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Abstract

Approximately one-third of our food globally comes from insect-pollinated crops. The depen-

dence on pollinators has been linked to yield instability, which could potentially become

worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of

fruit and vegetable production globally) are especially at risk as they are even more reliant

on pollinators than open-pollinated plants. We already observe a wide range of fruit and

seed yields between different cultivars of the same crop species, and it is unknown how

existing variation will be affected in a changing climate. In this study, we examined how

three hybrid carrot varieties with differential performance in the field responded to three tem-

perature regimes (cooler than the historical average, average, and warmer that the historical

average). We tested how temperature affected the plants’ ability to set seed (seed set, pol-

len viability) as well as attract pollinators (nectar composition, floral volatiles). We found that

there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set

between the carrot varieties, and that higher temperatures did not exaggerate those differ-

ences. However, elevated temperature did negatively affect several characteristics relating

to the attraction and reward of pollinators (lower volatile production and higher nectar sugar

concentration) across all varieties, which may decrease the attractiveness of this already

pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer

climate, reduced attractiveness would add yet another challenge to future food production.

Introduction

Insect-pollinated crops comprise approximately one-third of the global food supply [1]. Many

of these plants owe their present uniformity [2], disease resistance [2], and high yields [3–6] to

hybrid production systems, including carrot, tomato, onion, melons, squash, brassicas, and

eggplant [7]—together totaling nearly 20% of global crop production [8]. Because these pro-

duction systems rely on crossing two parent lines, one of which is rendered male-sterile by
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hand-emasculation or genetic techniques, they are even more reliant on insect pollinators than

their open-pollinated counterparts, do not require insects to cross from one parent line to the

other [9–12]. Global reports of declines in many pollinator communities [13; 14], changing cli-

mate shifting pollinating insects’ active time away from peak bloom [15], and that pollinator

reliance has been linked with reduced yield stability [16], indicate that hybrid systems may be

at greater risk from additional disturbances than open-pollinated systems.

Yields of any given hybrid crop can vary significantly between varieties and also from year

to year. In itself, this generates economic uncertainty, but it also makes determining which cul-

tivars are best suited to the changing environment a difficult task. When hybrid crops that are

grown for seed fail to produce adequate yields, pollinators are often blamed [10], particularly

as male-sterile plants, which have no pollen reward, are notoriously unattractive to honey bees

[9; 12; 17]. However, it is unclear if the observed poor yields are due to the lack of pollen, other

characteristics that have inadvertently been selected for during the process of crop breeding

and selection, or a combination of plant traits and environmental variables.

Traits that affect the yield of insect-pollinated plants can broadly be placed into two catego-

ries: plant fertility and plant attractiveness. Characters surrounding plant fertility are intrinsic

to the plant, such that increased pollinator activity will not improve yield. For example, if flow-

ering of the male-fertile and male-sterile lines is poorly synchronized, yields can suffer as the

cross-pollination window may not overlap sufficiently. In such cases, cultural measures to syn-

chronize the lines even by a few days can substantially increase yield [18]. Pollen viability has

been a recurrent problem in hybrid crops as well, with inbreeding depression often causing

pollen viability to drop to 50% or less before it ever leaves the flower [19–21]. This initial

difficulty can be further exacerbated by heat and water stress during critical periods of plant

development, which can further degrade pollen fertility [20; 22]. Female receptivity is also

important, as flowers that are too young, too old, or damaged by suboptimal temperatures will

set little seed even if pollen viability is high [23].

Characters surrounding plant attractiveness, in contrast, are those which influence pollina-

tor visitation. The quality of the nectar reward is foremost for ensuring return visits [24–26].

Honey bees prefer nectar rewards between 30 and 50% sugar w/w [25], but lower concentra-

tion sources at higher volumes per flower may be chosen over many low-volume, high-con-

centration sources [25]. Nectar production is altered in high-temperature conditions, typically

resulting in lower volumes and higher concentrations [25], but hot conditions can also alter

the production of secondary compounds, such as phenolics [27], which can result in a very dif-

ferent flavor palette to potential insect visitors. Volatile compounds emitted by the plant are

also important, as they play a key role in attracting pollinators to the flower initially [25].

Although the volatiles comprising the floral bouquet of numerous plant species have been cata-

loged, little is known about how these compounds are perceived by pollinators, and less still is

known about how they respond to changes in temperature, individually or in aggregate.

In order to achieve successful pollination, a plant must be both fertile (able to receive pollen

and set seed), and attractive to pollinators. To understand how climate change may affect polli-

nation, we must therefore look at factors relating to both overarching categories. To address

these broad questions, we chose to focus on hybrid carrot production because, despite being a

generalist flower pollinated by hundreds of insect species [28–31], hybrid carrot is known for

its low seed set [32] and lack of pollinator attractiveness [10; 33]. In addition, seed production

for carrot occurs in areas not optimal for carrot growth in order to avoid genetic contamina-

tion from wild carrot [34; 35], which can readily cross into cultivated varieties and reduce

agronomic quality of progeny [34; 35]. As a number of major carrot seed producing regions

are located in temperate, semi-arid areas [36–38], additional temperature variability may nega-

tively affect seed production. The combination of environmental stress and poor pollination in
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present-day hybrid carrot make it a promising model for future conditions experienced by

hybrid crops, and examining the mechanisms of current pollination failure may highlight

future vulnerabilities both carrot and hybrid crops in general.

The objectives of this study were to 1) test the effect of temperature on temporal patterns of

plant traits that might predict performance in the field, including bloom phenology, seed set,

pollen viability, nectar quality (both sugars and phenolic compounds), and floral volatiles and

2) examine if these effects differ across varieties with a range of historical yields to test whether

varietal differences are reduced or exaggerated by warming, and 3) use this information to

determine which factors are important in present-day pollination failure, and which may be

important given a changing climate.

Methods

This study was conducted in New Zealand as it is one of the world’s largest producers of carrot

seed [39]. We exposed carrot (Daucus carota L) plants to experimental temperature treat-

ments, and measured characteristics relating to their innate ability to produce seed (’Plant

Fertility Metrics’, below) as well as several metrics that may affect their attractiveness to polli-

nators in the field (’Plant Attractiveness Metrics’, below). To assess the extent to which these

characters contribute to differences in yield and how they may respond to climate warming,

we examined the correlations between each one and plant variety, temperature, and time-of-

day in generalized linear mixed-effects models (GLMMs), generalized additive mixed-effects

models (GAMMs) or ordination-based tests.

