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Cancer remains one of the leading causes of death, albeit enormous efforts to

cure the disease. To overcome the major challenges in cancer therapy,

we need to have a better understanding of the tumour microenvironment

(TME), as well as a more effective means to screen anti-cancer drug leads;

both can be achieved using advanced technologies, including the emerging

tumour-on-a-chip technology. Here, we review the recent development of the

tumour-on-a-chip technology, which integrates microfluidics, microfabrication,

tissue engineering and biomaterials research, and offers new opportunities for

building and applying functional three-dimensional in vitro human tumour

models for oncology research, immunotherapy studies and drug screening. In

particular, tumour-on-a-chip microdevices allow well-controlled microscopic

studies of the interaction among tumour cells, immune cells and cells in the

TME, of which simple tissue cultures and animal models are not amenable

to do. The challenges in developing the next-generation tumour-on-a-chip

technology are also discussed.
1. Introduction
Cancer remains one of the leading causes of death in the USA and many other

countries in the world, despite the extensive research and enormous efforts in

drug discovery over the last few decades to cure the disease. This is partly due

to the high cost of developing a new anti-cancer drug, as well as the need to

better understand cancer development and the tumour microenvironment

(TME), including the roles of inflammation, different effectors and suppressors of

immune responses, the heterogeneity of tumour stroma, and the function of

tumour vasculature. To make significant improvements in cancer therapy, it is

necessary to develop more effective approaches to screen anti-cancer drug leads

and to have a better understanding of TME using advanced technologies, including

the organs-on-chips technology [1–5].

To date most cancer research and anti-cancer drug screening have been con-

ducted using cell culture and animal models. While animal models of cancer

can provide essential in vivo information of tumour growth and response to

drug molecules, they could be very costly and the results may have very large

variations among the animals used, thus it is difficult to obtain relevant statistics.

Further, small animal models such as mouse models for cancer studies may not

accurately represent what happens in humans [6]. On the other hand, two- and

three-dimensional cell cultures have been widely used for screening anti-cancer

drugs, and studying cell signalling, proliferation, migration and drug responses

including altered protein/gene expression [7,8]. These in vitro models may use

co-culturing of multiple cell types in hydrogel matrices and include patient-

derived cells [9,10]. Although cell culture models are low cost, easy to handle

and typically have high repeatability, they may not be able to mimic the micro-

environment in an organ or an animal, thus are not suitable to study the effect

of complex spatial organization and interaction of cells.
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Figure 1. The concept of tumour-on-a-chip. (a) A microfluidic device that has tissue culture, nutrient and small molecule supply and waste removal functions for
growing tumours on a chip. Adapted from [12]. (b) The ultimate goal is to grow a three-dimensional tumour on chip with a complex tissue structure consisting of
tumour cells, stromal cells and blood vessels. (c) An example of tumour-on-a-chip in which lung cancer spheroids were embedded in micro-patterned three-dimen-
sional matrices immediately contiguous to a microchannel lined with endothelial cells. Reprinted with permission from Macmillan Publishers Ltd. (d ) The
physiological microarchitecture is recapitulated in the breast-cancer-on-chip microdevice with two cell-culture chambers separated by an ECM-derived membrane.
Adapted from [13] with permission from the Royal Society of Chemistry.
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As an alternative to animal models and cell culture models

to address the complex problem of cancer development and

treatment, ‘tumour-on-a-chip’ technology has emerged recently

as a new tool for cancer studies, providing a unique approach

which integrates microfluidics, microfabrication, tissue engin-

eering and biomaterials research, possessing the potential to

significantly advance our understanding of cancer biology,

allowing accelerated and cost-effective drug discovery [4,11].

As shown in figure 1, a tumour-on-a-chip system consists of a

microfluidic device that has tissue culture, nutrient and small

molecule supply and waste removal functions (figure 1a) [12].

Ideally, a three-dimensional tumour could grow on the chip

with a complex tissue structure comprised of tumour cells,

stromal cells and blood vessels either self-organized or spatially

organized by design, mimicking some aspects of a tumour

(figure 1b) [13]. Examples of first-generation tumour-on-a-

chip systems include a chip in which lung cancer spheroids

were embedded in micro-patterned three-dimensional matrices

immediately contiguous to a microchannel lined with endo-

thelial cells (figure 1c) [4], and a breast tumour-on-a-chip

model comprised the upper and lower cell culture chambers

separated by an ECM-derived membrane that mimics a base-

ment membrane in vivo (figure 1d) [13]. Previous reviews

in the literature on tumour-on-a-chip technology include the

construction of three-dimensional tumour models [14–17], its

applications to specific cancer studies such as metastasis

[18,19], and its utilities in drug discovery [20,21].

This review aims to showcase the recent developments of

the tumour-on-a-chip technology to mimic TMEs for cancer

biology studies and biomedical applications. In §2, three-

dimensional in vitro tumour models established on microfluidic

chips are reviewed. Specific microdevices mimicking various

TMEs are elaborated in §3. In §4, examples of tumour-on-a-chip
applications are discussed. The challenges in developing the

next-generation tumour-on-a-chip technology are summarized

in §5.
2. Three-dimensional in vitro tumour models
on chip

To characterize and study the invasiveness and detailed cancer

biology of different tumours, in vitro culture of cancer cells from

a tumour sample is routinely used. A two-dimensional mono-

layer cell culture on thermoplastics is the gold standard for

in vitro maintenance and multiplication of cells. Although

two-dimensional cell cultures have been widely used in var-

ious cellular assays (e.g. migration and toxicity assays) to

characterize the metastatic property and drug response of

cancer cells, two-dimensional cultures cannot recapitulate the

three-dimensional architecture of tissue’s complexity, bio-

physical and biochemical property of extracellular matrix

(ECM), and cell–cell interactions of human tumours [22–24].

