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Abstract Biofuels are the promising sources which are

produced by various microalgae or in the form of metabolic

by-products from organic or food waste products. Microalgae

have been widely reported for the production of biofuels since

these have a high storage of lipids as triacylglycerides, which

can mainly be converted into biofuels. Recently, products

such as biodiesel, bioethanol and biogas have renewed the

interest toward the microalgae. The proteomics alone will not

pave the way toward finding an ideal alga which will fulfill

the current energy demands, but a combined approach of

proteomics, genomics and bioinformatics can be pivotal for a

sustainable solution. The present review emphasizes various

technologies currently involved in algal proteomics for the

efficient production of biofuels.

Keywords Microalgae � Biofuel � Proteomics � ITRAQ �
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Introduction

The molecular biology of microalgae is of great scientific

attraction in recent years because of its potential for biofuel

production. Researchers have shown their interest in

microalgae from both the points of view, i.e., as public

communities which can be used as a potent source toward

biofuel potential as well as other high value compounds.

Molecular and biochemical analyses show interesting dif-

ferences in lipid metabolism between the microalgae and

plants. These differences are mainly due to distinct acyl

groups that are present in algal lipids. Plastids are also

involved in the assembly of TAGs, which are the reasons

for the glycerolipid metabolism in the subcellular organi-

zation (Hu et al. 2008). Thus, lipid metabolism in

microalgae points to a new approach in such groups of

organisms, which also deals with the analysis of lipid

metabolism in plants in the field of genetic engineering

(Fig. 1). Due to limited availability of conventional fossil

fuels, the use of microalgae has attracted great attention of

scientists in these days. Biodiesel production from

microalgae and its utilization as fuel have become the

topics of research in recent years and this has attracted the

scientists toward exploring the microalgal cellular biology

in detail (James et al. 2011). Fossil fuels are non-renewable

source of energy, going to be limited by the time and its

uses which has also influenced toward the global warming

and pollutions. The concepts of alternative energy or sus-

tainable energy are needed to overcome the twin problems

of global temperature rise and air pollution. A few strains

of microalgae have been identified as a source of biofuel

production, since they store solar energy as chemical

energy in various forms, which is used for the production

of biodiesel, biomethane, and biohydrogen (Kruse et al.

2005; Chisti 2007; Schenk et al. 2008). Exploitation of

algal diversity and its sustainable use for biodiesel pro-

duction is the need of the hour to ensure that the energy

crisis is alleviated. Microalgae have high-storage lipid

content; such stored lipids can be converted into biodiesel.

Research is needed on biodiesel production and exploring
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this at a commercial scale to screen out the existing strains

of available species for the maximum yield.

In the current review, we have elucidated the proteomic

analysis and lipid profiling of algae and its relevance

toward biofuel production. Without proteomics, studies of

algal omics is incomplete as it gives an idea of the precise

functional group in the state of static and dynamic physi-

ological contexts. Particular or targeted proteomics studies

on microalgae have not been reported yet. Proteomics has

evolved as a better technique approach for understanding

the complexity in biological system. This can be success-

fully exploited for obtaining algal oil and its biochemical

conversion to biodiesel. The motivation behind this study is

to attract awareness toward sustainable utilization of

microalgae resources for obtaining indigenous strains

toward exploring their possible role in the development of

bioenergy production in the country.

Physiology of microalgae

Algae are the oldest form of life at present, which come

under the primitive plants thallophytes (Falkowski and

Raven 1997). Thallophyta are the most primitive and the

largest division of Cryptogams. The plant body of such

plant kingdom is not differentiated into root, stem and

leaves, due to which the whole plant body is termed as

thallus. The thalloid plant body may be unicellular or

multicellular. the physiological parameter includes lack of

roots, reproductive leaves and lack of the covering around

Fig. 1 Overview of metabolic

pathway in microalgae for lipid

synthesis
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the cells of stems. Also, they contain chlorophyll, which is

the pigment necessary for photosynthesis (Lee 1980) and

whose primary function is to produce starch or carbohy-

drates. Simple physiology and habitat condition enable

them to survive any environmental conditions and also

ensure their survival for a long duration. These structures

support the energy conversion, that is photosynthesis,

without any development or change in their cellular com-

position (Falkowski and Raven 1997). Prokaryotic cells

(cyanobacteria) generally do not have membrane-bound

organelles and these are present in bacteria in comparison

to algae which are eukaryotic. Different eukaryotic algae

have been identified and placed in various groups, and are

mainly recognized by the pigment, life cycle they follow,

cellular structure and composition (Khan et al. 2009).

