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Abstract

Obtaining quantitative measures from biomedical images often requires segmentation, i.e., finding 

and outlining the structures of interest. Multi-modality imaging datasets, in which multiple 

imaging measures are available at each spatial location, are increasingly common, particularly in 

MRI. In applications where fully automatic segmentation algorithms are unavailable or fail to 

perform at desired levels of accuracy, semi-automatic segmentation can be a time-saving 

alternative to manual segmentation, allowing the human expert to guide segmentation, while 

minimizing the effort expended by the expert on repetitive tasks that can be automated. However, 

few existing 3D image analysis tools support semi-automatic segmentation of multi-modality 

imaging data. This paper describes new extensions to the ITK-SNAP interactive image 

visualization and segmentation tool that support semi-automatic segmentation of multi-modality 

imaging datasets in a way that utilizes information from all available modalities simultaneously. 

The approach combines Random Forest classifiers, trained by the user by placing several 

brushstrokes in the image, with the active contour segmentation algorithm. The new multi-

modality semi-automatic segmentation approach is evaluated in the context of high-grade 

glioblastoma segmentation.

I. Introduction

Segmentation is one of the most studied problems in the field of biomedical image analysis. 

Most research has focused on fully automatic approaches. Among the most successful and 

broadly applicable classes of fully-automatic approaches are statistical clustering techniques 

based on Gaussian mixture models or more complex models, including graph-theoretic 

approaches; atlas-based and multi-atlas label fusion approaches; and deformable modeling 

techniques with shape priors. The latter two classes of techniques can handle challenging 

segmentation problems where structures of interest are separated from adjacent tissues by 

subtle or unseen boundaries; but at the cost of needing substantial training data. However, in 

many problems, fully automatic segmentation is not available, or is not as accurate as 

manual segmentation by an expert with deep knowledge of underlying anatomy and 

pathology. Even in problems where fully automatic segmentation works well, manual 

segmentation is still often needed to train the automatic algorithms. However, with the 

increasing size and complexity of imaging datasets, manual segmentation is becoming more 

and more time consuming. For instance, in the past a typical MRI dataset for one subject 
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would have consisted of one or two scans, often with thick slices. Segmentation of 

anatomical structures or lesions would have required tracing on a few slices. And most 

studies were limited to a few tens of subjects. Today, MRI studies often recruit hundreds of 

subjects, contain four to eight different tissue contrasts (T1-weighted, T2-weighted, FLAIR, 

diffusion-weighted, etc.), and have sub-millimeter resolution images. For such studies, 

manual segmentation becomes increasingly impractical, due to the sheer volume of data to 

be processed manually. Furthermore, the task of fusing information from multiple imaging 

modalities during segmentation is challenging, and in contexts where multiple modalities are 

available, it is uncertain whether human experts fully leverage this rich information when 

tracing anatomical structures and lesions.

Semi-automatic segmentation approaches that allow the human expert to make “big picture” 

decisions, while relying on the computer to perform time-consuming repetitive tasks, may be 

the ideal strategy for complex problems where automatic segmentation is unreliable or 

unavailable and manual segmentation is impractical. Designing effective semiautomatic 

approaches is part science and part art, as powerful algorithms must be paired with efficient 

and intuitive interactive tools for user guidance. In the context of multi-modality imaging 

data, this is particularly challenging, as ways must be found to present the user with a wealth 

of data in a way that allows her to make executive guidance decisions without being 

overwhelmed by the complexity of the dataset.

ITK-SNAP (http://itksnap.org) is a general-purpose interactive tool for image visualization, 

manual segmentation, and semi-automatic segmentation. It was created in the early 2000s 

with the vision of an uncluttered tool that would be easy for computer non-experts to learn 

and would be focused almost entirely on the problem of segmentation, with the creep of 

additional non-segmentation and domain-specific features kept to a minimum. Since 2006, 

ITK-SNAP has been cited by over 1700 articles (source: Google Scholar), suggesting its 

wide adoption by the biomedical imaging community. However, until recently, ITK-SNAP 

only supported single-modality image segmentation, and its semi-automatic mode relied on 

the structures of interest being distinguished from surrounding tissues by different image 

intensity or strong image edges. The main contribution described in this paper is the 
development of a multi-modality segmentation capability in the new ITK-SNAP version 3.4 
that uses machine learning to differentiate tissue classes based on a more complex range of 
features, including texture, location, and intensity.

