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The study of the cancer–immune system is important for understanding

tumorigenesis and the development of cancer and immunotherapy. In this

work, we build a comprehensive cancer–immune model including both

cells and cytokines to uncover the underlying mechanism of cancer immu-

nity based on landscape topography. We quantify three steady-state

attractors, normal state, low cancer state and high cancer state, for the

innate immunity and adaptive immunity of cancer. We also illustrate the car-

dinal inhibiting cancer immunity interactions and promoting cancer

immunity interactions through global sensitivity analysis. We simulate

tumorigenesis and the development of cancer and classify these into six

stages. The characteristics of the six stages can be classified further into

three groups. These correspond to the escape, elimination and equilibrium

phases in immunoediting, respectively. Under specific cell–cell interactions

strength oscillations emerge. We found that tumorigenesis and cancer recov-

ery processes may need to go through cancer–immune oscillation, which

consumes more energy. Based on the cancer–immune landscape, we predict

three types of cells and two types of cytokines for cancer immunotherapy as

well as combination immunotherapy. This landscape framework provides a

quantitative way to understand the underlying mechanisms of the interplay

between cancer and the immune system for cancer tumorigenesis and

development.
1. Introduction
The immune system is a complex one which protects against disease, for

example, by eliminating tumour cells. When tumour cell antigens are detected

by the immune system this leads to the innate immune response and the adap-

tive immune response, both of which are involved in many types of immune

cells and cytokines [1]. However, during tumorigenesis and progression,

cancer can lead to dysfunction of the immune system. The immune system

can then become an accomplice through chronic inflammation [2]. This leads

to two hallmarks of cancer immunity, avoiding immune destruction and

tumour-promoting inflammation [3]. The functions of the immune system

during cancer development are complicated, thus studying the underlying

mechanisms between cancer and the immune system is important for under-

standing cancer and cancer therapy. Recent studies on immune vaccines

suggest that it is crucial to find an effective immune therapy [4].

Mathematical models are useful and effective for describing intricate systems

such as the tumour immune microenvironment. Many immunity models have

been studied. In [5], a few spatially homogeneous mechanistic mathematical

models were reviewed, and a summary of different models from single-variable
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Figure 1. The cancer – immune system. The network includes 26 nodes and
107 interaction links. Cerulean ellipses represent cells and yellow diamonds
represent cytokines. Black solid arrows and bars represent cell – cell activation
and inhibition, respectively. Red dashed arrows and bars represent cytokine –
cell activation and inhibition, respectively. Green dashed arrows represent
cell – cytokine production.
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to multi-variable models is given. The relationship between the

immune response and cancer aggressiveness was studied

through a specific model. Tumour and immune cells were

studied with an exosome exchange model to assess the effec-

tiveness of different therapeutic protocols [6]. Besides cancer

mechanistic studies, mathematic models are also used to

study immune cell vaccines [7]. Although many immune

models have been built using ordinary differential equations

(ODEs), a comprehensive immune model including both

immune cells and cytokines for cancer from a biological

network perspective has not yet been established.

Quantitative analysis of a circuit or complex network is

important for characterizing biological processes and their

underlying mechanisms. These can be quantitatively studied

physically and globally through the landscape and flux theory

of non-equilibrium dynamic systems [8–10]. The theory has

been applied to different fields, including gene regulation net-

works [9,11–14], neural networks [15,16], metabolism

pathways [17], signalling networks [18], evolution [19] and ecol-

ogy [20]. However, it is still challenging to reveal the underlying

mechanism between cancer and the immune system.

In this work, we build comprehensive cancer–immune

networks by collecting data from the experimental literature

[21–36]. The network includes cancer cells, 12 types of

immune cells and 13 types of cytokines. The network

involves cell–cell interactions, cytokine–cell interactions

and cell–cytokine production. We have analysed the

immune network quantitatively. Three steady-state basins

of attractor, normal state, low cancer state and high cancer

state emerge based on the landscape topography. Along

with cancer development and evolution, the landscape pre-

sents different characteristics corresponding to the different

phases in immunoediting [37]. We also uncover the emer-

gence and origin of cancer–immune oscillations. Important

immunotherapy targets are predicted, including three types

of immune cells and two types of cytokines.
2. Results
2.1. Cancer – immune system network modelling
Different cancer types are influenced by immune cells and

cytokines differently. For example, CD8þ T cells (CD8þ)

attack MHC-I-positive tumour cells, while natural killer

(NK) cells attack tumour cells with MCH-I loss or downregu-

lation [38]. Here, in our model, we consider tumour cells to be

heterogeneous. The network includes cell–cell interactions,

cytokine–cell interactions and cell–cytokine production. All

these relationships are from previous experimental studies

[21–36]. The cancer–immune network includes cancer cells,

T helper cells (Th1, Th2 and Th17), macrophage cells (M1

and M2), tumour-associated neutrophil cells (TAN),

myeloid-derived suppressor cells (MDSCs), CD8þ, regulatory

T cells (Treg), dendritic cells (mature dendritic cells and

immature dendritic cells) and NK cells as well as 13 related

cytokines, interleukin (IL)-2, IL-4, IL-6, IL-8, IL-10, IL-12,

IL-13, IL-17, IL-21, IL-23, interferon (IFN)-g, transforming

growth factor (TGF)-b and tumour necrosis factor (TNF)-a

with a total of 26 nodes. The interactions among the nodes

are listed in the electronic supplementary material, table S1.

