Skip to main content
. 2017 Jun 13;51:57. doi: 10.1590/S1518-8787.2017051006051

Table 3. Relationship of the seroprevalence of human brucellosis with sociodemographic variables of the professionals.

Variable Total Human seroprevalence p

Positive Negative



n % n % n %
Category 323 100         0.001a
Worker 131 40.6 7 5.3 124 94.7
Breeder 192 59.4 32 16.7 160 83.3
Gender 323 100         0.703a
Male 248 76.8 29 11.7 219 88.3
Female 75 23.2 10 13.3 65 86.7
Age group (years) 323 100         0.469b
10–19 25 7.7 5 20.0 20 80.0
20–29 102 31.6 14 13.7 88 86.3
30–39 79 24.5 5 6.3 74 93.7
40–49 55 17.1 8 14.5 47 85.5
50–59 46 14.2 5 10.9 41 89.1
> 60 16 4.9 2 12.5 14 87.5
Place of birth 323 100         0.785b
Namibe province 209 64.7 26 12.4 183 87.6
Other 114 35.3 13 11.4 101 88.6
Education level 323 100         0.032b
No education 189 58.5 29 15.3 160 84.7
Basic education 134 41.5 10 7.5 124 92.5
Start of activities 323 100         0.079b
Minor 226 70.0 32 14.2 194 85.8
Adult 97 30.0 7 7.2 90 92.8
Formal entry in the activity 323 100         0.103b
Legacy (heir) 116 35.9 20 17.2 96 82.8
Entrepreneur 109 33.7 10 9.2 99 90.8
Contract 98 30.4 9 9.2 89 90.8
Service location 323 100.         0.055c
Slaughterhouse SOFRIO and butchers of Namibe 103 31.9 4 3.9 99 96.1
Municipal slaughter rooms 28 8.7 3 10.7 25 89.3
Farms of Namibe 9 2.7 1 11.1 8 88.9
Farms of Tombwa 7 2.2 2 28.6 5 71.4
Farms of Bibala 113 35.0 19 16.8 94 83.2
Farms of Kamucuio 44 13.6 6 13.6 38 86.4
Farms of Virei 19 5.9 4 21.1 15 78.9

a Fisher’s exact test.

b Chi-square test of independence.

c Chi-square test of independence with Monte Carlo Simulation.