This paper is organized as follows. Section II introduces the ITK-SNAP tool and the new 

multi-modality capabilities. Section III describes a validation study, in which ITK-SNAP 

was used to segment brain tumors from multiple MRI contrasts simultaneously. Section IV 

provides discussion and concludes the paper.

II. ITK-SNAP Tool Overview

A. Image Viewing and Navigation

ITK-SNAP (Fig. 1) allows the user to load multiple image volumes in a variety of common 

file formats, including DICOM and NIFTI. The main program window shows three 

orthogonal views through the images, in axial, coronal and sagittal planes. Each view 
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displays the lines along which it intersects with the other views as orthogonal lines, or a 

crosshair. Moving this crosshair in one slice view adjusts the slices visualized in other views. 

This “linked crosshair” concept provides a seamless way to navigate through 3D volumes, 

with all three views focused on the same location in the 3D image. Multiple image 

modalities can be visualized in three ways: a tiled layout, where the coronal, axial and 

sagittal slice views each display the same slice through all loaded modalities; a thumbnail 
layout, where one modality occupies most of each slice view, while others are shown as 

small thumbnails, clicking on which switches to that modality; and with selected modalities 

shown as semiopaque overlays shown on top of other modalities. Multiple color maps can be 

used to view images, and linear and non-linear contrast adjustment tools are provided.

B. Manual Segmentation and Editing

ITK-SNAP represents segmentations by assigning a distinct integer value to each voxel in 

the image volume. Non-zero values correspond to different anatomical labels (e.g., tumor, 

edema). The segmentation is visualized as a semiopaque layer overlaid on the anatomical 

images, with each label rendered using a different color, configurable by the user. An 

additional view is used to show the 3D surface rendering of each anatomical label in the 

segmentation.

Manual segmentation is performed using “polygon” and “paintbrush” tools. With the 

polygon tool, the user outlines polygonal region in any of the slice views. Polygons can be 

edited by moving vertices in the slice plane. Once accepted, the polygon is assigned the 

current label and integrated into the 3D segmentation volume. The paintbrush tool allows 

quick drawing and touch-up editing using the mouse, with masks of different shape and size. 

An adaptive paintbrush mask is also provided, wherein only the neighboring voxels similar 

in intensity to the voxel clicked on by the user are assigned the foreground label. Lastly, 

tools for manipulating segmentations in the 3D render window, such as partitioning into two 

labels using a cut plane, are provided.

C. Semi-Automatic Segmentation

Semi-automatic segmentation in ITK-SNAP uses a two-stage pipeline. In Stage 1, the 

multiple image modalities used for segmentation are combined to produce a scalar “speed” 

image g with intensities in range [−1,1], defined as g(x) = P(x ∊ S)−P(x ∊ Ω\S), where S is 

the structure of interest (foreground) and Ω is the image domain. Multiple ways of obtaining 

these foreground/background probabilities are available, including thresholding of a given 

single modality; Gaussian mixture model-based clustering; and supervised classification 

using Random Forests [1], [2], which is the focus of this paper. Using the paintbrush or 

polygon tools, the user marks examples of different tissue classes present in the image. For 

each voxel labeled by the user, a vector of features is generated. Features include the 

intensity of each image modality at the voxel Optionally, intensities of the neighboring 

voxels are also included as features, allowing implicit incorporation of texture information 

into the classifier The feature vector may also optionally include the coordinates of the 

voxels, allowing spatial constraints to be incorporated into the classifier. The classifier is 

trained using these features and then applied to each voxel in the image domain Ω, yielding a 

posterior probability Pk(x) for each voxel x and each class k The user then specifies which 
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class, or which combination of classes, form the foreground S, and which classes form the 

background The sum of the posterior probabilities for the foreground/background is used to 

derive P(x ∊ S) and P(x ∊ Ω \ S) respectively Fig 2 illustrates ITK-SNAP during the 

computation of the speed image using Random Forest classification.