We chose representative immune cells and their associ-

ated cytokines closely related to cancer cells for the

immune response from the existing literature. We also
selected the regulations among these cancer cells, immune

cells and cytokines from the literature search.

Dendritic cells (mDCs) are antigen-presenting cells of the

immune system. They trigger the adaptive responses when

detecting antigens from cancer cells. Immature dendritic cells

(iDCs) have been considered suppressive and tolerogenic to

cancer immunity [32]. NK cells and CD8þ are the main effective

killer cells for the innate immune response and the adaptive

immune response, respectively. T helper cells are central to

the development of an immune response by activating anti-

gen-specific effector cells and recruiting cells of the innate

immune system. Th1 cells activate antigen-presenting cells

(APCs) and induce the production of the type of antibodies

that can enhance the chances of cancer cells turning into

APCs. However, the Th2 response triggered by cancer pro-

motes the growth of cancer cells [34]. Th17 cells play a potent

proinflammatory role in cancer microenvironments [25]. M1

plays a classic role in the Th1 response and in mediating resist-

ance against cancer cells. M2 takes part in the inflammatory

process [23]. In addition, TAN plays an important role in

tumour growth and progression [23].

It is evident that immune responses in cancer are nega-

tively regulated by immunosuppressive cells (Treg) and

MDSCs [28]. Cytokines are produced by the cells and regu-

late other cells through activation or repression. Cytokines

can thus mediate the cell–cell interactions. The different cyto-

kines are chosen according to different cell types for the

network building. The whole network is shown in figure 1.

For the major cell–cell interactions, Th1 inhibits cancer

cells by activating the APCs, while Th2 activates cancer

cells by promoting their proliferation. M1 activates Th1 and

inhibits cancer cells. M2 activates cancer cells through an

inflammatory process [23]. CD8þ, Th1 and Th2

are activated by mDCs. Accumulation of iDCs inhibits

mDC proliferation and activates Treg through stimulating

its proliferation [26]. TAN activates CD8þ by enhancing pro-

liferation [33]. The cancer cells and MDSCs form a positive

feedback loop through PGE2 and COX-2. MDSCs activate

Treg by inducing its expansion through the ARG1 pathway.

MDSCs inhibit the CD8þ response [28]. NK cells and CD8þ
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Figure 2. The cancer – immune system for cell – cell interactions. Black arrows
represent cell – cell activation. Black bars represent cell – cell inhibition.
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inhibit cancer cells as effective killers. The cancer-.cancer

interaction does not just refer to the cancer growth by itself.

It can be activated by the self-production of cytokines, such

as IL-1 [34], which is not included in the cancer–immune

network in order to avoid redundancy.

For the major cytokine–cell interactions, Th1 is mainly

activated by IL-2. Th2 is mainly activated by IL-4. IL-12 acti-

vates NK cells and CD8þ. NK cells and MDSCs are mainly

activated by IL-17 [21,25]. Th17 is mainly activated by IL-21

and IL-23 through triggering expansion [25]. M1 is mainly

activated by IFN-g [34]. For the main cytokine production,

IL-17 is mainly produced by Th17 [21]. TGF-b leads to

cancer proliferation [28]. Owing to the complexity of the net-

work for viewing the whole map clearly, we also display only

the cell–cell interactions in figure 2.

The driving forces of the dynamics for the cell or cytokine

concentrations are determined as

FðXiÞ ¼ Ai

YNi

j¼1

Hji �DiXi

YN0i

j¼1

H ji, ð2:1Þ

FðXiÞ ¼ Ai

XNi
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Xn
j

Sn
ji þ Xn

j
�DiXi ð2:2Þ

and H ji ¼
Sn

ji

Sn
ji þ Xn

j
þ g ji

Xn
j

Sn
ji þ Xn

j
ð2:3Þ

¼ ðgji � 1Þ
Xn

j

Sn
ji þ Xn

j
þ 1 ð2:4Þ

¼ ð1� g jiÞ
Sn

ji

Sn
ji þ Xn

j
þ g ji, ð2:5Þ

where F represents the driving force of the variable X, the

effector cell concentration or the cytokine concentration.

