pair distribution analysis

Real Space Rg (Å) 40.9 ± 0.2 29.6 ± 0.1 28.83 ± 0.07

Dmax (Å) 127 98 96

Vp, (Da) 282700 144500 150518

Molecular weight estimates from SAXS MoW analysis

Mw from Vp (Da) 199 100 89800 91800

Nō of Subunits 4 2 2

CRYSOL analysis with Tetrameric 3NV8

RgE (Å) 42.4 ± 0.2 41.6 ± 0.2 29.8 ± 0.2

RgT (Å) 40.6 29.6 ± 0.2 39.8

χ 0.996 40.0 51.4

CRYSOL analysis with dimer of MtuDAH7PS 3NV8 in asymmetric unit

RgE (Å) 41.7 ± 0.2 29.6 ± 0.2 29.9 ± 0.2

RgT (Å) 30.7 29.1 29.3

χ 13.3 0.986 2.36

https://doi.org/10.1371/journal.pone.0180052.t004
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corresponding metal binding sites. MD simulations were conducted with the CHARMM22

all-hydrogen parameter file for proteins at a constant temperature and pressure (310 K, 1 atm)

[43]. The cutoff distance for van der Waals interactions was set to 12 Å. In each simulation, the

system was first minimized for 5000 steps followed by dynamics simulation conducted with 2

fs time steps. The MD simulations were conducted for 464.1 ns, 429.9 ns and 540.9 ns for Mtu-
DAH7PSG232P, MtuDAH7PSWT and MtuDAH7PSWT

dimer systems respectively.

Supporting information

S1 Fig. Protein backbone RMSD values during MD simulations. RMSD values of protein

backbone atoms in MtuDAH7PSWT (green), MtuDAH7PSWT
dimer (red) and Mtu-

DAH7PSG232P (blue) are plotted against simulation time (ns).

(TIFF)

S2 Fig. Comparison between calculated RMSF values and temperature factors obtained

from crystal structure. (A) Calculated chain-average RMSF values for MtuDAH7PSWT during

MD simulation. (B) Square root values of the chain-average temperature factor obtained from

ligand free crystal structure (PDB 3NV8) of MtuDAH7PSWT.
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S3 Fig. ITC data. ITC data obtained for (A) 30 μM MtuDAH7PSG232P with 3 mM Trp titrant;

(B) 28 μM of MtuDAH7PSG232P with 900 μM Phe titrant; (C) 24 μM MtuDAH7PSG232P and a

background of 50 μM Phe present in the cell with a 5 mM Trp titrant; (D) 32 μM Mtu-
DAH7PSF227D with 5 mM Trp titrant; (E) 32 μM of MtuDAH7PSF227D with 600 μM Phe titrant

and (F) 28 μM MtuDAH7PSF227D and a background of 50 μM Phe present in the cell with a 5

mM Trp titrant.

(TIFF)

S4 Fig. AUC data. Sedimentation velocity data for MtuDAH7PSG232P in the absence and pres-

ence of 100 μM Trp and 100 μM Phe. Data collected at 20˚C and 50,000 rpm. (A), (B) and (C)

are the data from MtuDAH7PSG232P collected at 0.09, 0.6 and 0.9 mg.mL-1 and (D), (E) and

(F) are the data from MtuDAH7PSG232P collected in the presence of 100 μM Trp and 100 μM

Phe. at 0.09, 0.6 and 0.9 mg.mL-1. Each panel shows the sedimentation velocity data (data

points), the size-distribution best fit (solid lines) and residuals for the data fits (top panels).

(TIFF)
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