Stages 2 of the pipeline involves active contour segmentation guided by the speed function 

g(x) and user-placed initialization seeds. The active contour algorithm [3], [4] is an iterative 

approach in which a parametric contour C representing the boundary of the segmented 

region undergoes evolution over time t according to the equation

(1)

where κC is the mean curvature of C, NC is the unit outward normal of C, and α is a scalar 

parameter. For numerical stability and computational efficiency, C is represented implicitly 

as the zero level set of a function ϕ defined on the image volume, and the evolution equation 

(1) is approximated as an evolution of ϕ in the narrow region around the zero level set [5], 

[6]. In ITK-SNAP, C is initialized by the user placing one or more spherical seeds in the 

structure of interest. During evolution, the contour expands into the regions where g(x) is 

positive, i.w., where P(x ∊ S) > P(x ∊ Ω \ S), and contracts in regions where g(x) is negative. 

The curvature term, modulated by user-controllable parameter α, imposes smoothness on the 

contour C. As the contour evolves, a visualization in 2D slices and 3D is provided in real 

time, allowing the user to stop evolution and reinitialize if necessary.

Stages 1 and 2 are repeated for different structures in the image. Often, segmenting different 

structures in the same image does not require re-training of the Random Forest classifier, but 

simply the assignment of different labels or combination of labels to the foreground and 

background. Fig. 3 shows ITK-SNAP with a completed segmentation.

D. Software Architecture

ITK-SNAP contains multiple image processing pipelines written using the C++ Insight 

Toolkit library [7]. Pipelines are optimized for speed and interactivity. For instance, during 

Stage 1 of semi-automatic segmentation, Random Forest classifiers are applied only to parts 

of the 3D volume currently visible to the user, and are reapplied when the user moves the 3D 

crosshair. This provides almost real-time feedback when the user trains and retrains the 

classifier using additional brushstrokes. Classification is applied to the entire 3D volume 

only when the active contour stage is entered. To reduce memory use, ITK-SNAP stores 

segmentation volumes, which are almost always largely contiguous, in compressed format 

using run-length encoding.

III. Evaluation

We evaluated ITK-SNAP segmentation using data from the 2013 MICCAI Brain Tumor 

Segmentation (BRATS) challenge. BRATS data consists of multi-modality brain MRI scans 

of patients with glioblastomas. For each patient, four co-registered scans are available: T1-
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weighted, T1-weighted contrast enhanced (T1CE) with gadolinium contrast agent; T2-

weighted; and FLAIR. Evaluation focused on high-grade glioblastomas (HGG). Typically, 

3-4 types of pathology are present in HGGs: edema (bright on T2 and FLAIR), enhancing 

tumor (ET; bright on T1CE), non-enhancing tumor (NET; abnormal in T2 but appears as 

normal gray/white matter in T1CE), and necrosis (dark in T1CE, T1). A semiautomatic 

protocol was developed for ITK-SNAP. It involves training Random Forest classifiers using 

7 labels (edema, enhancing tumor, non-enhancing tumor, necrosis, normal brain tissue, 

cerebrospinal fluid, air/background). Active contour is performed in four sequential stages, 

by taking different combinations of labels to form the foreground. First, the combined 

(edema+NET+ET+necrosis) region is segmented; then (NET+ET+necrosis); then (ET

+necrosis); and finally necrosis only. This sequence takes advantage of the fact that in most 

tumors necrosis lies within the ET, which is within the NET, which in turn is within the 

edema, and minimized the need to label structures with holes.

Users trained by performing segmentation using this protocol and comparing with the 

reference segmentations provided by the BRATS organizers. Once trained, they performed 

segmentation on BRATS “leaderboard” datasets for which the reference segmentation is not 

publicly available. One user performed repeat segmentations after a one week delay. The 

average segmentation time for one dataset was 11.7 ± 4.2 minutes for rater 1 attempt 1, and 

10.4 ± 5.5 minutes for rater 1 attempt 2, and 14.8 ± 9.7 minutes for rater 2.