The characteristics of cell–cell and cytokine–cell interactions

are different from those of cell–cytokine production.

Equation (2.1) is used for cell–cell and cytokine–cell inter-

actions, while equation (2.2) is used for cell–cytokine

production. In equation (2.1), X represents the effector cell

concentration, and A represents the basic production rate of

the cell concentration. In equation (2.2), X represents the cyto-

kine concentration, and A represents the maximum

production rate of the cytokine concentration in the

immune microenvironment. D represents the degradation

rate of the cells or cytokine concentration and S represents

the threshold with half concentration production. The
parameter n is the Hill coefficient for describing the coopera-

tivity of the interactions. The positive parameter gji represents

the activation of Xi from Xj if g . 1 and inhibition if g , 1.

The Hill function was used for presenting cell–cell

interactions and cytokine–cell interactions in [39,40]. For

cell–cell or cytokine–cell interactions, Hji is the summation

of the two Hill functions, the inhibition term and the acti-

vation term. When g . 1, equation (2.3) can be converted

into equation (2.4), and the activation term (only the second

term) is effective. Conversely, when g , 1, equation (2.3)

can be converted into equation (2.5), and only the inhibition

term is effective. Owing to the saturation effects of the

immune response [40], the Hill function Hji is used to

approximately represent the cell production rate change

upon interacting with other cells or cytokines in our model.

This is because the immune cells communicate through sur-

face receptors and the regulation is saturated due to the

limit in the quantity of the surface receptors. The product

of Hji represents the combined effect of both the cell–cell

and cytokine–cell interactions. For the cell–cytokine pro-

duction, the whole production is described by the

summation of the Hill functions. Michaelis–Menten form is

used to describe cell–cytokine interactions with limited pro-

duction of cytokines [40]. We consider that the maximum

production rate in the cancer microenvironment is limited,

because the cytokines generated from the cancer microenvir-

onment diffuse to a healthy part of the tissue. Every

Michaelis–Menten term in equation (2.2) represents the con-

tribution of the production rate for every related cell. Each

type of cytokine produces the total maximum production

rate A. Specifically, the term Hji used for multiplying DiXi

in equation (2.1) is only for interactions on cancer cells from

NK cells and CD8þ. Because the NK cells and CD8þ are

killer cells corresponding to the innate immune system and

the adaptive immune system, respectively, the inhibiting

mechanism promotes the decay of cancer cells.

The parameters for this cancer–immune model are

chosen carefully to produce results that are biologically rel-

evant and reasonable. For example, the decay rate is set

according to the death rates for most types of cells. We also

take into consideration the differences in activation or inhi-

bition strengths between cell types and in order to

reasonably describe the interactions in the cancer–immune

system according to the previous experimental studies. For

example, both IL-4 and IL-6 promote Th2, and it is mainly

triggered by IL-4 [36], thus we set the IL-4-.Th2 activation

regulation strength much higher than the IL-6-.Th2 acti-

vation regulation strength. For other interactions lacking

such information we just set the regulations at the same

level. The interaction strengths and corresponding references

are listed in the electronic supplementary material, table S2.
2.2. Landscape of cancer innate and adaptive immunity
The landscape of the cancer–immune system can be obtained

through the self-consistent mean field approximation of the

corresponding probabilistic evolution equation. The land-

scape U ¼2ln(Pss), where U is defined as the landscape

and is directly related to Pss, which represents the steady-

state probability distribution of the concentration variables.

The ODEs of the cancer–immune system includes 26

variables. It is difficult to visualize the landscape in 26 dimen-

sions. We chose two dimensions to display by integrating
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Figure 3. The landscape of the cancer innate immune and adaptive immune system. The cancer innate immune system is depicted by cancer cells and NK cells in
(a,c). The cancer adaptive immune system is depicted by cancer cells and CD8þ in (b,d ). N, normal state; L, low cancer state; H, high cancer state; s1, saddle
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over other dimensions. We chose effective killer cells and

the cancer cell as the two-dimensional variables. The

immune system includes the innate immune system and the

adaptive immune system. The innate immune system gives

an immediate and non-specific response to the pathogens,

while the adaptive system resorts to APCs, such as dendritic

cells for responding, and is highly specific to a particular

pathogen. The main effective killer cells of the innate

immune system are NK cells and the main effective killer

cells of the adaptive immune system are CD8þ. In order to

show the different characteristics between the innate

immune system and the adaptive immune system, cancer

cells with NK cells and with CD8þ are separately chosen

for landscape display. Three steady-state attractors, normal

state (N), low cancer state (L) and high cancer state (H),

emerge as shown in figure 3. The red region represents

high potential, while the blue region represents low potential.