Furthermore, cell cycle, cellular signalling and drug sensitivity

can be different if cell culture is performed in a three-

dimensional instead of a two-dimensional microenvironment

[25–27]. In vivo three-dimensional models using animal xeno-

grafts are also popular but suffer from ethical concerns and are

unable to mimic human-specific biology and physiology.

In vitro three-dimensional tumour models are created by adapt-

ing several three-dimensional tissue engineering methods to

construct cells into three-dimensional space and mimic the

in vivo TME in the body (table 1). Among them, top-down

methods use decellularized scaffolds and bottom-up methods

use cells to build up tumour tissues for in vitro three-

dimensional tumour models. In tumour-on-a-chip systems,



Table 1. Comparison of in vitro tumour models.

three-dimensional
tumour models processes advantages disadvantages

transwell assays migration, invasion through

ECM, transendothelial

migration

recovery of motile cell population, easy to

perform

no control over gradient, endpoint

assay, inability to create multiplex

gradient, no cell – cell interaction

tumour spheroids mimicry of tumour mass in

three-dimensional

configuration

a micro-tumour with three-dimensional

structure, necrotic core and nutrient

transport property; perfusable with

microfluidics

no vasculature on spheroids

ex vivo tumour section direct in situ analysis on

in vitro cultured tissue

retains primary tumour and stroma require primary tumour tissue for every

experiment

scaffold solid extracellular support

for three-dimensional cell

culture

a characterized ECM structure for three-

dimensional cell culture

difficult to uniformly distribute cells in

scaffolds, difficult to perfuse the

model

bioink three-dimensional

printing

layer-by-layer construction

of cells

printing multiple cell types and ECMs; high

spatial precision

specific bioink formulation is needed

for optimal cell survival

microfluidic microvascular

model

patterning microscopic

vascular capillary

perfusable model, microscopic observation

for kinetics, incorporation of gradients

size limited to small tumours
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three-dimensional tumour tissues are often cultured initially

by established tissue culture protocols, then transferred onto

the microfluidic chip for analysis. Thus, in vitro three-

dimensional tumour models can be adopted in tumour biology

research and the development of therapeutics for personalized

medicine [28,29]. Next, we discuss common techniques for

creating three-dimensional in vitro tumour models in detail

(figure 2).

2.1. Ex vivo tumour culture
Primary tumour tissues from biopsy or surgical resection can

be embedded in ECM and cultured as an in vitro model

[30–34] (figure 2a). The embedded tumour sections retain the

tumour vasculature, nearby stroma and the heterogeneity of

the tumour cells. Microfluidic technology can be combined

with an ex vivo tumour section culture system for parallel

drug sensitivity testing while maintaining continuous control

over culture conditions [35].

2.2. Conventional transwell model
Transwell inserts (also known as Boyden chambers) are widely

used to perform conventional migration, invasion and trans-

endothelial migration assays, to assess the migration of cancer

cells in combination with a chemical gradient. A transwell

insert is composed of a polymeric porous membrane to allow

cancer cells to migrate through the pores. A transwell insert is

routinely used together with a multiwell plate with chemo-

attractants inside wells. In a migration assay, the ability of

cancer cells to translocate through the pores is measured.

The invasion assay further characterizes the migration of

cancer cells through a three-dimensional ECM layer on the

porous membrane. In addition, the transendothelial migration

ability of cancer cells can be characterized by using a transwell

insert with a confluent endothelial cell layer grown on top of

the membrane [36] (figure 2b).
The transwell assay is usually performed as an endpoint

assay because it is difficult to image the kinetic behaviour

of cells migrating through the pores. Moreover, the steepness

of the chemoattractant gradient established between the well

and inside the transwell insert is difficult to control, making

the transwell assay results semi-quantitative. However, trans-

well assays are quite suitable for more motile or invasive cell

subpopulations as they can be recovered after the transwell

assay [36].
2.3. Tumour spheroids
A tumour spheroid is derived from three-dimensional aggrega-

tions of cells under non-adherent cell culture conditions [37].

The tumour spheroid resembles a small tumour mass in its

morphology, growth kinetics, nutrient transport and cell–cell

as well as cell–matrix interactions. Thus, the tumour spheroid

serves as an excellent in vitro three-dimensional tumour

model [28,38].

Tumour spheroids can be generated by using single- or

multiple-cell suspensions from permanent cell lines as well as

dissociated cells from primary isolated tumour tissues and

organotypic tissues [38]. Several common methods to generate

tumour spheroids include suspension culture, hanging drop

method, liquid overlay on non-adherent substrates, two-phase

encapsulation and assembly by bio-conjugate chemistry or

magnetic particles [28]. In the suspension culture, cells are

placed in a spinner flask [39] (figure 2c) or a NASA microgravity

vessel [40] (figure 2d) to promote spheroid formation by indu-

cing aggregation. The suspension culture is advantageous in

high-throughput production of spheroids, but the disadvan-

tages are limited control over spheroid size and uniformity.