Plant material

In order to determine how floral receptivity and pollen viability vary with time-of-day (a

known source of variation in floral traits [25; 40]) and temperature, we grew the male-fertile

and cytoplasmically male-sterile (brown anther type) parents of three lines of Nantes-type

hybrid carrot for hand-pollination trials and measures of pollen viability. These three lines had

previously been observed to perform poorly (172 ± 43 kg/ha), average (377 ± 17 kg/ha), and

well (607 ± 87 kg/ha) in the field (hereafter referred to as ’poor’, ’average’ and ’excellent’ lines);

we chose this gradient to attempt to tease out the cause(s) of the differential performance in

the field, and to have a range of yields to assess the effects of temperature. Seeds for each line

were sown in trays in February 2015, during the southern hemisphere summer. When plants

had germinated, we transplanted them individually into 3L pots filled with potting mix and

slow-release fertilizer (Canterbury Landscape Supplies). Each line had 100 male-sterile plants

and 75 male-fertile plants potted out, and these were kept outdoors in ambient conditions

until flowering began.

In order to minimize the effect of temperature on plant physiological processes other than

flowering, we moved plants to temperature treatments after the umbels had formed, and just

prior to flower opening. The three temperature treatments simulated cool, average, and warm

seasons via shade houses, unheated glasshouses and heated glasshouses, respectively. Two sep-

arate buildings were used for each temperature treatment, and the plants were equally divided

between them. To accurately record conditions experienced by the carrot flowers, we placed

temperature and relative humidity probes (onset HOBO Prov2 temp/RH meters) at chest

height in each of the six locations. Temperatures were extracted from the data loggers and

recorded as temperature at the sample time (S2 Fig), average temperature during the 24-hour

period prior to the sample time, and average temperature during each plant’s time in the glass-

house prior to sampling. Models were run with each measure of temperature sequentially, but

in all cases, the 24-hour period had the highest predictive value, so only this measure was used.
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Every day, we checked plants for floral stage, and, when the petals had turned white and the

outer whorl of flowers had just begun to open, they were randomly assigned to a temperature

treatment. Male-sterile plants were also assigned to one of seven time treatments (4am, 8am,

11am, 2pm, 5pm, 8pm, and 11pm) for hand-pollination. Selection of treatments was done

without replacement, so that male-sterile plants were always equally distributed between

the three temperature treatments and each time-temperature combination received the first

replicate before proceeding to the second, third, and fourth (252 male-sterile plants total).

Male-fertile plants were preferentially assigned to locations where male-sterile plants required

pollination.

Once selected, we bagged the primary umbel of each male-sterile plant with 1mm mesh to

prevent insect pollination and, as an extra precaution, placed plants into a 1.5m3 fine mesh

cage in each of the six locations. Male-fertile plants were left unbagged inside the cage. As a

further precaution, we placed yellow sticky cards in each cage to trap any flying insects that

entered.

Plant Fertility Metrics

Phenology. In order to properly hybridize in the field, both the male-sterile and male-fer-

tile lines must bloom simultaneously, and the male-fertile lines should, ideally, produce pollen

for the duration of the male-sterile line’s bloom time. To quantify this bloom synchrony, we

checked the primary umbel of each potted carrot plant daily. Just prior to the opening of the

outer whorl of umbellets, we recorded the date and assigned the plant to its treatment. We

then calculated the number of days between seed sowing and flowering. Any plants that had

not flowered after 365 days were recorded as having failed to bloom.

Seed set. To quantify changes in stigma receptivity across lines, temperature treatments,

and at different times of day, we conducted a hand pollination experiment. Once pollen from

male-fertile plants started to dehisce, hand-pollinations began. Every morning at 8am, we sur-

veyed caged plants and any plant where the stigmas appeared receptive throughout the umbel

was pollinated that day at its pre-selected time slot. To assist with visually identifying receptive

stigmas, a photo guide was prepared the season prior by staining stigmas with alpha-napthyl

acetate [41]. The primary umbel of each plant to be pollinated was unbagged and three umbel-

lets were selected and tagged, one from each of the three whorls, as previous studies indicate

that there may be differences in female fertility between the inner and outer umbellets [42]. As

the ’medium’ male-fertile line was the only one blooming throughout the sample period, we

used pollen from this line for hand-pollinations of all male-sterile lines. For each time slot

where a flower needed to be pollinated, we bulked together pollen from all the ’medium’ male-

fertile plants in the building. We took a subsample of this pollen, put it in a cryotube, immedi-

ately placed it in liquid nitrogen for later pollen viability assessment, and applied the remain-

der with a paintbrush to each stigma of each floret of the tagged umbellets of all flowers in the

building needing pollination at that time. Plants were then rebagged and left in the glasshouse

for a further 72 hours, to allow pollen tubes to reach the ovaries (typically 24–48 hours [10]),

before being brought back outside to complete seed set.

Once the seed heads dried, we brought them back into the lab, and the seeds of the three

tagged umbellets of each flower were counted. In addition, three untagged umbellets, one

from each whorl, were examined as an unpollinated control for each plant.

Pollen viability. Subsamples of bulked pollen were stored in cryotubes in liquid nitrogen

until the final pollination for each day (typically 11pm or 4am), when we transferred it to a

-80˚C freezer. When all pollen samples were collected, we transferred them to a second facility

on dry ice and then immediately placed them in a second -80˚C freezer until processing.
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Pollen viability was assessed with fluorescein diacetate (FDA), which has previously been

shown to have a strong correlation with in-vivo germination in carrot [43]. We thawed the

cryotubes for 2–5 minutes and then washed the tube with 50μl FDA-sucrose solution (0.25%

w/v FDA, 20% w/v sucrose) via a pipettor, with as much liquid as possible collected and slide

mounted. We examined samples with a UV light microscope, counting 200 pollen grains

across longitudinal transects of each slide. We categorized pollen as viable if it fluoresced

bright green [44].