Between the two steady-state attractors, there is a saddle

which is coloured white in figure 3. We define the saddle

between the normal state and the low cancer state as s1

and the saddle between the low cancer state and the high

cancer state as s2.

The landscape of the innate immune variable is displayed

in figure 3a,c, whereas the adaptive immune variable is

shown in figure 3b,d. The landscape characteristics of the

innate immune and the landscape characteristics of the
adaptive immune variables are not the same. In the normal

state (N), cancer cells, NK cells and CD8þ are all at very

small concentrations (near zero). For the innate immune

response, the NK cells are at low (high) level with respect

to the low (high) cancer state. On the other hand, for the

adaptive immune response, the CD8þ are at high (low)

level with respect to the low (high) cancer state. The result

on the adaptive response is also observed in other immune

models [41]. This suggests that, at the high cancer state, the

adaptive immune response is inhibited by cancer cells.

To study the transition processes among steady-state attrac-

tors, we calculated the dominant paths among different

attractors by minimizing the transition actions. The dominant

paths are shown on the landscape (figure 3b,d). The yellow

arrows (from the N (normal) state to the L (low cancer) state

and from the L state to the H (high cancer) state) represent

tumorigenesis and the transition to a high cancer state, while

the magenta arrows (from the H state to the L state and from

the L state to the N state) represent cancer recovery. We also

show the steady-state probability flux of the cancer–immune

system on the landscape in figure 3c,d. The white and red

arrows, respectively, represent the direction of probability

flux and the negative gradient of the potential energy. The

dynamics of the cancer–immune system is determined by

both the gradient of the potential and the probability

flux. The force from the steady-state probability flux
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leads the dominant paths of the system to deviate from the

conventionally expected potential gradient paths. As we

can see the two dominant paths are different from each

other: cancer tumorigenesis/transition to the high cancer

state and cancer recovery are irreversible.

2.3. Global sensitivity analysis of the cancer immunity
model

We define the potential between the saddle and the steady-state

attractor as the barrier height. This represents the ability to

switch from one steady-state attractor to another. According to

figure 4, we can quantify the barrier between s1 and the

normal steady state (barriers1n), the barrier between s1 and the

low cancer steady state (barriers1l), the barrier between s2 and

the low cancer steady state (barriers2l) and the barrier between

s2 and the high cancer steady state (barriers2h). Each of the 27

cell–cell interaction parameters is increased by 10% for perturb-

ing the network, leading to changes in the respective barrier. As

shown in figure 4, every group has four barrier changes for each

parameter change. We considered that the regulation par-

ameters changes for promoting the low cancer state and

inhibiting the normal state if the barrier changes of the low

cancer state are larger than those of the normal state, because

the low cancer state becomes more stable or less unstable com-

pared with the normal state. In the same sense, the regulation

parameter changes are for promoting the high cancer state and

inhibiting the low cancer state if the barrier changes of the

high cancer state are larger than those of the low cancer state.

Interestingly, all of these regulation parameters change for

either promoting the low cancer steady state, or promoting the

normal state and high cancer state but not both. The cell–cell

interactions promoting the low cancer state are cancer-.

cancer, cancer-.MDSC, cancer-jCD8þ, cancer-.iDC, Th2-.

cancer, M2-.cancer, M2-jTAN, MDSC-.cancer,

mDC-.Th2, iDC-.cancer, iDC-.Treg and iDC-jmDC, most
of which that inhibit cancer immunity were reported in

[29,42–45]. The cell–cell interactions inhibiting the low

cancer state, cancer-.Th17, cancer-.TAN, cancer-.mDC,

cancer-.NK cell, Th1-jcancer, M1-jcancer, M1-.Th1, TAN-.

CD8þ, MDSC-jCD8þ, MDSC-.Treg, CD8þ-jcancer, mDC-

jcancer, mDC-.Th1, mDC-.CD8þ and NK cell-jcancer,

were reported to show a trend of promoting cancer immunity

[46–49]. This indicates that the low cancer state switches to the

normal state or high cancer state under promoting cancer

immunity. It perhaps implies that the underlying immune

pressure is the force driving the low cancer state to the high

cancer state. This means cancer cells have to die or evolve to

the high cancer state in the cancer–immune system.

The low cancer steady state is thus used to characterize

cancer immunity. From the global sensitivity analysis, we

explore the barrier changes of the low cancer state and the

normal state in figure 4. A greater difference in barrier

change values means more influence by the cell–cell inter-

actions with respect to the parameter changes. The cardinal

inhibiting cancer immunity interactions are cancer-.cancer

and iDC-.cancer, while the cardinal promoting cancer

immunity interactions are cancer-.mDC, mDC-jcancer, NK

cell-jcancer and mDC-.CD8þ.