The hanging drop method uses microtitre plate or microstruc-

tures to inversely hold a cell suspension droplet [41–47]

(figure 2e). The cells aggregate under gravity and subsequently

form spheroids inside the droplet. The hanging drop method
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Figure 2. Existing techniques to create three-dimensional in vitro tumour models. (a) An ex vivo tumour culture based on a tumour tissue section. (b) Single tumour
cells embedded in hydrogel on transwell insert is one of the earliest three-dimensional models that can also characterize invasiveness. Tumour spheroids can be
prepared from dissociated cells from tumour or circulating tumour cells (CTCs) by (c) the spinning mask method, (d ) NASA microgravity apparatus, (e) the hanging
drop method, ( f ) the liquid overlay method, (g) magnetic levitation after cells are incubated with magnetic nanoparticles, (h) bio-orthogonal chemistry and
(i) microfluidic methods such as flow focusing, droplet microfluidics and digital microfluidics. Alternative to spheroids, three-dimensional tumour models can
be fabricated by seeding cells in artificial three-dimensional matrices. ( j) Cancer cells can be seeded in fabricated scaffolds. (k) Cell-embedded bioink can be printed
as building blocks for tissues. (l ) Microfluidics – microvascular model uses a microdevice to model a multiple tissue-type microenvironment. Adapted from [28,29].
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is of moderate throughput, but it possesses better control over

the size of the spheroid. Microfluidic perfusion networks in

combination with hanging drop methods have been used for

continuous spheroid culture and drug screening [44–47].

Alternative to the hanging droplet method, using the liquid

overlay method, cell suspension is cultured on non-adherent

substrates to produce spheroids [48–50] (figure 2f ). The advan-

tage of the liquid overlay method is its simplicity of operation,

but the disadvantage lies in its poor control over spheroid size.

Similarly, to produce tumour spheroids by avoiding cell

adhesion to cultureware and inducing aggregation, an aqueous

two-phase system can also compartmentalize cell suspension

and produce spheroids without the concern of drying and poss-

ible inefficiency in chemical transport and toxicityof an oil phase

[51–53]. Three-dimensional spheroids can also be formed

by assembly of cells using bio-orthogonal chemistry [54] or

incubation of cells with magnetic particles [55,56] (figure 2g,h).

Recently, several microfluidic techniques have been devel-

oped to create tumour spheroids by either hydrodynamic

trapping of cells in stagnation regions or in microwell struc-

tures [57–60], aggregating multiple cells in double-emulsions
or hydrogel droplets [61–64], or aggregating cells on a digital

microfluidic platform [65] (figure 2i). The advantages of gener-

ating spheroids by microfluidics include control over spheroid

size with continuous perfusion, as well as real time and in situ
observation of spheroid formation kinetics. However, spher-

oids produced in some microfluidic models are difficult to

retrieve for off-chip analysis [57,63,66].
2.4. Three-dimensional cell culture in three-dimensional
matrices

Tissue engineering methods have been adopted to create three-

dimensional tumour models. A scaffold is a biocompatible and

chemically stable extracellular support structure serving as an

instructive support for cell attachment, growth and morpho-

genesis into tissues [67] (figure 2j). A porous scaffold can be

made from decellularized tissues or from fabrication of several

natural ECM proteins or biocompatible polymers, such as col-

lagen, hyaluronic acid, silk protein, polyethylene glycol (PEG)

and polylactic acid [68,69]. The scaffold is commonly
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prepared by freeze drying, electrospinning, phase separation

and microscale macromolecular self-assembly [70–74].

Tumour cells cultured in scaffolds showed less sensitivity

to chemotherapy and yield tumours with more invasive

phenotypes [70,75–77]. While the porous scaffolds have the

mechanical and chemical characteristic of ECM for three-

dimensional tumour cell culture, the disadvantages include

lack of vasculature structure in fabricated scaffolds that hinder

perfusion for long-term culture, as well as poor control on cell

placement positions inside the scaffold.

Alternative to scaffolds, a bottom-up approach using cells or

few-cell spheroids as building blocks has emerged, inspired by

the embryonic developmental processes [78,79] (figure 2k).

Hydrogels as ECM support are embedded with cells or few

cell spheroids as building blocks (also known as bioinks)

[80,81]. Several natural polymers such as collagen, fibrin,

Matrigelw, hyaluronan, chitosan, gelatin and alginate, as well

as synthetic polymers such as PEG can be used to create

property-controlled hydrogel matrices. The bioink containing

multiple cell types and multiple ECMs can be printed at high

density into large-scale tissues and organs through the layer-

by-layer additive bioprinting. The cell positions in three

dimensions can be automatically and precisely controlled

using bioprinting to create multicellular tissue with vasculature

mimicking the in vivo tissue hierarchy and the microenviron-

ment [80,82,83]. Common bioprinting methods include inkjet

printing [84,85], microextrusion printing [86,87], laser-induced

transfer printing [88] and stereolithography [89,90].
2.5. Microfluidic tumour – microvascular model
The vasculature plays a pivotal role in tissue engineering and

tumour biology [91]. Tissue engineering with vasculature is

important for three-dimensional persistent tissue culture. More-

over, the growth and dissemination of cancer requires growth

of new vasculatures for nutrient transport [92]. Many cell

types in the vasculature such as endothelial cells interact with

cancer and modulate the TME as well as the cancer phenotype

[93]. Conventional transwell assays, tumour spheroids and

scaffold approaches share the disadvantage of their inability

to incorporate tumour–vasculature interactions in the culture.

Using microfluidic technology, capillary lumen structures

have been fabricated to mimic the microvasculature in tissues

[94]. Common methods to create capillary lumen structures as

microvasculatures include moulding the capillaries in hydro-

gels by needles or rods [95–98], by photoresists [99–101], by

sacrificial carbohydrates [102] or creating lumens based on

viscous fingering instabilities [103,104]. Alternatively, an endo-

thelial vascular network as the microvasculature can be formed

by endothelial sprouting in hydrogels [105–112], monolayer on

ECM hydrogel [113–115] or on a porous membrane [116,117],

and monolayer in microchannels [118,119] (figure 2l ).