Plant Attractiveness Metrics

Nectar quality. After volatile collection (if applicable, see below), but prior to pollination,

we sampled each male-sterile plant for nectar. We followed the protocol described by Gaffney

[31], dipping half of each umbel (~30 umbellets, with the umbel diameter being controlled for

in analyses) into 40mL of distilled water twenty times, ensuring that the umbel was shaken off

afterward to recover as much water as possible. We then immediately placed the dilute nectar

in a freezer until further processing. To prepare the samples for high-performance liquid chro-

matography (HPLC), they were thawed, filtered to remove any large contaminants, and freeze-

dried in 50mL falcon tubes. We then resuspended the samples in 1mL of methanol:water at a

ratio of 1:1 and divided it in two parts: a 600 μL aliquot for nectar sugar analysis and a 400 μL

aliquot for nectar phenolic analysis.

Sugar identifications were made via HPLC using a modified combination of the methods of

Ruperez [45], Knudsen [46], and Knudsen and Li [47]. The 600μL aliquot was centrifuged at

14,000 rpm for 10 minutes. A 250 μl aliquot of the supernatant was placed directly into an

HPLC vial. We then carried out the HPLC analysis using a refractive index (RI) detector

(Waters™ Alliance 2690 HPLC with Waters™ 2414 RI detector). HPLC-RI analysis was carried

out by injecting 10 μl of sample into an isocratic mobile phase of 70% acetonitrile in water

with chromatographic separation (Econosphere™, Amino, 5μm, 4.6 x 250mm, Grace™) at 30˚C

and RI detection at 40˚C. Unknown sugars were identified using retention times and response

factors of known sugars (Sigma).

Phenolic composition of the nectar was also analyzed via combined liquid chromatogra-

phy-mass spectrometry (LC-MS). The previously prepared 400μl aliquots were filtered with a

Single Step1 vial 0.22 μm PVDF (Thompson™ Part No. 65531–200) filter. The LC-MS system

consisted of a Thermo Electron Corporation (San Jose, CA, USA) Accela UHPLC pump,

Thermo Accela Open Auto sampler (PAL HTC-xt with DLW), Finnigan Surveyor PDA plus

detector and a ThermaSphere TS-130 column heater (Phenomenex, Torrance, CA, USA).

Each of the 48 extracts was analyzed by two ion formation modes creating 96 data files, as fol-

lows. A 2μL aliquot of each prepared extract was separated with a mobile phase consisting of

0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) by reverse phase chro-

matography (Kinetex guard cartridge and Kinetex C18, 2.6 μ, 100 Å, 100 x 2.1 mm, Phenom-

enex, Torrance, CA, USA) maintained at 30˚C with a flow rate of 200 μl/min. A gradient was

applied: as 0–10 min/95%A, 13 min/60%A, 15-20min/5%A, 23-28min/95%A. The eluent was

scanned by API-MS (LTQ, 2D linear ion-trap, Thermo-Finnigan, San Jose, CA, USA) with

electrospray ionisation (ESI) in the negative mode. Data were acquired for precursor masses

from m/z 120–1000 with up to MS3 product spectral tree formation. All data were processed

with the aid of Xcalibur12.20 (Thermo Electron Corporation) and an in-house Plant and

Food Research database of chemical signatures.

Floral volatiles. We collected volatile organic compounds (VOCs) from the headspace of

plants after the outer whorl of florets opened, but prior to pollination. Due to resource limita-

tions, we could not collect volatiles from every plant, so a subsample was taken across the
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treatments. To achieve a good cross-section of the experimental treatments, we collected three

separate datasets; one across varieties, one across temperatures, and one across times of day.

For the variety dataset, we took 24-hour headspace collections for twelve plants (6 male-sterile,

6 male-fertile) from each of the three varieties in the average temperature treatment, totaling

36 samples. For the temperature dataset, we took 24-hour headspace collections from 6

’medium’ male-sterile plants each in the cool and hot treatments, which were analyzed

together with the ’medium’ male-sterile samples in the previous dataset, totaling 18 samples

(12 unique to this dataset). For the final dataset, in order to capture variation throughout the

course of the day, we sampled six further ’medium’ plants beginning at each of the seven time

periods (3–5 hour headspace collection), for 42 total time-of-day samples.

Each headspace sample was collected in situ using the active sampling apparatus in Fig 1.

The primary umbel of each flower was fitted with a nylon oven bag and, insofar as it was possi-

ble, leaf material was excluded from the bag. In order to ensure floral volatiles rather than

green leaf or ambient compounds in the air were being collected, each set of collections

included a control where the bag was secured around a leaf. Each bag was fitted with a charcoal

filter at the base to remove ambient VOCs. We used a pump with an airflow rate of 500mL/

min, split four ways so that 125mL/minof air was pulled through each headspace collection

apparatus and into a Tenax1 filter, which adsorbed the floral VOCs. The Tenax1 filter was

constructed from a 15mm long, 10mm diameter glass tube containing 60mg of Tenax1 35/60

(Grace Davidson Discovery Sciences, VIC, Australia) held in place with silane-treated fiber-

glass (Grace Davidson Discovery Sciences, VIC, Australia). Tenax tubes were conditioned

prior to use by heating for 3 hours at 250˚C under a stream of nitrogen gas, and the charcoal

filters were baked overnight at 150˚C in a filtered-air oven. After VOC collection, each tenax

was desorbed by solvent extraction with 1mL of n-hexane (Sigma-Aldrich, 99% purity).

To obtain quantitative values of each VOC identified in the headspace samples, we added

an internal standard of nonadecane (10 μg) to the 1 mL of n-hexane (Sigma-Aldrich, 99%

purity) used to elute the tenax tubes. A sample containing 10 μg/mL of each of the identified

compounds was run as an external standard.

We used one microliter of each headspace extract for gas chromatography coupled with

mass-spectrometry (GC/MS). The subsample was injected into a Varian 3800 gas chromato-

graph (Varian Walnut Creek, CA, USA) with the injector port set at 250˚C, and then run

through a DB5-MS non-polar column (J&W Scientific Folsom, CA, USA) with dimensions

30m x 0.25mm id x 0.25μm film thickness. The column was raised from 40˚C up to 280˚C at a

rate of 4˚C/min, and then held at 280˚C for 5 minutes. We used a constant flow of helium as a

carrier gas (1 mL/min). Injections were splitless for 36 seconds. A Saturn 2200 mass spectrom-

eter (MS, Varian Walnut Creek, CA, USA) ionized the molecules from a mass range of 29 m/z

to 399 m/z, after the GC separated each compound present in the extract according to their

volatility. The abundance of each compound was then recorded as the area under each peak.