2.4. Quantification of normal and cancer state kinetic
switching

For these cardinal interactions, we chose cancer-.cancer for

further analysis as an example, because cancer cells are hetero-

geneous and cancer-.cancer strength varies largely. The decay

rate of cancer (Dcancer) is also varied. The barrier can be used to

measure the ability to switch from one attractor to another. The

mean first passage time (MFPT) is defined as the average tran-

sition time from one attractor to another. It is also used to

measure the ability to switch. For example, if the MFPT from

the normal state to the low cancer state (tnl) is longer than the
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adverse transition (tln), the system prefers to stay in the normal

state, which means there is less probability of encountering

cancer. The barrier and MFPT calculations along with

the gcancer-. cancer (cancer–cancer cell interations) or Dcancer

changes are shown in figure 5a–d. This figure shows that

when gcancer-. cancer is increased or Dcancer is decreased,

barriers1n, barriern1s, tln and tnl all increase. This suggests that

the normal state and low cancer state both become more

stable. It is interesting that the normal state becomes more

stable when gcancer-. cancer is increased or Dcancer is decreased.

This may imply that cancer cells without immunity change

will not lead to transitions between the normal state and the

low cancer state. Figure 5e,f shows the landscape results when

fluctuations characterized by the diffusion coefficient (noise

level) are changed. This shows that, when the diffusion coeffi-

cient is increased, barriers1n, barriern1s, tln and tnl all decrease.

The normal state and low cancer state both become less stable.

This suggests that, as the noise goes up, the transitions between

the normal state and the low cancer state become easier.

2.5. Dynamic landscape of immunity along cancer
development under an immune microenvironment

Immunity of cancer in the immune microenvironment

evolves along with tumorigenesis and progression. Not

only the concentration of cancer cells, but also the tumour-
associated immune cells such as MDSC are increased

during cancer development. This is controlled by the regu-

lation interactions between different cells or cytokines and

cells. In order to display the dynamic landscape changes

and simulate cancer development, we increase the inhibiting

cancer immunity and decrease the strength of the cell–cell

interactions promoting cancer immunity at the same time.

We simulate starting with strong cancer immunity, and all

cell–cell interaction parameters inhibiting cancer immunity

are multiplied by a(a � 1) and all cell–cell interaction

parameters promoting cancer immunity are divided by

a(a � 1) to represent the cancer development level.

The whole cancer development dynamic landscape is

shown in figure 6. The top four and bottom two landscapes

are shown in different ranges or scales to display different

details. The cancer development direction is from top to

bottom as a increases. When the cancer is at strong immunity

(a ¼ 1), it is monostable and the cancer cells, NK cells and

CD8þ are at a low level. Only the normal state is distinct.

Along with cancer development, the low cancer state

emerges and the high cancer state emerges at a ¼ 1.2

and a ¼ 1.3, respectively. Although the high cancer state at

a ¼ 1.3 emerges, the NK cells and CD8þ levels are also

increased compared with the low cancer state. For further

cancer development, the high cancer state moves to a high-

cancer–low-immunity state for CD8þ (a ¼ 1.4), and the
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three states (normal, low cancer and high cancer) coexist,

which corresponds to the result in [41]. Then, the normal

state starts to disappear and the low cancer state moves to

a high cancer state, while the high cancer state moves to a

larger concentration level, which is defined as the high–

high cancer state (HH) when a ¼ 2.5 with a low immunity

level. Finally and interestingly, the steady-state attractor at

HH disappears and the high cancer state continues to

increase to the HH instead, as shown in figure 6, when a ¼

3.8. The concentration level of HH continues growing when

a is increased with a low immunity level.

Cancer development is a complex process along with

DNA mutation and microenvironment changes. It is charac-

terized by immunoediting [37], consisting of three phases:

elimination, equilibrium and escape. In our model, it has

six stages along with cancer tumorigenesis and process. At

the stage of a ¼ 1, only the normal state emerges and it can

be controlled by the immune system. The cancer concen-

tration is impossible to reach at a higher level and the

newborn cancer cells are killed immediately. This corre-

sponds to the elimination phase. At the stage of a ¼ 2.5

and a ¼ 3.8 only high cancer or HH emerges and it will

never switch back to the normal state. The cancer cell is out

of control through escaping from immune cell detection

and inhibition of immune cell activation. The cancer concen-

tration level continues to increase rapidly along with cancer

development. The two stages correspond to the escape

phase. Equilibrium is the longest of the three processes in

cancer immunoediting [37] and it involves the normal state
and at least the low cancer state. The stages at a ¼ 1.2, a ¼

1.3 and a ¼ 1.4 correspond to the equilibrium phase.

During this phase, it is possible to switch between the

normal state and other steady states owing to biological fluc-

tuation. When it switches back to the normal state, most

cancer cells are destroyed. The surviving cancer cells repro-

duce and evolve to a population with increased resistance

to the immune system, leading to gradual cancer develop-

ment. The final stage of the escape phase emerges when

a ¼ 1.4, because the immune system starts to lose control of

the cancer cells, as shown in figure 6.