Green algae (Chlorophyta), red algae (Rhodophyta) and

diatoms (Bacillariophyta) are the algal types that have been

identified. These microbes can be further grouped into

autotrophs and heterotrophs. The autotrophic organisms

require CO2, water and a light source for their develop-

ment, since they are the producers of macromolecules such

as carbohydrates; while the heterotrophic organisms are

non-photosynthetic and so depend on the organic com-

pounds along with the nutrients as an energy source rather

than inorganic compounds. Some strains of microalgae are

mixotrophic, that is, they can perform photosynthesis as

well as they acquire exogenous organic nutrients (Lee

1980). Photosynthesis is necessary for the survival and

growth of autotrophic microalgae, where adenosine

triphosphate (ATP) is formed by the conversion of solar

radiation and CO2 which is then absorbed by chloroplasts.

O2 is used as the energy source at the cellular level, since

O2 is used for respiration which in terms produces energy

required for growth (Khan et al. 2009; Zilinskas Braun and

Zilinskas Braun 1974).

Biofuel from microalgae

Microalgae have high-storage lipid content due to which it

has gained importance among researchers, because neutral

lipid, for example triacylglycerides, can be easily be con-

verted to biodiesel (fatty acid methyl esters) through vari-

ous methods such as supercritical process and microwave-

assisted and ultrasound-assisted processes (Araujo et al.

2011). Biodiesel is a renewable source of energy which has

the potential to replace non-renewable sources of energy.

Supercritical processes have been identified as novel pro-

cesses. Biofuel from algae has made the researcher iden-

tify the most suitable strain with a high storage of lipid

content. There are few recent reports on various aspects of

microalgal biofuel like metabolic engineering, systems

biology and bioharvesting which have created attention

recently (Banerjee et al. 2016a, b; Kumar et al. 2017).

Macromolecules such as polysaccharides (sugars) and tri-

acylglycerides (fats) which can also be obtained from the

microalgae have made the researcher to show their interest

on them as a potential feedstock, since microalgae grow on

wetland. Besides these macromolecule, protein can also be

extracted from algae, which can be used as a source of

animal feed in the form of single cell protein (SCP),

whereas some species of microalgae can also be used for

the production of various commercially valuable com-

pounds such as pigments and pharmaceuticals (Griffiths

and Harrison 2009). Lipids are the stored products of many

species of algae which are produced or stored in large

amount, which may contribute more than 50% of its dry

weight. Transesterification of such lipids, which are

derived from the algae are very effective and a prospective

source for biodiesel synthesis (Chaumont 1993).

The production of biofuel and its extraction from

microalgae biomass are expensive and technologically

challenging. Microalgae require light, CO2, water and

inorganic salts to perform photosynthesis and grow (Ban-

erjee et al. 2014). The temperature needed for their growth

has to be strictly maintained. A temperature of 20–30 �C is

required for the optimal growth and development of algae,

whereas at 25–28 �C it attains its maximum growth

(Banerjee et al. 2012). The cost for biodiesel production

can be reduced by relying on freely available sunlight,

instead of depending on the daily and seasonal natural light

(Chisti 2007; Borowitzka 1999, 2005; Pulz 2001; Mallick

2002). Biomass obtained from the microalgae can be used

as energy source by converting them through different

ways, such as biochemical process, chemical reaction and

direct combustion or through thermochemical conversion

(Kumar et al. 2010). The different microalgal species that

are used in biofuel production are shown in Table 1.