After each sample was run, we identified compounds by comparing MS results to a database

(NIST MS Search 2.2). Synthetic compounds were injected with the same GC-MS protocol to

confirm identification.

To compare the compounds’ abundance in each extract, we used the internal standard

method to calculate quantities, multiplying the known amount of the internal standard nona-

decane (10 ng) by the area of the compound of interest and the response factor (measured

from an external standard run containing a known quantity, 10 ng, of both nonadecane and

the compound of interest), then dividing by the area of the internal standard. Volatile collec-

tions were done over a different time period for each treatment (variety: 24 hours, time: 3-5h),

so for comparison of each compound across all the experiments, we calculated the emission
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Fig 1. Apparatus for collecting carrot headspace volatiles.

https://doi.org/10.1371/journal.pone.0180215.g001
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rate by dividing the quantity of each peak by the amount of time of collection in order to

obtain value in μg/h.

Statistical analysis

Phenology data were recorded as a count variable—the number of days between seed sowing

and flowering. Because all plants were kept under the same conditions prior to blooming, we

could compare them in a generalized linear model (GLM). We used a gamma error distribu-

tion to account for the observed variance-mean relationship. The predictor variables were

plant variety and plant line.

Nectar, pollen viability, and seed set data were collected over multiple days, creating the

risk of temporal autocorrelation. As the temperature treatments were conducted in two loca-

tions each, there was also the potential for spatial autocorrelation within each glasshouse. In

order to account for this variance and non-independence, we used generalized linear mixed-

effect models (GLMMs) with date sampled and location as crossed random effects. We used

the lme4 library [48] in the R statistical programming language [49] to perform most of our

analyses. We used the following model selection process to determine our best-fitting model.

All permutations of the predictor variables (plant variety, temperature, and time-of-day, and

their interactions) were used to create candidate models, and final models were selected if

their AIC scores were within two points of the best-fit model; if multiple models met this crite-

ria, we took a model average [50] using the MuMIn package 1.15–6 [51]. In order to obtain p-

values for the final models, we used the Satterthwaite method of denominator synthesis, imple-

mented within the lmerTest package [52]. It should be noted that this method calculates non-

integer degrees of freedom. Where relevant, models were checked for over-dispersion (where

error distributions were not Gaussian) or normality of residuals and homoscedasticity (for

Gaussian models). In addition to differences in the mean response across treatments, initial

examination of the data suggested that there may be differences in the variance of the response

variables. To test for these differences, we used Levene’s test.

Seed set data were recorded as a count variable, as it was not possible to count the number

of initial florets once the seed heads dried to establish a proportion. Plants that failed to set

seeds introduced numerous zeros to the data set. While not over-dispersed, the dataset did not

conform well to the Poisson distribution and so was analyzed with a zero-inflated negative

binomial GLMM in R, with the glmmADMB package [53]. Predictor variables in the initial

model were the pollen viability (as a covariate to control for the quality of pollen used in each

hand-pollination), temperature at the time of pollination, plant variety, and time of day.

Pollen viability data were recorded as a binomial variable, where individual pollen grains

were either viable or not. The proportion of viable and inviable pollen grains were tested in a

GLMM with binomial errors and a logit link function. Because pollen stored at -80˚C slowly

loses viability over time [54; 55], we included the number of days between collection and pro-

cessing as a fixed covariate in final model to account for the between-sample variation in stor-

age time. Other predictor variables in the initial model were the plant variety and temperature

and time of day at the time of pollen harvest. As this model was significantly over-dispersed,

we also included individual sample as a random effect [56].

Nectar sugars were measured as the concentration of fructose and glucose; no sucrose was

found. As the concentrations of the two sugars were tightly correlated (R2 = 0.983), only glu-

cose was examined in a GLMM, with a gamma error distribution to account for the observed

variance-mean relationship. Flowers varied in umbel diameter, which could influence the

amount of nectar collected with the dipping methodology. Therefore, we controlled for flower

size by adding the diameter of the umbel as a fixed covariate. Other predictor variables in the
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initial model were temperature at the time of nectar collection, plant variety, and time of day

nectar samples were taken.

Nectar phenolics were expressed as concentrations. Three phenolic compounds were found

in carrot nectar: caffeic acid, coumaric acid, and ferulic acid. As initial plots revealed that each

compound reacted differently to different conditions, it was necessary to examine all three. To

avoid multiple single-response models and to capture shifts in the combined phenolic bou-

quet, we conducted a nonmetric multidimensional scaling (NMDS) ordination within the R

package vegan [57] with Bray-Curtis dissimilarity to account for the large differences in mean

concentration. To test whether the three compounds varied across variety, temperature, and

time of day, we used a permutation multivariate ANOVA (PERMANOVA) procedure (func-

tion ’adonis’) from the same package.

Floral volatiles were expressed as the concentrations of methyl salicylate, nonanal, and phe-

nylacetaldehyde—the three compounds found in carrot floral volatiles which bees are able to

sense (measured in previous work as a consistent electroantennograph response; S1 Fig). To

account for the three compounds simultaneously, we ran a NMDS ordination for each of the

volatile datasets with variety, temperature, and time of day as predictor variables. As with the

phenolic data, we used a PERMANOVA procedure to test for significance. To aid with inter-

pretation of these multivariate results, we then conducted univariate analyses on each volatile.

Data exploration revealed that there was a non-linear relationship between time-of-day and

volatile concentration, so we conducted a generalized additive mixed-effects model (GAMM),

which allows for non-linear relationships between predictor and response variables [58]. In

the GAMM, time sampled was a smooth term, while plant ID was a random effect. The

amount of smoothing was determined in the model using maximum-likelihood within the

gamm4 package [59].

Results

We found numerous effects of plant variety, temperature, and time-of-day on measures of

both plant fertility and attractiveness to pollinators (see Fig 2 for a summary).