It is interesting that tumorigenesis can start with a

low cancer state and finally settles at HH even without direct

transitions across barriers among steady-state attractors along

cancer development. It seems that the low cancer state is the

source while the high cancer state is the derivative along

cancer development. The barriers between saddles and

steady states under a tristable system along with cancer devel-

opment are shown in figure 7. Barriers1l increases faster than

barriers1n, while barriers2l increases faster than barriers2h.

This suggests that the low cancer steady state becomes more

stable along cancer development. Above all, it implies that

the high cancer state is the product of evolution under

immune pressure at the specific stages of development.
2.6. Cancer oscillation landscape
It is interesting that oscillation emerges when we explore

the regulatory interactions cancer-.cancer, cancer-.mDC,
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mDC-.CD8þ and CD8þ-.cancer under specific conditions.

The landscape is obtained using the Langevin method and

one steady state with the limit cycle is obtained. When we

increase the regulations of cancer-.cancer or decrease the

other three interactions starting with the monostable state, a

shallow limit cycle emerges and, finally, switches to the

low cancer state along with the regulation changes.

The oscillation has been observed in some related tumour

and immune system studies [50,51]. The landscape under

cancer-.mDC regulation changes is shown in figure 8 as an

example. In figure 8b, a shallow limit cycle emerges and circu-

lates anticlockwise. The limit cycle seems to be a triangle. When

the CD8þ and cancer cells are at a relatively low level, the

cancer concentration increases with a slight increase of CD8þ.

When the cancer cells reach a relatively high level, CD8þ start

to increase rapidly, which leads to the cancer cells decreasing.

When it reaches a state with a relatively high CD8þ level and

a relatively low cancer level, the CD8þ level decreases rapidly.

It then returns to the state with a relatively low CD8þ and low

cancer cell level. The limit cycle shrinks along the decrease of

regulation in figure 8c and the potential landscape of the

limit cycle near the low cancer state becomes deeper. Finally,

it switches to the low cancer state in figure 8d. This suggests

that the limit cycle can be a precursor of the low cancer state

under some conditions.

It is interesting that the four interactions leading to the

limit cycle become a module consisting of three nodes,

cancer, mDCs and CD8þ, which is shown in the electronic

supplementary material, figure S1. mDCs bridge innate

immunity with adaptive immunity [52], while CD8þ are the

main effective killers for adaptive immunity. From the elec-

tronic supplementary material, figure S1, the cancer cell

concentration is increased through self-activation and inhib-

ited through the adaptive response. If we consider there is

an indirect activation between cancer and CD8þ by ignoring

the mDCs it is quite similar to the classical predator–prey

dynamics of an activation–repression loop, which leads to

oscillation under specific regulations [53]. This suggests that

promoting the cancer adaptive response module may lead

to immunity oscillation.
In addition, we calculated the entropy production rate

(EPR) for the phase transition from bistability to oscillation

to monostability by increasing the regulation of cancer-.

mDC (figure 8e). The EPR represents the total entropy vari-

ations. Decreasing the EPR means less energy for

maintenance. We can see that the EPR is high when oscil-

lation emerges. When the system switches to bistability or

monostability, the EPR sharply decreases. This implies that

the oscillation phase requires much more energy to maintain.

We also calculated the flux integral and coherence of the

system when the oscillation emerges (figure 8f ). The flux

integral correlates with coherence roughly. This indicates

that the higher flux leads to high oscillation coherence. The

flux integral and coherence decrease sharply when the

system starts to switch to bistability or monostability. This

indicates that a larger flux leads to a stronger driving force

in the oscillation and more energy dissipation. Therefore,

more energy has to be pumped into the system for switching

between bistability and monostability. It also implies that

cancer tumorigenesis and recovery processes consume

more energy.
2.7. Cell and cytokine therapy target
Cancer immunotherapy uses the immune system to treat

cancer. Recently, researchers have paid more attention to

immunotherapy, and the recent achievements of several key

immunotherapy milestones have dramatically changed the

field of cancer treatment [54]. It is important to predict the

effective immunotherapy target.

Here, we predict the immunotherapy target based on

landscape theory. For each variable xi, F(xi) is changed to

F0(xi) ¼ F(xi) þ ci. The term ci represents the corresponding

variable rate change by immune cell or cytokine injections.

The potential energies of the three steady-state attractors

are calculated for equivalent ci. We define the changes of

the relative potential energy from the normal state to the

low cancer state as the degree of therapy effect. The normal

state becomes more stable or less unstable compared with

the low cancer state, if the changes in the relative potential

energy are positive. The therapy takes the adverse effect, if

the relative potential energy becomes negative.