Proteomics

Proteomics by itself cannot be used for analysis because to

get information about the gene expression and its regula-

tion, proteomics has to be correlated with genomics and

transcriptomics (Robinson et al. 2009). Since proteomics

can be used for the analysis of protein expression along

with their interactions so it can be further mediated with

genomics and transcriptomics. The main idea behind pro-

teomics is to analyze the post-translational modification

and also to identify the different levels of proteins in

submulti-protein complexes and their position in different

types of cells and tissues. Genomics gives the genome

sequence of the given microbes, which include coding as

well as regulatory sequences. Transcripts [messenger RNA

(mRNA)] too relate to genomics and proteomics, since the

transcript gives information about gene expression, alter-

nating splicing, RNA editing, polyadenylation site, etc.
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Transcript knowledge can be used for the development of

algorithms and software. When the study on the functional

gene is carried out in whole organisms, then such analysis

is called phenomics, because in such case the phenotype of

an organism is observed (Paigen and Eppig 2000). Another

phenomics sequence analysis method is performed at dif-

ferent levels of different oligonucleotides sequences

instated of different protein level. Metabolic pathways can

also be understood through the study of proteomics.

Comparative proteomics analysis is performed under dif-

ferent environmental conditions, which may be in the form

of a fraction of a protein or the entire family of the one

protein sample, can be compared to that of another sample

or to that of the standard. Expressions of proteins and such

differences are mainly by the different environmental

stimuli, and which are analyzed, along with its metabolic

pathway to which they are part of it can be analyzed

through the proteomics analysis (Gasch et al. 2000).

Proteomics of eukaryotic algae and cyanobacteria

A wide range of algae are described in terms of genomics

and transcriptomics, but the information in terms of pro-

teomics is not adequate. Chlamydomonas reinhardtii is a

eukaryotic algae, whose proteomic analysis has been done

primarily and taken as a model organism in various

research activities. Full characterization of algal mito-

chondria was the first proteomic analysis performed in

algae (Lis et al. 2003). It was analyzed with the help of

blue native-polyacrylamide gel electrophoresis (BN-

PAGE) and further analyzed with a 2D SDS-PAGE. Sim-

ilarly, 2D gel electrophoresis combined with

immunoblotting (2D-IS) and mass spectrometry was used

for the examination of the thylakoid membrane extracted

from wild-type along with mutant strains of C. reinhardtii

(Hippler et al. 2001). They included separation and clas-

sification of transmembrane-spanning and antenna complex

proteins in their method. The antenna complex was further

characterized, in which gene tagging signifies differentially

processed amino-terminus in antenna proteins and potential

post-translational phosphoregulation. The results obtained

from these studies gave an intuition into various differen-

tial processing and post-translational modifications

observed in many algal systems (Stauber et al. 2003).

Algae have gained its importance in the area of energy

such as production of algae-based biofuels where a number

of proteins can be identified through proteomic analyses

along with microalgal lipid accumulation. Lipid droplets

from C. reinhardtii were extracted using the solvent

extraction method and then examined with GeLC/MS/MS

method to inspect lipid droplet-associated proteins (Moel-

lering and Benning 2010). More than 250 proteins in a lipid

droplet-enriched fraction have been recognized, along with

major lipid droplet protein (MLDP), which is predomi-

nantly found in green algae. RNAi was predominantly used

in examining the functionality of these proteins, its

involvement in size of the lipid droplet, and examining its

capability as a marker for amassing lipid droplets and tri-

acylglyceride (TAG). Upon examination of several pro-

teins accompanying lipid biosynthesis and protein

pathway, their direct relation with lipid droplets are found

and hence it is proved that besides the direct role of lipi-

dogenesis, these lipid droplets also have an indirect role in

carbon flux. Isoelectric focusing combined with 2D SDS-

PAGE and fluorescent staining was employed in C. rein-

hardtii, in which the carbon-concentrating mechanism

(CCM) was studied by Baba and colleagues (Baba et al.

2011). Proteomics has gained much of its importance due

to the development of highly sophisticated instrument.

Nowaday’s proteomics is on the way to inspect light

variation tolerance strategy in algae, which is crucial for

the deployment of algae in open pond systems where the

light intensity fluctuate considerably.