Fig 2. Relationships between different factors examined in this study. Solid lines indicate a statistically

significant relationship. Dotted lines indicate factors that were conserved in the final selected models, but were not

statistically significant. We did not find any significant interaction effects.

https://doi.org/10.1371/journal.pone.0180215.g002
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Plant Fertility Metrics

Phenology. A number of plants failed to flower at all: 5% of male-sterile and 22% of male-

fertile carrots did not send up a flowering stalk after one calendar year. The rate for male-fertile

plants was heavily influenced by the poor line, which accounted for 76% of failures (51% of

these plants did not flower). Of the plants that did bloom, there was considerable spread in

flowering time, with the first plant blooming on day 285 and the last on day 341. Male-fertile

lines bloomed significantly later than male-sterile lines, and there was an interactive effect

between variety and line, with the poor variety having the widest gap between the bloom time

of the male fertile and male-sterile lines (Fig 3, Table 1). The male-sterile excellent variety had

the most tightly grouped flowering time (P< 0.001; F = 8.560; Levene’s test for differences in

variance)

Seed set. The rate of seed set was low, with fewer than half of the hand-pollinated umbels

setting seed. This may have been due to poor weather, poor pollen viability, and, potentially,

the presence of the brown shield bug (Dictyotus caenosus (Westwood), Hemiptera:Hetero-

ptera), which was able to enter the seed heads through the exclusion mesh. Nearly every mesh

pollinator exclusion bag contained at least one D. caenosus, and though, to our knowledge,

there is no record of D. caenosus feeding on carrot seed, we cannot exclude the possibility that

this generalist plant-feeder used the seed heads as a food source. In total, less than half of the

hand-pollinated umbels set seed. Despite the overall low seed set, we still found differences

between the carrot varieties, such that the medium-performing variety set significantly more

seed than the other two varieties (Fig 4), with an average of 1 additional seed per three umbel-

lets (P = 0.005; z = 2.788; GLMM). Temperature (P = 0.995; z = 0.010; GLMM) and proportion

of viable pollen (P = 0.383; z = 0.872; GLMM) were both retained in the best-fitting model,

Fig 3. Number of days between seed sowing and flowering between the three carrot varieties. Variety:

E = excellent, M = medium, P = poor. Line: male sterile (♀) and male fertile (♂) lines broken out for each

variety. Data ceased being collected at 365 days. Boxes represent the middle 50% of the data, lines within

boxes are the median.

https://doi.org/10.1371/journal.pone.0180215.g003
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though neither was a significant predictor of seed set. The medium variety was also more vari-

able in seed set than the other two varieties (P = 0.001; Levene’s test), as would be expected for

count data, where the variance often increases with increasing means.

Pollen viability. Overall pollen viability was low, with a median of 14.5%. This is compa-

rable to previous estimations of carrot pollen viability in New Zealand (S1 Text), but is low

compared to the viability of cultivated carrot pollen elsewhere in the world [21; 43; 60], and

much lower than wild carrot pollen (~80%) [35]. Temperature was retained in the final model,

but was not a significant predictor of viability (P = 0.825; z = 0.22; GLMM). There was a signif-

icant difference in pollen viability between varieties (Fig 5; P = 0.004; z = 2.866; GLMM), with

the medium variety being the highest, about 45% higher than either of the other two (observed

mean of 21.2% versus 14.3% for excellent and 15.9% for poor). The medium variety was also

more variable than either the poor- or excellent-performing varieties (P = 0.023; Levene’s test).

Plant Attractiveness Metrics

Nectar quality. Glucose and fructose were found in a close to 1:1 ratio (1.019:1; R2 = 0.983;

LM). No sucrose was detected. There was a significant effect of temperature (P = 0.002;

t = 3.091; GLMM) on glucose concentrations, with increasing temperature being correlated

with higher concentrations of sugars (Fig 6). Time-of-day, variety, and an interactive effect

between time-of-day and variety were all retained in the final model, though none of them

were significant predictors of sugar concentration. For phenolic compounds in the nectar, each

of the three varieties had a different composition (P = 0.012; F = 3.393; PERMANOVA), with

the excellent variety having high concentrations of caffeic acid, moderate concentrations of

coumaric acid, and low concentrations of ferulic acid; the medium variety had low concentra-

tions of caffeic acid, moderate concentrations of coumaric acid and moderate concentrations of

ferulic acid; the poor variety had low concentrations of caffeic acid, high concentrations of cou-

maric acid and moderate concentrations of ferulic acid (Fig 7). The excellent variety was more

variable in its concentration of caffeic acid than the other two varieties (P = 0.017; Levene’s

test). Temperature was not a significant predictor of nectar phenolic composition (P = 0.080;

F = 2.566), but was retained in the final model.

Floral volatiles. Of the three compounds contained in the male-sterile carrot flowers’ flo-

ral bouquets that honey bees are capable of sensing, only nonanal was present in all samples.

There was no effect of variety on floral bouquet (P = 0.671; F = 0.467; PERMANOVA), but

there was a significant effect of temperature (P = 0.028; F = 4.743; PERMANOVA), with higher

Table 1. Coefficients table of GLM for carrot phenology. Variety: E = excellent, M = medium, P = poor. Line: male sterile (♀) and male fertile (♂). The inter-

cept condition is the male-sterile, excellent line.

Estimate SE t statistic P value

intercept 3.373 x 10−3 8.855 x 10−5 380.908 < 0.001 ***

Variety (M) 2.675 x 10−5 1.274 x 10−5 2.099 0.036 *

Variety (P) 4.577 x 10−5 1.267 x 10−5 3.611 < 0.001 ***

Line (♂) -9.521 x 10−5 1.345 x 10−5 -7.076 < 0.001 ***

Variety (M): Line (♂) 8.971 x 10−5 1.945 x 10−5 4.612 < 0.001 ***

Variety (P): Line (♂) -1.783 x 10−4 2.102 x 10−5 -8.483 < 0.001 ***

Significance codes:

* < 0.05,

** <0.01

*** <0.001

https://doi.org/10.1371/journal.pone.0180215.t001
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temperatures corresponding to lower volatile emissions. As plants were tracked through the

course of a 24-hour day, there was a significant spike in nonanal concentration at around

11:00am (Fig 8; P< 0.001; t = 17.460; GAMM), just prior to the afternoon heat. Although

there was no significant effect of variety, the medium variety was more variable than the other

two (P = 0.009; Levene’s test), meaning that the significant time-of-day result despite this back-

ground variability, which was tested using the medium variety, is likely robust.