Creating a functional microvasculature network together

with the three-dimensional tumour model is essential to recapi-

tulate the TME in vitro. By using a microfluidic perfusable

platform to co-culture vasculature and cancer cells, it allows

better kinetic examination of important cancer progression

stages such as angiogenesis, intravasation and extravasation

in a controlled microenvironment [99,110,112,120,121]. Future

challenges for microfluidic tumour–vasculature model include

validation of the platform to clinical tumour tissues and

increase complexity of the emulated microenvironment, such

as chemical gradients and fluid flow at biologically relevant
speed and rhythms. TMEs are complex and each component

within often interacts and affects one another. Current efforts

have focused on mimicking specific TME to answer different

biological questions. A microfluidic platform with active con-

trol components such as microvalves and micropumps can be

programmed to recapitulate multiplex physical and chemical

gradients together with multiple cell types to better mimic the

complex microenvironment of a tumour. However, the design

and optimization of such platforms still pose great challenges,

and their robustness and reproducibility are also major hurdles

that need to be overcome.
3. Mimicking tumour microenvironment using
microdevices

Cancer is a complex and heterogeneous metastatic disease

modulated by genetic, epigenetic and cellular signalling

influenced by its surrounding stroma. The cancer cells grow

uncontrollably into a primary tumour and interact with the

supportive and immune cells as well as the biochemical and

biophysical components of ECM in the nearby stroma. Within

the TME, three aspects are important: (i) hypoxia in the necrotic

core of primary tumour tissue further drives metabolic shifts

of cancer cells in the peri-necrotic niche; (ii) new vasculature

growth is induced by the tumour and tumour-associated

stroma for nutrients in the peri-vascular niche; (iii) cancer

cells interact with stroma to evade the immune system and

adopt invasive and migratory phenotypes to metastasize to

distant tissues in the metastatic niche [93,122] (figure 3).

In the peri-necrotic niche, the metabolic state of cancer

cells is reprogrammed under hypoxia and ischaemia due to

an increase in the tumour mass. A necrotic microenvironment

with dramatically low oxygen and nutrient concentrations as

well as high acidity further induces the heterogeneity within

the cancer cell population and promotes cancer cell survival in

the harsh environment, as well as their metabolic resistance

to many cancer therapeutics [125,126].

Within the peri-vascular niche, by cross-talking with stroma,

the cancer cells also induce outgrowth of new vasculatures

(angiogenesis) and new lymphatic vessels (lymphangiogenesis)

for nutrient and gas transport to enable cell survival and

proliferation [127,128]. However, the tumour vasculatures

are often immature and leaky in comparison to the normal

vasculature [129]. The peri-vascular niche also overlaps with

the metastatic niche. New vasculature allows dissemination

of cancer cells as they shed to circulating tumour cells, and

among them tumour initiating cells can grow into secondary

metastasis when seeded in distant tissues.

The metastatic niche must be developed for invasive cancer

cells to shed from the primary tumour, invade through the

basement membrane into the stroma, intravasate into nearby

vascular or lymphatic vessels, travel and survive in the circula-

tory system, extravasate into a distant tissue site and form new

micro-metastasis in new sites [123]. In some forms of cancer,

cancer cells can also invade the nervous system during the pro-

cess termed as peri-neural invasion, which is a contributor to

tumour-related pain [130]. The complex sequential process

that cancer cells undergo is also known as a metastatic cascade

[131]. Recently, the theory of tumour initiating cells or cancer

stem cells as a rare group of circulating tumour cells suggest

that the microenvironment is important for cancer stem cells

to seed in distant tissues and form new metastasis [123].
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Microfluidic platforms allow recapitulation, manipulation

and observation of cancer cell responses in TME on a chip. An

in vitro model recapitulating the cancercells as well as their micro-

environment can enable more biomimetic and clinically relevant

outcomes to accelerate our knowledge in tumour biology and

improve cancer therapeutic development. In this section, we

briefly review the microdevices developed in the past few dec-

ades to study different TMEs, including the peri-necrotic niche,

peri-vascular niche and metastatic niche [122,124,132].
3.1. Peri-necrotic niche: modelling hypoxia and necrosis
In most tumour types, hypoxia is a mediator of tumour pro-

gression and therapeutic resistance [125]. As the primary

tumour grows and its hyper-proliferating area increases,

an imbalance between the hyper-proliferative cancer cell

growth and nutrient as well as the gas supply from the vas-

culature causes ischaemia in the local tissue [125]. New

vasculature to deliver more nutrients and gas is induced by

the perivascular niche and in part by the hypoxia. However,

the new vasculature is often abnormal and fails to rectify
the nutrient deficit. The persistent hypoxia in the tumour

has several effects including the selection of survival cancer

cell genotypes, upregulation of pro-survival gene expressions,

metabolic switches into anaerobic glycolysis, epithelial–

mesenchymal transition (EMT) and therapeutic resistance

[133]. Thus, creating an in vitro platform to recapitulate the

hypoxia in an in vivo TME is very important.

In the conventional tissue culture laboratory, precise con-

trol over gas concentrations is challenging due to continuous

oxygen diffusion into the culture medium in ambient air

[126]. A CO2 incubator equipped with additional nitrogen

gas mass flow controller can regulate the oxygen concentration

within the incubator, but the oxygen gradient is still different in

comparison to oxygen tension in the tissue. Alternatively, bio-

chemical induction of key transcription factor of cellular

hypoxia response such as hypoxia inducible factor (HIF) can

be done to induce cellular signalling pathways in the hypoxia

condition. The biochemical induction limits the spectrum of

hypoxia study to dedicated signalling pathways [126].

Alternatively, with microfluidics, the gas permeability of

the chip material provides the advantage of creating a hypoxic
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microenvironment to simulate the peri-necrotic niche.