Similar to algal proteomics analysis, cyanobacterial

proteomics studies are also applied to Synechocystis PCC

6803 as a model organism which is mainly engrossed on its

organelle configuration and stress reactions. The external

membrane of PCC 6803 was sequestered and characterized

by using two-dimensional gel isoelectric focusing by

Huang and colleagues (2002). They identified 49 different

proteins that correspond to 29 gene products. All seques-

tered proteins contained amino-terminus signal peptides,

Table 1 Microalgae used for the production of biofuel

Algae species Products Culture technique References

Botryococcus braunii Triterpene oils Photobioreactor Courchesne et al. (2009)

Chlorella spp. Carbohydrates, protein Ponds, photobioreactor Croft et al. (2007)

Chlamydomonas reinhardtii Oils, carbohydrates, hydrogen and methane Photobioreactor Croft et al. (2006)

Dunaliella salina b-Carotene Brackish seawater ponds Doebbe et al. (2007)

Nannochloropsis Polyunsaturated fatty acids Seawater ponds Ermakova et al. (2013)

Ostreococcus tauri Oils Photobioreactor Falkowski and Raven (1997)

Pavlova lutheri Fatty acids, aquaculture feedstock Photobioreactor Forster et al. (2003)
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though the function of 40% proteins remained unknown. A

collection of porins and transporters were also recognized,

along with several membrane-associated proteases. Simi-

larly, the plasma membrane of PCC 6803 was inspected by

Pisareva et al. (2007) who identified 51 proteins from a

purified plasma membrane fraction using 1D SDS/PAGE

MALDI-TOF MS (Pisareva et al. 2007). Most of the pro-

teins observed were new, with representation from

chemotaxis, metalloprotease, and secretion ontologies.

Moreover, a substantial portion is expected to be integral,

trans-membrane helix-containing proteins.

Technologies of proteomics

Proteomics mainly deals with large-scale experiment. Such

type of experiment or analysis requires specialized tools,

which are developed for the particular type of experiment

or the design of the experiment. Three aspects of pro-

teomics technologies have been identified. One is mass

spectrophotometer, which is highly sensitive, where the

endogenous protein mixtures can be identified along with

its analysis. Array-based proteomics is also one kind of

proteomic technologies, which mainly relates to cDNA

microarray and oligonucleotide chips (Gahoi et al. 2015).

A third area of proteomic analysis deals with the structure

and imaging of single proteins, or protein with multi-sub-

unit are experimented in a large scale such as its 3D shape,

localization, metabolism and physiological parameters.

Mass spectrophotometer

Proteomics through the mass spectrophotometer (MS) has

improved the analysis of a number of proteins, which

means a number of proteins can be identified in a single

experiment (George et al. 2015). The analysis of protein

through MS mainly depends on the beakdown of protein

sample into its constituents with the use of specific enzyme

such as sequence protease. The protein as a whole itself is

of high molecular weight which enables the analysis, as the

protein cannot be eluted from the gel. For example, C.

reinhardtii has been subjected to proteomics studies, in

which around 240 proteins have been identified by pro-

viding heat shock. Synechocystis 6803 went through the

compositional analysis of membrane protein complexes in

different growth conditions (Herranen et al. 2004).

Array-based proteomics

Proteomic array-based analysis can also be used for the

identification of a large set of proteins or multiprotein

complexes (Liu et al. 2015). In this array based on analysis,

purified ligands are separated individually. It may be from

protein, peptide or carbohydrates or from small molecules

such as antibodies or antigens. These are placed on a plane

surface where they can be used for analysis of protein and

its expression at the level of protein profiling. Different

types of protein microarray formats have been identified,

such as tissue array, reverse-phase array, capture arrays and

lectin arrays, which are gaining importance in recent years.

These tools are used in various fields of analysis such as

protein–protein interaction studies, immunological profil-

ing, biomarker discoveries and vaccine development. Such

tools are delivering meaningful biological insights into

modern biology. Nostoc flagelliforme was studied for its

diurnal changes (Liang et al. 2013) and Anabaena 7120 for

the effect of deletion of specific heterocyst proteins Flv1B

and Flv3B (Ermakova et al. 2013).

Next-generation proteomic tools

Conventional tools such 2D gel electrophoresis, which is

mainly used for the separation of a large number of

protein along with the MALDI-TOF-MS-based analysis

were quite popular in the early period of proteomics;

however they are time consuming and lack throughput

and quantitative ability. The development of nano-liquid

chromatography-based analysis with the high resolution of

mass spectrometry has improved the method of quantita-

tive analysis of the protein or any other biological sample.