Fig. 4 reports the Dice similarity coefficient, a measure of relative overlap, between different 

segmentations of each dataset. Following the convention for reporting results adopted by the 

BRATS challenge, the four anatomical labels are combined into composite labels 

“complete” = (edema+NET+ET+necrosis), “core” = (NET+ET+necrosis), and “enhancing” 

= (ET). To put these numbers in the context, the top-ranked fully automatic method in the 

BRATS leaderboard dataset (as of March 2016) has average Dice overlap 0.84 for the 

complete label, 0.72 for the tumor core, and 0.62 for the enhancing label.

Note, however, that these numbers may not be compared directly, since BRATS reports 

average Dice for all leader-board datasets (high-grade and low-grade glioblastomas 

combined), while our evaluation only examined a subset of 11 high-grade tumors. Overall, 

intra-rater reliability is generally high, with few exceptions where repeat segmentation 

grossly disagreed with the initial segmentation – interestingly this occurs in the same cases/

labels when the agreement with the overall BRATS reference is low. Agreement between 

two raters was lower, indicating that there were some cases where the raters disagreed on 

what constitutes the tumor. In one case (137) rater 2 did not find a tumor.

IV. Discussion

The evaluation demonstrates the feasibility of quickly segmenting anatomical structures 

using multiple imaging modalities simultaneously using ITK-SNAP. While the results 

reported here cannot be directly compared with the results of automatic segmentation 

reported by the BRATS challenge [8], the overall magnitude of the Dice scores suggests that 

the semi-automatic segmentation is competitive with the best of the fully automatic methods. 

While fully automatic methods that performed well in the BRATS challenge must be 
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specifically retrained for each new anatomical domain and imaging modality, semi-

automatic segmentation is easily adaptable to new domains, and the algorithms used in ITK-

SNAP employ no domain-specific knowledge. This makes ITK-SNAP an excellent tool for 

accelerating segmentation in complex problems for which reliable automatic segmentation is 

not yet available.

The main contribution in this paper is the extension of single modality segmentation in the 

previously reported version of ITK-SNAP [9] to a pipeline that combines user-guided 

multimodality preprocessing and level set object segmentation where information from 

multiple channels is used jointly. While the Random Forest [1], [2] and level set [3], [4], 

[10] algorithms are widely known and broadly used in image segmentation, the concept of 

combining them in the context of semi-automatic multi-modality image segmentation tool is 

innovative. To our knowledge, similar capability is not available in other semi-automatic 

software tools available today. For instance, the 3D Slicer software includes various modules 

for semi-automatic 3D segmentation, including the GrowCut module [11], which has been 

evaluated for glioblastoma segmentation. However, [11] use a single contrast-enhanced T1-

MRI modality, rather than multiple modalities, and focus on the enhancing tumor and 

necrosis, but not edema.
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Fig. 1. 
ITK-SNAP tool (version 3.4) with four MRI modalities from a BRATS tumor dataset 

loaded.
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Fig. 2. 
ITK-SNAP tool during speed image computation in the semiautomatic segmentation mode. 

Examples of three labels are seen on the selected MRI slices, and the speed image is 

visualized using the blue (negative) to white (positive) colormap. The speed image is 

computed for the ET and necrosis as foreground labels, and other labels mapped to 

background.
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Fig. 3. 
ITK-SNAP tool after completion of the segmentation of the edema (yellow), ET (blue) and 

necrosis (green).
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Fig. 4. 
Quantitative evaluation of tumor segmentation accuracy by two raters using ITK-SNAP. 

Intra-rater reliability (repeat segmentation of same images by Rater 1), inter-rater reliability 

(segmentation of same images by Rater 1 and 2), and agreement between Rater 1 and the 

BRATS reference segmentation are reported for three labels used in the BRATS framework.
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