Discussion

While environmental conditions at flowering time affected some plant fertility and attractive-

ness measures, we did not find any interaction effects between plant variety and temperature.

Fig 4. Seed set amongst the three carrot varieties. E = excellent, M = medium, P = poor. Boxes represent

middle 50% of data, lines within boxes are the median.

https://doi.org/10.1371/journal.pone.0180215.g004
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This implies that the differences observed between the poor-, medium-, and excellent-per-

forming carrots were due largely to innate plant characteristics (Fig 2), which did not respond

to temperature. Our data suggest numerous mechanisms of poor performance in the field, as

the ’poor’ variety consistently underperformed the other two: it bloomed late, 50% of the

male-fertile plants failed to even initiate flowering, had the worst synchronization between

male-sterile and male-fertile lines (Fig 3), relatively low seed set (Fig 4), and pollen viability

typically below 20% (Fig 5). Additionally, the nectar phenolic profiles showed a wide gap

between the varieties. The poor line’s nectar was high in coumaric acid, which has been found

to upregulate bee detoxification pathways [61], and ferulic acid (Fig 7), which, while com-

monly found in honey bee propolis [62], is thought to be an insect feeding deterrent [63].

Fig 5. Pollen viability amongst the different varieties. Each sample point represents all male-fertile

flowers with pollen at the time of sampling (evenly spread throughout the 7 time and 3 temperature treatment

combinations). Viability was calculated as a proportion viable out of 200 grains. E = excellent, M = medium,

P = poor. Boxes represent middle 50% of data, lines within boxes are the median.

https://doi.org/10.1371/journal.pone.0180215.g005
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Similarly, the poor line is low in caffeic acid, which is highly attractive to bees at modest con-

centrations [64].

Underperformance in multiple categories, from purely physiological characters to factors

which influence plant attractiveness to pollinators, is a satisfying explanation for why a particu-

lar variety is observed to have low yield, but we have found that there is not a similarly easy

explanation for the high yield of the best-performing variety. In fact, the excellent variety was

observed to perform worse than the medium variety under controlled conditions: the excellent

variety had somewhat worse synchronization between the male-sterile and male-fertile lines

than the medium variety, and seed set and pollen viability on par with the poor variety. The

excellent variety, however, distinguishes itself in its nectar phenolics, where it has high concen-

trations of the attractive caffeic acid, and is more consistent overall, with lower variances than

the medium line in nearly every aspect, including bloom duration of the male-sterile line.

Although there may be other differences that we did not capture, these two may result in

increased pollinator attractiveness and better conditions for those pollinators to cross-pollinate

the hybrid lines under field conditions.

Fig 6. Log glucose concentration in nectar at different temperatures for the female lines of all three

carrot varieties. E = excellent, M = medium, P = poor.

https://doi.org/10.1371/journal.pone.0180215.g006
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Implications for industry

Our results are particularly important as previous studies have identified poor pollination as a

major cause of low seed yields in hybrid carrot [18; 43; 65]. Varieties that are better able to

attract pollinators may be better able to fare annual fluctuations in pollinator populations as

they could draw in pollinators from the surrounding environment, a trend already observed in

mass-flowering crops [66]. The importance of pollinator attractiveness for determining which

varieties succeed or fail is magnified here by the very low pollen viability of these commercial

hybrid carrot lines—typically less than 30%. If viability rates were closer to wild carrot (~80%

[35]), the required pollen deposition would be reduced by ½ to , and thus pollination could be

achieved with fewer insect visits and this would reduce the effect of differential attractiveness

between the varieties.

We might join the numerous other authors that encourage the breeding of crops for

increased insect attractiveness [10; 18], or higher capacity for seed production [67], or suggest

that pollen viability be selected for [43]. However, it is important to keep in mind that

Fig 7. Concentrations of nectar phenolic compounds by carrot variety. E = excellent, M = medium,

P = poor. Boxes represent middle 50% of data, lines within boxes are the median.

https://doi.org/10.1371/journal.pone.0180215.g007
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vegetable seed crops are not bred for seed production, they are bred for the desirable character-

istics of the plants raised from that seed. Indeed, these two goals are often at odds with each

other. For example: an onion that produces two flower spikes will produce much more seed,

but it will also produce low-grade onions with doubled hearts [68]. The result of this compro-

mise between seed set and plant characters has been hybrid production systems, which pro-

duce vigorous, uniform progeny, but may set less seed than open pollinated systems, if for no

other reason than some portion of the field must be occupied by the pollinizer line, from

which seed is not collected. As a result, hybrid carrots often yield less than 50% of the seed pro-

duced by open-pollinated carrots [10; 32].

Although the yield of hybrid carrot seed is likely to remain lower than open pollinated seed,

there is obviously latitude for higher yield. In our experiment, synchrony of bloom was poor,

as is common with hybrid crops [43; 69; 70]. Male-sterile plants of all three varieties began

Fig 8. Concentration of nonanal versus time-of-day. Values are from six ’medium’ plants sampled

repeatedly over the course of 24 hours. The red line is the trend line created by the GAMM, the dark grey area

is the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0180215.g008
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blooming before the male-fertile line, meaning that some primary umbels, which typically

have high seed yield [42], would have failed to set seed due to absence of available pollen. One

cultural solution already underway in industry is to cut carrot plants early in the season to

delay the flowering of one of the lines in order to synchronize bloom, which then increases

yield [18; 43]. Cutting the plants at an early stage of flowering has been shown to delay bloom

by 10–14 days [18]—however, this means that growers would need multiple cuttings to suc-

cessfully synchronize poor male-fertile and male-sterile lines. Planting the male-fertile line

even one month earlier than the male-sterile line isn’t enough to fully align the two (South

Pacific Seeds, Methven, New Zeland, pers. comm).

Another cultural solution is to increase the number of pollinators in the field. Carrot has a

generalist flower type [10; 30] and is visited by hundreds of insect species [28–31; 71; 72],

many of which can contribute significantly to successful pollination [31; 43; 71; 73]. Honey

bees have traditionally been used to pollinate the crop with a stocking density of 5–8 hives/ha

in New Zealand [37; 74] and Australia [43]. This is considerably lower than the hive density

used in the United States, which has stocking densities 2–4 times that (15–20 hives/ha [75]).