Furthermore, a technique like isobaric tags for relative

and absolute quantification (iTRAQ) has the ability to

identify the biomarker such as the tissue biomarker, serum

biomarker and drug resistance marker. Stable isotope

labeling by amino acids in cell culture (SILAC) is another

type of mass spectrometry-based quantitative approach,

which is more efficient toward the cell culture system and

has become a highly acceptable tool for quantitative

biology.

Quantification methods

MRM (multiple reaction monitoring) and SRM (selected

reaction monitoring) are the tools which have overcome the

triple–quadrupole based mass spectrometers and have

made a high impact in the area of proteomics in the case of

biomarker identification. MRM-based quantification has

been used extensively and has gained much importance in

the proteomics area, since these tools have replaced some

of the expensive methods of quantification such as anti-

body-based analysis like western blotting and ELISA.

MRM performed on QTOFs and Orbit raps are called

pseudo-MRM or high-resolution MRM (HR-MRM), which

can also be called parallel reaction monitoring (PRM). In

comparison, between MRM and PRM, the specific frag-

ment ions obtained during acquisition are not possible

through PRM.
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Post-translation modification

Post-translation modifications are the mechanism used for

the cellular processes along with the cellular control. Pro-

tein activity is curbed by the use of covalent modifiers like

phosphate groups or ubiquitin moieties or by proteolytic

cleavage. Protein turnover, localization, activity, or binding

interactions can be affected through PTMs. Phosphoryla-

tion, acetylation, methylation, glycosylation, ubiquitina-

tion, and lipid modifications are some of the most common

PTMs which can affect the cellular processes, since they

directly affect the protein structure resulting in the change

in the function of the given protein. Since, such modifi-

cations result in the variation in the molecular mass of the

amino acid, these are quite important for being studied in

detail. Mass spectrometry with its sensitivity, high mass

accuracy and ability to deal with complex mixtures are

some of the options for describing post-translational

modifications. A broad description of protein stability in

the chloroplast stroma of algae such as Chlamydomonas,

their PTMs and the connection between the two was

developed. It included 2D gel electrophoresis for the

sequestration of the soluble stromal proteins, their classi-

fication and the characterization of the PTMs by MS

combined with bioinformatics treatment of the data.

Future needs for the integration of ‘‘omics’’

in system biology

Complete, consistent and in-depth knowledge of the bio-

logical world by analyzing the behavior and interaction

between its individual components and the surroundings is

the main objective of systems biology (Andersen 2004).

Systems biology includes many steps which follow the

basic structure and formulation of the system and is the

basic step in systems biology. Elements of system analysis,

such as gene network, protein interaction and metabolic

pathways, form the basic step in systems biology. This

information will help us to understand and develop the

basic model or interpretation of their behavior. A recent

study has already reported the role of various microbial

interactions and their studies using a systems biology

approach (Singh and Shukla 2015). Based on the infor-

mation gained about the various elements of the system,

different experiments can be performed at different levels.

There are also different types of analysis through which the

whole system can be analyzed and understood, but before

such analysis can be done, an understanding of certain

parameters or elements of the system is required. More-

over, when the system is affected by genetic or environ-

mental stimuli, high output measurement tools are

necessary for their corresponding responses. These data

can be compared with the different levels of hierarchy in

the organization and can be compared with each other and

also with the recently developed system. Such model has to

be designed according to the data which are experimentally

observed and are similar to the model’s predictions.

Algae genome projects should be increased in number

with a view to understanding more in detail of biological

organization, especially microalgae. Microarray tool has

found to be good for a broad experimental analysis in algal

studies. A lesser amount of research have been done so far

in the analysis of the whole proteome or metabolome or

larger parts of the algae. Therefore, initiation of computer

databases should be done to store the information obtained

through the experiment in a proper and systematic way.

Genome-scale metabolic reconstruction

Such modeling is used to study the metabolism involved in

the reconstruction, pathway analysis and other applications

thereof. This is employed for the metabolic engineering at

the organism’s level, optimization or novel design of

metabolic pathways and computational analysis for

improving the quality of the strain. In the reconstruction

process, enzymes and reactions are categorized from

metabolic pathways and this is improved further in entire

selected network. It is evident from literature that mathe-

matical models embrace the metabolic information (Rudd

2000; Forster et al. 2003; Thiele and Palsson 2010; Prigent

et al. 2014). The network topology has a significant role in

the finding of missing gene when the coding gene is

responsible for the biosynthesis of amino acid. The inves-

tigation of missing genes or annotations is a challenging

task which is achieved through genome-scale metabolic

reconstructions.