Poly(dimethylsiloxane) (PDMS) is a biocompatible silicone

rubber with high gas permeability, and it has been a popular

material for microfluidic chip fabrication by using soft litho-

graphy techniques [134,135]. A low oxygen environment or

an oxygen gradient can be created by flowing different gases,

gas-equilibrated liquids or oxygen scavengers in microfluidic

networks [136–138]. Using poor gas-permeable thermoplastic

as the microfluidic chip material or embedding a thin thermo-

plastic sheet can also improve the control over the gas

environment inside the chip [138–140].

On two-dimensional microfluidic platforms, Zhang et al.
[141] used SUM159 breast cancer cells to demonstrate increased

migration in mesenchymal mode as well as production of lac-

tate under hypoxic conditions. The acidic microenvironment

derived from metabolic reprogramming is also a factor for

cell migration. Neutralization of the environmental acidity

can inhibit the migration velocity of cancer cells and simul-

taneously improve the efficiencies of therapeutics targeting

HIF-1a, colony stimulating factor 1 receptor (CSF-1R) and

C-C chemokine receptor type 4 (CCR4) [141]. These results

demonstrate the importance of oxygen concentration as well

as the pH level in the microenvironment to regulate the

migration potential of cancer cells. Other two-dimensional

microdevices can create stable oxygen gradients generated by

oxygen scavengers, which become very useful to screen

for cell survival and drug response under different oxygen

concentrations [66,138,140,142] (figure 4a).

The response of cancer cells to hypoxic environments in

three dimensions can also be examined by cell embedded

hydrogel models. Xu et al. [146] demonstrated that the pro-

liferation and invasion of glioblastoma U87MG cells under

hypoxia conditions. By flowing normoxia gas in one control

channel and hypoxia gas in another near the PANC-1 pan-

creatic adenocarcinoma cells, Acosta et al. [143] showed that

hypoxia generated a more aggressive phenotype invading

into the collagen gel (figure 4b).

In addition, microfluidic platforms have been used to exam-

ine kinetic formation of a necrotic core of a three-dimensional

cell embedded hydrogel tumour model [144,147]. Ayuso et al.
developed a three-dimensional cell embedded hydrogel

system to observe the kinetic formation of necrotic cores in

HCT-116 colon cancer cell model as well as U-251MG glioblas-

toma cell model over a 6-day period. Furthermore, real-time

dynamic changes of oxygen and glucose concentrations, cell

proliferation, apoptosis, reactive oxygen species formation

and drug response can all be studied in situ on chip [144]

(figure 4c). Co-culture multiple cell types with oxygen control

is also possible with microfluidic platforms. Lin et al. [145]

demonstrated that both cell migration and VEGF165 and

HIF-1a were upregulated in CaSki cervical cancer cells

under hypoxia conditions (figure 4d). A similar response was

also observed with U87 glioblastoma cells in an alginate hydro-

gel [148]. Expressions of VEGF provide evidence that cancer

cells under hypoxic environments are stimulated to induce

angiogenesis and that there can be cellular signalling cross-

talk between the peri-necrotic niche and peri-vascular niche.

One imperative future direction is to develop more complex

microdevices to recapitulate multiple microenvironments for

detailed kinetic analysis of signalling crosstalks between

various microenvironments, such as elucidation of the inter-

dependency of necrosis and neo-angiogenesis in the

cross-talk of the peri-necrotic niche and peri-vascular niche.
Within the peri-necrotic niche, it has been challenging to vali-

date the in vitro necrotic tumour model to tumour lysis and

to incorporate stroma to investigate tumour–stromal cell inter-

action. Tumour lysis is the rapid death of large populations of

cells that causes sudden metabolic disturbances, leading to

tumour lysis syndrome (TLS). TLS contributes to high mor-

tality of cancer. It can happen spontaneously due to tumour

necrosis or can be initiated from anti-cancer therapies [149].

Although three-dimensional tumour spheroids on chip devel-

oped recently exhibit necrotic cores as a micro-tumour model

[11], validation of this micro-tumour model with a human

tumour and its tumour lysis kinetics remain a challenge.

Moreover, incorporation of chemical gradients and co-

culturing stroma cells such as fibroblasts, macrophages and

natural killer cells to observe how necrosis contributes to

stroma remodelling and chronic inflammation remains a diffi-

cult task [150]. Novel microdevice design integrated with

biosensors and active flow control components such as

microvalves is necessary to address these technical challenges.

3.2. Peri-vascular niche: modelling angiogenesis and
quiescence of cancer cells

As a tumour grows and demands more nutrients for prolifer-

ation and survival, the tumour attracts neovascularization of

blood vessels and lymphatic vessels through angiogenesis

and lymphangiogenesis [127,128]. It has also been suggested

that endothelial cells in peri-vascular niche can regulate

quiescence of cancer cells as well as emergence after latency

[151]. Using microfluidic technologies and tissue engineering,

in vitro platforms with tumour and vasculature interactions

can be developed and used to improve contemporary anti-

angiogenic therapy. Several hydrogel microdevices focused

specifically on angiogenesis induction by cancer cells in the

co-culture configuration. Chung et al. [152] showed sprouting

of endothelial cells into collagen hydrogel by VEGF gradient

as well as by MTLn3 rat mammary adenocarcinoma cells

(figure 5a). Cross et al. [99] also demonstrated formation

and lumen structure and invasion of hydrogel of human

umbilical vein endothelial cells when co-cultured with an

oral squamous cell carcinoma cell line, OSCC3. Patra et al.
[153] showed that when co-culturing HUVEC cells with