Increasing the stocking density of honey bees may improve yield, but the discrepancy may rep-

resent the different pollinator communities in the two localities as honey bees do not appear to

favor carrot as a forage source [10] and preferentially visit other attractive floral resources

where possible [33]. Developing practices in which increase the numbers of other species

shown to efficiently pollinate carrot, such as Megachile rotundata [76] (Hymenoptera), Calli-
phora vicina [77], and Eristalis tenax [78] (Diptera) may prove better options for New Zealand,

though additional field trials would be necessary to verify a benefit.

In addition, there may be some room for improvement of the carrot varieties. Surprisingly,

none of the cultivars we examined contained any detectable quantities of sucrose, which is

much more attractive to bees than glucose or fructose alone [79; 80], and has been detected in

hybrid carrot varieties in other parts of the world [17; 31]. Additionally, all three cultivars

examined in this study have very low pollen viability (<30%) compared to elsewhere in the

world (~50% [21; 43; 60]). Inbreeding depression has been observed for numerous other agro-

nomically important traits in carrot [67], and it may be the case that New Zealand hybrid car-

rots have poor pollen viability because of this. However, there is considerable genetic diversity

within cultivated carrot globally [81]—including within groups sharing the same agronomic

characters [75]. This being the case, introducing breeding stock from elsewhere in the world

may alleviate some of the stress in the New Zealand hybrid carrot production system while still

selecting for marketable qualities, and the added genetic variability could result in varieties

more robust to changes in climate and weather patterns. Although hybrid seed crops are not

typically bred for the fitness of the parent lines, it may become necessary to do so if poor plant

vigor, poor attractiveness, lower pollinator populations, and increased stress from a warming

climate lead to seed sets much lower than they are today.

Implications for pollination under climate change

In the carrot seed producing region of New Zealand, climate change is forecast to decrease

rainfall and increase surface temperature, leading to seasonal shifts and an increase in

droughty conditions [38]. Climate change has been linked to negative crop plant outcomes,

including: increased susceptibility to insects and disease [82; 83], decreased competitiveness

versus weeds [82; 84], decreased effectiveness of herbicides on weed control [84; 85], reduced

overlap between bloom and pollinators [85], reduced pollen viability [22; 23], changes in vola-

tile emissions [86], and quantity and quality of nectar which may affect plant attractiveness

[27; 87]. Previous work in New Zealand has identified that higher temperatures may result in
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increased foraging by honey bees, while reducing species richness [88]—primarily native and

introduced flies. As a recent meta-analysis has found that crop yields tend to increase with pol-

linator richness, independent of honey bee abundance [89], this may result in an increased

number of visits, but a decrease in average visit quality.

We found that there was an effect of temperature on nectar concentration and volatile

emission, but no other plant characteristics in our study, although temperature was retained in

the models for seed set and pollen viability (Fig 2), meaning it added explanatory power. It is

important to remember that we attempted to expose plants only at the pollen formation stage

during flowering, rather than throughout development. Temperature has been shown to affect

plant development at numerous critical periods [22], and exposure to high temperatures at an

earlier point may have reduced plant vigor beyond the effects we observed here. However, the

temperatures we exposed plants to in the hot treatment are slightly higher than the future tem-

perature projections for the region [38], so there are unlikely to be further effects on pollen via-

bility in a warmer climate, which is fortunate given the already low viability of the hybrid

varieties. Hybrid crops such as carrot are highly susceptible to pollination disruption, due to

their requirement for pollen transmission across pollinizer lines. Therefore, if a warming cli-

mate leads to fewer non-managed pollinators, this could potentially reduce yield. Given car-

rot’s already modest attractiveness to pollinators compared with weedy species [10; 33], the

potential increase in nectar concentration to above the attractive range of 30–50% [25] and

change floral scent could further limit its competitiveness. The situation may be exacerbated

by the warming-induced increase in weed vigor predicted by other studies [82–84], as it would

increase competition for a more limited pool of pollinators, with a net negative effect on seed

set.

Conclusions

The combination of lowered attractiveness with higher competition for pollinators and higher

losses to weeds could prove to be a difficulty for future hybrid carrot seed production. If other

carrot seed growing regions of the world experience a decline in unmanaged pollinators, as

New Zealand is expected to, it could lead to a fragile production system through over-reliance

on honey bees [89; 90]. As insurance against adverse pollination conditions, future hybrid pro-

duction systems may have to balance agronomic traits with the plant’s ability attract to pollina-

tors and set seed or, potentially, domesticate currently unmanaged pollinator species.

Supporting information

S1 Fig. Traces from the flame ionization detector (FID) of the gas chromatograph (top

line) coupled with the electro-antennogram detector (EAD) responses (bottom line) from

a honey bee antenna. Three electrophysiological responses were detectected from the EAD

trace, circled in red: phenylacetaldehyde, nonanal, methyl salicylate, from left to right. The

antenna was exposed to a carrot flower headspace sample that had been collected over a period

of 24 hours.

(TIF)

S2 Fig. Temperatures experienced by each shadehouse and glasshouse treatment. Histo-

gram of temperatures collected at chest height from data loggers (onset HOBO Prov2 temp/

RH meters) from the two enclosures for each of the three temperature treatments during the

course of the experiment.

(TIF)

Pollination failure in hybrid carrot: Implications for industry in a changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0180215 June 30, 2017 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s002
https://doi.org/10.1371/journal.pone.0180215


S3 Fig. Stages of development in carrot florets. Petals and anthers were removed from florets

for photography.

(TIF)

S1 Table. Coefficients table of GLM for flower phenology. Relationship between time

between sowing and blooming and the plant variety, and the plant line (male sterile vs. male

fertile), with interactions and a gamma distribution. The intercept condition is the excellent

variety, male sterile.

(DOCX)

S2 Table. Coefficients table of zero-inflated binomial GLMM for seed set. The final model

retained temperature at the time of pollination, plant variety, and pollen viability as predictors

of observed seed set per three umbellets. The intercept condition is the excellent variety.

(DOCX)

S3 Table. Coefficients table of binomial GLMM for pollen viability. The final model

retained temperature at the time of pollination, plant variety, and the number of days pollen

was stored prior to processing as predictors of observed pollen viability in male fertile lines.

The intercept condition is the excellent variety.