A report published by Oberhardt et al. (2009) pointed

out that the range of typical genome-scale reformation of

eukaryotes includes on average 1000 genes, 1200

metabolites and 1500 reactions (Oberhardt et al. 2009).

Genome-scale metabolic models provide a platform to

perform high-throughput computational analysis and also

greatly influence the systems biology field. In silico

reconstructions and successive study of genome-scale

metabolic models through constraint-based modeling

facilitate the identification of target gene which are to be

manipulated (Lee et al. 2011; Jang et al. 2012). Such

models are consistently tested in the perspective of meta-

bolic engineering of the target microorganism (Blazeck and

Alper 2010). The algae systems biology could be useful for

studying the gene and metabolic network, and Chlamy-

domonas reconstructions represent a significant accom-

plishment in this aspect. Flux balance analysis

demonstrates the prospective of various genome-scale

models to look at composite, classified networks and for

understanding the various hypotheses in this area (Walker
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et al. 2005). Genome-scale modeling of algae and flux

balance analysis is a prevailing method for analyzing

insights into the genomic and metabolomic level of an

organism (Fig. 2).

Metabolic engineering in algae

Genetic manipulation remains limited to a few select algal

laboratory models (e.g., C. reinhardtii, Volvox carteri, and

the diatom Phaeodactylum tricornutum); the increasing

interest in the area of algal biofuels will likely lead to the

development of techniques in other organisms and the

establishment of new model systems. Algal transgenics

have been previously reviewed (Neupert et al. 2008);

however, the ‘molecular toolkit’ has since expanded

because of recent seminal studies. Significant advances

include: (a) the efficient expression of transgenes (Croft

et al. 2007); (b) a novel mechanism for gene regulation in

algae using riboswitches (Shao and Bock 2008); (c) in-

ducible nuclear promoters and luciferase reporter genes

(Surzycki et al. 2007; Bogen et al. 2013), and (d) inducible

chloroplast gene expression (Anarat-Cappillino and Sattely

2014). Molecular toolkit or genetic tool information too are

mandatory along with metabolites and metabolic pathways.

The sequence analysis will include the information on

metabolomics which opens the area for the metabolic flux

analysis along with the development of metabolic networks

(Kliebenstein 2014; Courchesne et al. 2009). Algae having

a single cell which are easily cultivable can be focused

toward metabolic engineering in relation to their metabo-

lites (Hallmann and Sumper 1996). Moreover, these algae

perform photosynthesis which helps in understanding the

carbon assimilation with relation to its flux; this will boost

the research toward bioenergy production. In a recent

report, it is deciphered that an algae Volvox carteri has

been genetically transformed (Doebbe et al. 2007). Simi-

larly, trophic conversion of C. reinhardtii and P. tricor-

nutum was also reported which is very good step toward

establishing single gene change (Zaslavskaia et al. 2001;

Mussgnug et al. 2007). Moreover, RNAi technology can

also be used to downregulate the expression of light-har-

vesting antenna complexes (LHC) proteins in C. rein-

hardtii (Leon Banares et al. 2004; Mayfield and Franklin

2005). Thus, engineered light-harvesting strains have

higher photodamage resistivity and augmented light pene-

tration capacity. Along with this, the time span from early

transformation to production level is also less compared to

other mammalian-based platforms (Blatti et al. 2013). It is

well established that algae is an attractive source for the

production of diverse metabolites and other similar pro-

teins. In several studies, C reinhardtii has been reported to

be a good source for the production of fatty acids, biohy-

drogen, etc. (Paterson et al. 2009; Arruda 2012; Wu and

Birch 2007). Other biofuel-related resources and their

applications are presented in Table 2.

Algae–bacterial interaction

Symbiotic associations of algae with bacteria were reported

by various psychologists. The production of vitamins, fix-

ation of nitrogen or the liberation of CO2 and minerals are

few things which are complementary for algal growth

(Wakeel et al. 2011; Kumar et al. 2013; Croft et al. 2006).