The immune cells and the degree of cytokine therapy

are shown in figure 9a,b. We predict three important

therapy targets of immune cells: mDCs, NK cells and

CD8þ. Although the tumour-associated cells also show a

positive therapeutic effect, the injection of TAN cells makes

the low cancer steady state more stable, as shown in the elec-

tronic supplementary material, figure S2, and it is not

considered as a therapy target. It is reported that mDC vacci-

nation reduces the size of breast cancer stem cells and

prolongs survival [55]. Successful immunotherapy of

malignant tumours by using NK cells is summarized in [56].

The cytokine therapy targets predicted are IL-10

and IL-12 in figure 9b. Endogenous IL-10 inhibits inflam-

matory cytokine production and hampers the development

of Treg cells and MDSCs, two key components of the

immunosuppressive tumour microenvironment [57]. A

potentially beneficial role of IL-12 is demonstrated in

directly limiting the malignant phenotype of cancer stem

cells [58].

We also predicted the effects of combination immunother-

apy. This is according to the landscape barrier change which
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leads to higher stability/less stability of the cancer basin of

attraction. The combination injection of every two types of

cells or cytokines is predicted in figure 10. The values in the

colour matrix represent the degrees of therapeutic effect.

The red colour represents a positive therapeutic effect, while

the blue colour represents a negative therapeutic effect. The

two most effective combinations are NK cells with IL-10 and

mDCs with IL-10.

3. Discussion
The relationship between cancer and immunity is complex

and the underlying mechanism of the tumorigensis and

development in the immune microenvironment is still

unclear. In this study, a comprehensive cancer–immunity

model is built including cancer cells, 12 types of immune

cells and 13 types of cytokines. Their regulations are classi-

fied into three types of interactions: cell–cell interaction,

cytokine–cell interaction and cell–cytokine production.

There are three types of steady-state basins of attractors:

normal state (N), low cancer state (L) and high cancer state

(H). It is interesting that adaptive immunity of cancer is

inhibited in the high cancer state compared with the low
cancer state, although the innate immunity is normal. It has

been reported that patients with a lower CD8þ level have a

higher T-stage of the tumour and a higher relapse rate [59].

We provide a physical view of cancer tumorigenesis and

development. Cancer cells change the characteristics of the

immune system by changing interaction strengths. Along

the cancer progression under the immune system, six stages

with different characteristics emerge in sequence (figure 6).

Interestingly, they correspond to three phases: elimination,

equilibrium and escape in the immunoediting framework

[37]. This also suggests that the low cancer state is the

source state and the high cancer state is the result of the evol-

ution originating from cancer immune dynamics. The cancer

cell concentration level in the high cancer state increases

faster than that in the low cancer state with cancer develop-

ment. The high cancer state moves to HH at stage 5, while

the low cancer state moves to HH at stage 6. In other

words, unlucky patients with a high cancer state at stage 3

or 4 will die earlier owing to the rapid cancer cell concen-

tration increase under cancer development. The steady-state

attractor originating from the high cancer state only exists

within a specific cancer immunity, neither too low nor too

high. This provides an opportunity for cancer to remain in
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a potentially malignant stage (high cancer state at stage 3 or

4). Thus, it is questioned whether it is possible that cancer dis-

plays different phenotypes even in the same genotype,

condition, microenvironment or process due to the under-

lying mechanism of cancer immune dynamic interactions.

Perhaps the immune system increases the variety and

complexity of cancer.

Limit cycle oscillations emerge upon certain cell–cell

interactions. It is common that oscillations occur in the

immune system [60]. Periodic oscillations have been observed

in cancer through analysing blood cell counts [61]. It is

reasonable that the oscillatory phenomenon occurs in the

cancer–immune system. Although it has been discussed

whether the oscillation is encountered by the delay of the

immune response with contradictory results [51,62–64], the

biological functions or components leading to oscillation

have not been studied. In our work, we find that the

module with cancer cells, mDCs and CD8þ leads to the oscil-

lation of the cancer–immune system. These three types of

cells play an important role in the cancer–immune system.

Through analysis of the entropy production rate, flux integral

and coherence, this suggest that tumorigenesis and cancer

recovery processes may need to go through cancer–

immune oscillation and consume more energy.

Three types of cells and two types of cytokines are pre-

dicted in our model, all of which have been reported as

effective for curing cancer or produced as vaccines [55–58].