(DOCX)

S4 Table. Coefficients table of LM for nectar glucose:fructose ratio. The intercept condition

is nectar glucose (μg) per ½ umbel.

(DOCX)

S5 Table. Coefficients table of GLMM for nectar sugar composition. The final model

retained time-of-day, temperature at the time of pollination, plant variety, and the interaction

between time-of-day and variety. The intercept condition is the excellent variety at the peak

nectar emission time of 11:00am.

(DOCX)

S6 Table. Coefficients table of ADONIS for nectar phenolic bouquet. The final model

retained plant variety, temperature at the time of pollination, and time-of-day.

(DOCX)

S7 Table. Coefficients table of ADONIS for floral volatiles; variety trial.

(DOCX)

S8 Table. Coefficients table of ADONIS for floral volatiles; temperature trial.

(DOCX)

S9 Table. Coefficients table of ADONIS for floral volatiles; time-of-day trial.

(DOCX)

S1 Text. Preliminary carrot pollen viability sampling method and results.

(DOCX)

S1 Data. Raw data from which analyses were generated.

(CSV)

Acknowledgments

We are very thankful to our glasshouse manager, Dave Conder, who ensured that the plants

came to maturity, and Nate Broussard, whose assistance in round-the-clock hand-pollinating

the carrots was vital to the completion of this project. Two anonymous reviewers provided

Pollination failure in hybrid carrot: Implications for industry in a changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0180215 June 30, 2017 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180215.s014
https://doi.org/10.1371/journal.pone.0180215


helpful comments. We also thank Aimee Harper and Nigel Joyce for processing the chemical

extracts. Special thanks to South Pacific Seeds, who provided the carrot seed for this experi-

ment as well as historical seed set data.

Author Contributions

Conceptualization: Melissa Ann Broussard, Brad Howlett, David Pattemore, Jason M.

Tylianakis.

Data curation: Melissa Ann Broussard, Flore Mas.

Formal analysis: Melissa Ann Broussard.

Funding acquisition: Brad Howlett, David Pattemore, Jason M. Tylianakis.

Investigation: Melissa Ann Broussard.

Methodology: Melissa Ann Broussard, Flore Mas, Jason M. Tylianakis.

Project administration: Brad Howlett, David Pattemore, Jason M. Tylianakis.

Resources: Flore Mas, Brad Howlett, David Pattemore.

Software: Melissa Ann Broussard.

Supervision: Brad Howlett, David Pattemore, Jason M. Tylianakis.

Validation: Melissa Ann Broussard.

Writing – original draft: Melissa Ann Broussard, Flore Mas.

Writing – review & editing: Melissa Ann Broussard, Flore Mas, Brad Howlett, David Patte-

more, Jason M. Tylianakis.

References

1. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance

of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological

Sciences 2007; 274:303–313. https://doi.org/10.1098/rspb.2006.3721 PMID: 17164193

2. Dowker B and Fennell J. The relative performance of inbreds and open-pollinated populations of spring-

sown onions. The Journal of Agricultural Science 1981; 97:25–30.

3. Gonzalez JL, Schneiter AA, Riveland NR and Johnson BL. Response of hybrid and open-pollinated saf-

flower to plant population. Agronomy Journal 1994; 86:1070–1073.
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78. Pérez-Bañón C, Petanidou T and Marcos-Garcia MÁ. Pollination in small islands by occasional visitors:

the case of Daucus carota subsp. commutatus (Apiaceae) in the Columbretes archipelago, Spain. Plant

Ecology 2007; 192:133–151.

79. Waller GD. Evaluating responses of honey bees to sugar solutions using an artificial-flower feeder. Ann.

Entomol. Soc. Am. 1972; 65:857–862.

80. Hagler JR, Cohen AC and Loper GM. Production and composition of onion nectar and honey bee

(Hymenoptera: Apidae) foraging activity in Arizona. Environmental entomology 1990; 19:327–331.

81. Bradeen JM, Bach IC, Briard M, le Clerc V, Grzebelus D, Senalik D, et al. Molecular diversity analysis of

cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured

composition. Journal of the American Society for Horticultural Science 2002; 127:383–391.

82. Patterson DT. Weeds in a changing climate. Weed Sci. 1995;: 685–701.

83. Juroszek P and Von Tiedemann A. Potential strategies and future requirements for plant disease man-

agement under a changing climate. Plant Pathology 2011; 60:100–112.

84. Ziska LH, Faulkner S and Lydon J. Changes in biomass and root: shoot ratio of field-grown Canada this-

tle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glypho-

sate. Weed Sci. 2004; 52:584–588.

85. Ziska LH and Teasdale JR. Sustained growth and increased tolerance to glyphosate observed in a C3

perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Functional Plant Biol-

ogy 2000; 27:159–166.

86. Sagae M, Oyama-Okubo N, Ando T, Marchesi E and Nakayama M. Effect of temperature on the floral

scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008;

72:110–115. https://doi.org/10.1271/bbb.70490 PMID: 18175901

87. Pacini E, Nepi M and Vesprini J. Nectar biodiversity: a short review. Plant Systematics and Evolution

2003; 238:7–21.

88. Howlett B, Butler R, Nelson W, Donovan BJ. Impact of climate change on crop pollinator in New Zea-

land.,. 2013.

89. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA et al. Wild polli-

nators enhance fruit set of crops regardless of honey bee abundance. Science 2013; 339:1608–1611.

https://doi.org/10.1126/science.1230200 PMID: 23449997

90. Winfree R, Williams NM, Dushoff J and Kremen C. Native bees provide insurance against ongoing

honey bee losses. Ecology Letters 2007; 10:1105–1113. https://doi.org/10.1111/j.1461-0248.2007.

01110.x PMID: 17877737

Pollination failure in hybrid carrot: Implications for industry in a changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0180215 June 30, 2017 23 / 23

https://doi.org/10.1271/bbb.70490
http://www.ncbi.nlm.nih.gov/pubmed/18175901
https://doi.org/10.1126/science.1230200
http://www.ncbi.nlm.nih.gov/pubmed/23449997
https://doi.org/10.1111/j.1461-0248.2007.01110.x
https://doi.org/10.1111/j.1461-0248.2007.01110.x
http://www.ncbi.nlm.nih.gov/pubmed/17877737
https://doi.org/10.1371/journal.pone.0180215