Ectocarpus fasciculatus (Goecke et al. 2010), Monostroma

(Wahl et al. 2012) and Ulva (Pedersen 1968) are few

examples which provide evidence that algae are somehow

dependent on the factors provided by bacteria. It has been

reported that almost half of the algae species are probably

dependent on the growth factors released by the bacteria

(Matsuo et al. 2005). To understand the algae–bacterial

association and evolution there is need to explore the

existing tools and develop new powerful molecular biology

tools.

The falling costs of sequencing and availability of potent

analysis technologies has limited the algal genomics stud-

ies. If possible, each component of the holobiont is

sequenced separately and then metagenomic or metatran-

scriptomic studies are advisable to analyze the non-cul-

tivable organisms. The residual reads are then combined to

represent such group of microorganisms or further com-

ponents of the holobiont. Finally, it can be established that

cautious observations of the genomic dataset is very crucial

for better understanding and proper conclusions. There are

certain examples of in silico studies and riboswitch

Fig. 2 The method for genome-scale model recreation. Metabolic

features including relations between genes, enzymes and various

reactions were recovered from the genomic metabolic records, which

were then stored and curated
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engineering which could also be helpful in studying algae–

microbe interaction (Pedersen 1973; Matsuo et al. 2005).

Conclusion

The interest in microalgal lipids has grown in recent years,

owing to their high growth rate and productivity with less

possibility of pathogenicity. Recent technologies have

shown the progresses and the manipulation of one or more

genes to system-based approaches. Moreover, recent

applications of gene editing, novel platform designs for

proteins and computational modeling can also be helpful

toward improvising the production (Cock et al. 2010;

Banerjee et al. 2016c, d; Gupta and Shukla 2015, 2016a, b;

Shukla and Karthik 2015). Table 3 highlights the latest

tools used in proteomics study and their application.

Genome sequencing and a suit of omics technologies

which include genomics, transcriptomics, proteomics,

metabolomics, and lipidomics are some of the recent

technologies which have a high impact on the progresses

and the manipulation of the microalgae. If these tools are

used together with the view of transformation and molec-

ular genetics toolboxes for particular algal strains, it can

provide ample opportunities for researchers to redesign or

construct new algal metabolism methods for the production

of oils or any other chemical molecules which are useful

for industrial applications. The various applications of

genomic models have proved relevant in the development

and hypothesis-based researches in algal metabolic engi-

neering. Omics approaches can be used to characterize

diverse biomolecules such as DNA, RNA, protein, and

other relevant metabolic entities from one source sample of

interest. Such modern experimentation tools balance the

research gaps and offers better understanding of proteomic-

based approaches in microalgae. Finally, enhanced per-

ception of the microalgae, along with combinatory

approaches of omics, will be helpful to decipher newer

areas in microalgal biotechnology.
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Table 2 Other biofuel feedstocks with their applications

Resource Applications References

Sorghum Ideal plant for both proteomics and genomics research in cereals

High tolerances to environment stress

Liu et al. (2015)

Sugarcane Highly demanded for ethanol production

Abundant proteins are found which may be target for further manipulation for increased sugar content

Mallick (2002)

Maize Contains a large amount of soluble sugars and have greater biomass

Proteomics of maize with respect to growth and development and stress response serve as base for using the

tools and technique for stalk proteome analysis

Matsuo et al. (2005)

Sugar

beet

Protein presents which expression was significantly and reproducibly altered under salt stress condition Mayfield and Franklin

(2005)

Jatropha Rich source of protein which contains toxic phorbol esters and anti-nutritional factors; studies are being

made to detoxify make it fit for animal diet

Moellering and

Benning (2010)

Table 3 Different proteomics tools and their applications

Sl. no. Proteomics tools Applications

1 One and 2D gel electrophoresis To determine the comparative mass of protein and its isoelectric point

2 X-ray crystallography and nuclear magnetic resonance To describe the 3D arrangement of peptides and proteins

3 Mass spectrometry To identify the proteins by peptide mass fingerprinting

4 Affinity chromatography, yeast two hybrid techniques,

fluorescence resonance energy transfer (FRET), and

surface plasmon resonance (SPR)

To identify protein–protein and protein–DNA binding reactions

5 X-ray tomography To identify the site of various proteins or protein complexes in an intact cell
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