HepG2 hepatocellular carcinoma cells in tumour spheroids,

HUVEC cells migrated outwards to the proliferative edge

and formed lumen-like structures under stimulation of pro-

angiogenic factors. Liu et al. [154] used a three-dimensional

hydrogel microfluidic device to study angiogenesis induction

by salivary gland adenoid cystic carcinoma and oral squa-

mous cell carcinoma cells. Both cell lines can induce strong

angiogenesis and the angiogenesis can be inhibited under

anti-angiogenic therapy. Aside from studying angiogenetic

sprouting, Kim et al. [110] demonstrated that a perfusable micro-

vascular network could be created on chip as a vasculogenesis

model (figure 5b). Instead of generating microvascular networks

in a hydrogel, Bischel et al. [104] and Nguyen et al. [96] reported

methods to pattern endothelia in a capillary lumen structure as a

model of an artificial blood vessel and angiogenesis assay

(figure 5c).

In the peri-vascular niche, aside from signalling between

cancer cells and endothelial cells, other cell–cell interactions

and physiochemical factors in the stroma also influence the

angiogenesis. Using a multi-culture microdevice, Theberge

et al. [155] demonstrated that the microenvironment would
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change when macrophages interacted with endothelial cells

and fibroblasts. In the presence of macrophage with fibroblast

and endothelial cells, expressions of several pro-angiogenic fac-

tors such as HGF, VEGF, interleukin-8 and anti-angiogenic

factor matrix metalloproteinase-12 all increased. Angiogenesis

is promoted but the endothelial tubules are abnormal due to the
presence of other anti-angiogenic factors that are also secreted

by macrophages. This observation supports our current knowl-

edge that stroma cells in the microenvironment are also

important in regulating the leaky vasculature cancer phenotype.

These reported investigations demonstrate that microfluidic

platforms offer new opportunities to recapitulate all the
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microenvironment components in vivo to yield physiologically

and clinically relevant results in an in vitro assay.

Aside from the biochemical factors and cell–cell interac-

tion in the stroma that can affect angiogenesis, it has been

found that interstitial flow and shear stress also regulate the

sprouting of microvasculatures. The advantage of microfluidic

models over other conventional three-dimensional tumour

models is their capability to create a perfusable vasculature

with precise control with flow manipulations. Song & Munn

[156] showed that both interstitial flow and VEGF gradient
regulate the angiogenic sprouting and vascular dilation

on a tumour-microvasculature-on-chip. Song et al. [157] further

demonstrated that interstitial flow enhanced anastomosis,

achieving perfusion by connecting multiple vascular sprouts.

In addition, the shear stress acting on endothelial cells can

also regulate barrier function and induce expression of pro-

angiogenic factors, such as VEGF [158]. Buchanan reported

increased secretion of pro-angiogenic factors when endothelial

cells were co-cultured with MDA-MB-231 breast cancer cells

[159,160]. However, higher shear stress (10 dyne cm22) applied
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on endothelial cells may increase perfusion and decrease

secretion of several pro-angiogenic factors, as well as down-

regulate HIF-1a. These results indicate that interstitial flow,

biochemical factors and cell–cell interactions all contribute to

the regulation of angiogenesis in the TME. Using microfluidics,

a perfusable and controllable platform supporting kinetic

analysis of multiple cell co-culture is a promising approach

to understand the pivotal roles of each factor and their

interactions in regulating tumour angiogenesis. Testing the

effectiveness and response to novel anti-angiogenic therapeutic

tools using the tumour-on-a-chip platforms could provide

detailed kinetic analysis and clinical relevant results.

The key challenge of adopting the peri-vascular niche is to

incorporate multiplex chemical, physical and gas gradients

(oxygen and nitric oxide) to elucidate its interplay with the

peri-necrotic niche. The interdependency between necrosis

and neo-angiogenesis is essential for understanding the

growth of solid tumour and remodelling of the TME [161]. To

identify the essential features in recreating an in vitro perivascu-

lar niche, a high-throughput microdevice is required to study

microvasculature functions under different combinations of

chemical and physical factors. The factors include but are not

limited to pro-angiogenic growth factors, stiffness of stroma,

shear stress of interstitial flow and concentration gradients of

oxygen and nitric oxide.

3.3. Metastatic niche: modelling tumour – stroma
interaction and metastasis

In a metastatic niche, cancer cells adapt into invasive and

migratory phenotypes, shed from the primary tumour, intrava-

sate, extravasate and colonize distant microenvironments

through the metastasis cascade. Many microfluidic devices have

been developed to inspect each process in the metastatic cascade.

First, cancer cells must locally invade into nearby stroma.

Chung et al. [152] demonstrated the invasion of MtLn3,

U87MG and 10 T 1/2 cancer cells into collagen hydrogels. In

microdevices, by taking advantage of the laminar flow and

limited mass transport at the microscale, stable chemical gradi-

ents can be established to investigate chemotactic invasion of

three-dimensional cancer models that is difficult to achieve

by conventional macroscale methods. Liu et al. [162] studied

how MCF breast cancer cells embedded in the basement mem-

brane extract hydrogel are guided by epidermal growth factor

(EGF) to invade the matrix. Multiplex chemical gradients can

also be easily established in a three-dimensional microfluidic

model. Kim et al. [163] showed stromal cell derived factor-1a

(SDF-1a) and EGF cooperatively modulated the migration of

MDA-MB-231 cells.

Microfabricated porous microdevices can also be used to

select and examine migratory cancer cells from tumour

spheroids guided by EGF gradients similar to that in a con-

ventional transwell assay. Using such devices, Kuo et al.
[164,165] found decreased EpCAM expression in migratory

cells, suggesting that the cells underwent the EMT and

gained invasive properties.