Combinations of therapy have been suggested to be more

effective. We predicted two of the most effective combinations
for immunotherapy. The mathematical model in this study is

built based on prior knowledge of the interactions of the

immune system. There are still many undiscovered interactions

in the immune system. This limits the complete quantitative

descriptions of the immune system from the mathematical

models. Although the current cancer–immune model contains

12 types of immune cells and 13 types of cytokines, the com-

plexity between the cancer and the immune system is still

underestimated. In addition, some other issues such as gene

expressions in different cells are not considered owing to

their complexity. Therefore, a model with genetic expression,

immune cells, cytokines and cancer microenvironment

changes can hopefully be used for studying the cancer

mechanism and cancer therapy.
4. Material and methods
4.1. Self-consistent mean field approximation
The evolution of the probability distribution on the dynamic

system can be described by the probabilistic diffusion equations.

Given the state P(X1, X2, . . ., Xn, t), where X1, X2, . . ., Xn represent

the concentration of the cells or the cytokines, it is hard to exactly

solve the high-dimensional partial differential equations. Here,

we apply self-consistent mean field approximation of individual

variables. The probability P(X1, X2, . . ., Xn, t) is split into the pro-

ducts of probability of the individual variable,
Q

P(Xi,t),
according to [11,65–68]. Thus, the dimensionality of the system

is reduced to M � N from MN, which makes the computation

and storage tractable.



cancer

T
h1

T
h2

T
h17

M
1

M
2

T
A

N

M
D

SC

C
D

8
+

T
reg

m
D

C

iD
C

N
K

cell

IL
-2

IL
-4

IL
-6

IL
-8

IL
-10

IL
-12

IL
-13

IL
-17

IL
-21

IL
-23

IFN
-g

T
G

F-b

T
N

F-a

cancer

Th1

Th2

Th17

M1

M2

TAN

MDSC

CD8+

Treg

mDC

iDC

NK cell

IL-2

IL-4

IL-6

IL-8

IL-10

IL-12

IL-13

IL-17

IL-21

IL-23

IFN-g
TGF-b
TNF-a –0.15

–0.10

–0.05

0

0.05

0.10

0.15

Figure 10. Predictions for combinations of immunotherapy based on barrier changes upon cell and cytokine injection. Red colour represents positive therapy and
blue colour represents negative therapy. The parameter ci ¼ 0.1.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170105

11
However, it is often difficult to solve the self-consistent mean

field equation due to its nonlinearity. We start from the moment

equations. In principle, once all moments are known, we can

obtain the probability distributions of the dynamic system.

Here, a Gaussian distribution ansatz is used to calculate the

probability for approximation, and two moments, the mean

and the variance, need to be known.

When the diffusion coefficient D is small, the moment

equations can be approximated to [69]:

_�x(t) ¼ F(�x(t)) ð4:1Þ

and

_s(t) ¼ s(t)AT(t)þ A(t)s(t)þ 2D(�x(t)): ð4:2Þ

Here, �x(t) is the mean of a certain variable and s(t) is the

covariance matrix of the dynamic system evolution. A(t) is a

tensor and its matrix element is Aij ¼ @Fi(x(t))/@xj(t). AT(t) is

the transpose of A(t). In terms of these equations, we can solve

x(t) and s(t). The diagonal elements of s(t) are considered.

Therefore, the evolution of the probabilistic distribution for

each variable can be expressed by Gaussian approximation

determined by the mean and variance,

P(x, t) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps(t)

p e�(x��x(t))2=2s(t): ð4:3Þ

The equation above is the expression of the probability

for one steady state. For a multistable system, the total proba-

bility is equal to the probability of overlap for all the steady

states. The multistable system probability of x has the

form: P(x, t) ¼
P

wiPi(x). Here the weight factor wi can

be obtained through Langevin simulation. Finally, the

landscape can be quantified through the steady-state probability,

U(x) ¼2lnPss(x).
4.2. Langevin dynamics method
For a dynamic system in noisy fluctuating environments, the

dynamics is often described by ODEs as _x ¼ F(x)þ z. Here, x(t)
represents the vector of the cell concentration and the cytokine

concentration. F(x) is the vector for the driving force of these

cell–cell interactions, cytokine–cell interactions or cell–cytokine

production. External noise and intrinsic noise are of significance

to biological systems [70]. So the noise term z is added to the

force _x ¼ F(x), the average dynamics of the system. The noise

term z is assumed to follow a Gaussian distribution and the

mean correlations are given as: kzj(x, t)l ¼ 0 and kzi(x, t)zj(x,

t0)l ¼ 2Dijdijd(t 2 t0) (dij ¼ 1 for i ¼ j and dij ¼ 0 for i=j ). Here

d(t) is the Dirac delta function and D is the diffusion coefficient

matrix. The noise term is associated with the intensity of cellular

fluctuations either from the environmental external fluctuations

or from the intrinsic fluctuations. Under long-time Langevin

dynamics simulations, we can obtain the steady-state distri-

bution P(x) for the state variable x through statistics. Finally,

the potential landscape is obtained by U ¼2ln(P(x)).
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