The second stage for metastasis is for cancer cells to adhere

to endothelium and intravasate into the circulatory system.

Song et al. [116] developed a microfluidic platform to culture uni-

form endothelium on a porous membrane to allow chemical

transport and study how MDA-MB-231 cells adhere to the

endothelium through CXCL12-CXCR4-dependent signall-

ing (figure 6a). Zervantonakis et al. created a microfluidic
tumour-ECM hydrogel–vasculature interface model to study

how HT1080 fibrosarcoma cells interacted with the endothelial

monolayer [166] (figure 6b). While the fibrosarcoma cells have

the ability to intravasate across the endothelium, when

macrophages are present at the endothelium, macrophages

can secrete TNF-a and increase endothelial permeability. As a

result, the fibrosarcoma intravasation through the endothelium

is increased. Such three-dimensional microfluidic models com-

bined with high-resolution microscopy enable real-time

observation of cancer metastasis kinetics and further capture

important parameters determining the microenvironment.

Using a similar approach, Lee et al. [169] demonstrated that

TNF-a also promoted the intravasation of MDA-MB-231 cells.

The intravasated cancer cells enter the blood vessel and

become circulating tumour cells (CTCs) that travel throughout

the body in the circulatory system. The CTCs have been a very

active topic for the role in metastasis and the clinical potential

as a diagnostic and prognostic tool [170]. While the amount of

CTCs is very low in peripheral blood, it is hypothesized that

cancer stem cells or tumour initiating cells can seed in distant

tissues and grow into secondary tumours [171]. Many micro-

fluidic platforms have been developed for capture and

analysis of CTCs, more dedicated articles can be found in the

literature [172–174].

At distant sites, the circulating tumour cells need to extra-

vasate through the endothelium and settle in the new

microenvironment. Zhang et al. [119] demonstrated that chemo-

kine CXCL12 could stimulate salivary gland adenoid cystic

carcinoma cells to extravasate through HUVEC endothelium.

The stimulated extravasation can also be inhibited by CXCR4

antagonist AMD3100. Chen et al. [109] employed a microvascu-

lar network in hydrogel and loaded MDA-MB-231, HT-1080

and MCF-10A cells by perfusion (figure 6c). The extravasation

events (transendothelial migration) of the cells from the micro-

vascular network into hydrogel can be tracked via time-lapsed

microscopy. Interestingly, different cancer cell subpopulations

exhibit different migration capabilities. Trapped cells as well

as clustered cells showed much higher rate of migration into

the ECM. Activation of tumour integrins b1 was found to be

necessary for both extravasation and bone marrow colonization

using the microvascular network microdevice [175]. Several

microfluidic models also employed the ECM hydrogel–

endothelium monolayer interface models commonly used in

intravasation to study cancer extravasation by seeding cells

in different microfluidic channels [112,176,177].

In the metastatic niche, other stromal cells and biophysical

components also influence cancer cells’ invasiveness. Multiple

cell co-culture microdevices have been developed to study the

effect of cell–cell interactions such as autocrine and paracrine

signalling on the invasiveness of the cancer cells. Small vesicles

containing nucleic acids and proteins (termed exosomes) may

be the carriers to carry signalling molecules between the

cancer and stromal cells [178]. Hsu et al. [167] developed a

two-dimensional three-chamber PDMS microfluidic chip

with microvalve control to selectively flow the conditioned

media of fibroblast, macrophages and CL1-0 lung cancer cells

to investigate how paracrine signalling from tumour stroma

affected cancer cell invasiveness (figure 6d). Lung cancer cells

release TGF-b1 to transform fibroblasts into myofibroblasts

and in return promote the migration speed of cancer cells.

However, macrophages can immunomodulate the myofibro-

blasts and the cancer cell migration speed decreases in the

macrophage-pretreated and myofibroblast conditioned media.
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Interestingly, instead of pretreatment, direct combination of

macrophage conditioned medium and myofibroblast con-

ditioned medium resulted in a nearly threefold increase of

lung cancer cells’ migration speed [167]. Similar to other tri-

culture microfluidic models, these results imply that the

responses of cancer cells influenced under multiple factors

can be quite complex and diverse [155,167].
Multiplex three-dimensional co-culture microdevices also

serve as useful tools to investigate how the stroma interacts

and modulates cancer cells. A breast cancer-on-a-chip device

developed by Choi et al. [13] recapitulates the mammary duct

and stroma as well as tumour spheroid in one microdevice

model. Jeong et al. [179] used multiple hydrogel chambers

embedded with tumour spheroids and fibroblasts to show
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that cancer associated fibroblasts promote cancer cell proli-

feration and drug resistance. Liu et al. [180] developed a

four-chamber co-culture microdevice to simulate the micro-

environment of bladder cancer with T24 cancer cells,

macrophages, fibroblasts and HUVECs embedded in hydro-

gel. The bladder cancer cells grew into reticular structures

and stromal cell phenotype changed despite the lack of three-

dimensional tissue hierarchy in the system. Bischel et al. [168]

patterned a three-dimensional lumen structure in a micro-

device by viscous fingering method and successfully verified

that the invasion of ductal carcinoma in situ (DCIS) of breast

cancer cells was induced by mammary fibroblasts (figure 6e).

By using second harmonic imaging, increased collagen modifi-

cations were found near the invasive region, suggesting that

the ECM was remodelled by invasive cancer cells.

Aside from cell–cell interaction in the metastatic niche,

physical factors such as interstitial flow and mechanical stimu-

lation can regulate invasiveness of cancer cells. Polacheck et al.
[181] developed a microfluidic culture chip to apply a stable

interstitial flow to MDA-MB-231 cells embedded in a collagen

hydrogel. Cancer cells at different densities responded to inter-

stitial flows differently. At low cell density, cells migrated with

the interstitial flow and the migration was dependent on CCR7

signalling. When CCR7 signalling was blocked, the migration

directionality was reversed. Jeon et al. [112] demonstrated

that the presence of interstitial flow in a microvascular network

reduced the extravasation of cancer cells and decreased the per-

meability of vasculature. By applying cyclic tensile strain on

myofibroblasts in a PDMS microdevice, Huang et al. [182]

showed that tensile strain reduced the ability of the myofibro-

blast to accelerate cancer cell migration. The effect of cyclic

tensile strain is also modulated by IL-1b secreted by other

cells in the stroma, which implies the complicated interaction

between cancer cells and different stromal cell types in the

microenvironment. The stiffness of the ECM and stromal

cells can also regulate the invasiveness of cancer cells

[183,184]. Finally, transepithelial potential differences in tissues

can generate physiological electric field and guide the

migration of cancer cells through electrotaxis [185–187]. In

short, many metastatic niche studies verified that invasive

cancer cells could interact with and modulate the biophysical

and biochemical properties of the stroma, as well as all the cel-

lular components in the complex microenvironment. Similar to

the challenges in mimicking TMEs, incorporating multiplex

chemical, physical, and cell factors in a metastatic niche is criti-

cal in order to create a reliable in vitro micro-tumour model and

investigate how each component contributes to the modulation

of the metastatic cascade.
4. Applications of tumour-on-a-chip technology
The development and application of tumour-on-a-chip technol-

ogy has the potential to address many important biological

questions by replicating major aspects of the tumour structure,

microenvironment and tumour biology. For example, a

tumour-on-a-chip system may allow us to study the complexity

of cancer growth and progression in a controlled fashion, cap-

ture and analyse spatio-temporal dynamics of tumour cells

interacting with stromal cells, immune cells and other cells in

the blood, and perform high-resolution imaging to understand

some of the molecular and cellular mechanisms of tumour

growth and metastasis. Tumour-on-a-chip approaches may
allow the use of patients’ own tumour cells to determine how

they respond to anti-cancer drug or immunotherapy and to

better predict cancer aggressiveness, achieving the best possible

clinical outcome by extending the survival rate and reducing

the chances of relapses and emergence of drug-resistant

tumours. Although the technology is still in its early stages,

the current designs of microfluidic tumour-on-a-chip systems

have already shown promise in growing simple three-

dimensional tumours and having good control over the TME.

Some of the applications include multiplexed drug screening,

transport of nanoparticles, transcription analysis, proteomic

analysis and metabolic changes in cells.

4.1. Multiplexed drug screening
Conventional pre-clinical drug screening is expensive and time-

consuming, and requires large number of cells. Recent

advances in microfluidics technology have enabled cost-

effective high-throughput screening. Aside from having a

lower cost and faster processing speed, microfluidic chips

require a much smaller sample volume. Furthermore, these

chips can be customized to monitor the effects of anti-cancer

drugs on any number of parameters, including cell migration

[188]. Specifically, Zhang et al. developed a microfluidic

device with 3120 different microchambers in which cell

density was varied throughout the chambers, and the average

migration velocity and the percentage of migrating cells were

quantified. This device can create chemical gradients of mul-

tiple anti-tumour drugs and generate multiplicates of sample

data on a single chip to specifically monitor mesenchymal

migration and survival of tumour cells upon exposure to

drugs that inhibit cell migration, including axitinib [189]. In a

study by Sobrino et al. [124], vascularized microtumours were

created on a PDMS membrane to study the effects of vascular

targeting agents, such as apatinib and linifanib (figure 7a). A

key drawback to this approach is the absorption of the agents

in question by the PDMS membrane. Further work is needed

to determine the effects of the partition coefficients of various

types of drugs in different types of microfluidic platforms.

Choi et al. explored the TME as a crucial regulator of tumour

progression by designing a microchip with two microchannels

surrounding a basement membrane with epithelial and stromal

cells to simulate pre-invasive breast cancer lesions. Tumour

spheroids were cultured on top of the epithelial cell layer [13]

(figure 7b). This model replicates the three-dimensional micro-

architecture in vivo and enables simulation of physiological

delivery of intravenously administered paclitaxel by continu-

ous flow through the lower microchannel [13]. This device

can be scaled up easily for multiplexed screening of drug mol-

ecules based on their efficacy and safety, and the platform is

flexible enough to be used for models of other types of cancer.

4.2. Transport and delivery of nanoparticles
Microfluidic systems can be used to evaluate nanoparticle

transport in vitro and optimize nanoparticle designs by select-

ing the right size, shape and surface chemistry, such that the

nanoparticle systems identified would have higher rates of suc-

cess in drug delivery or in vivo imaging, thereby reducing

the number of costly animal studies [190]. Recently, Albanese

et al. designed a tumour-on-a-chip microfluidic model

to study how nanoparticles were transported in the three-

dimensional tumour spheroid. They showed that flow rate

affected the accumulation of the nanoparticles in the in vitro
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[98] with permission from the American Association for Cancer Research. (c) Design of microfluidic chip for tumour spheroid – fibroblast co-culture. This chip is used
for three-dimensional co-culture of human colorectal cancer cells and fibroblasts. There are four units per chip and seven channels per unit for loading with either
cells or media. The bottom-left shows in detail a cell-loading channel. Adapted from [179] with permission.
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spheroid model [11]. Kwak et al. [191] developed a tumour-

microenvironment-on-a-chip model to recapitulate the

complex transport of drugs and nanoparticles within a three-

dimensional model of breast cancer and endothelial cells.

They could quantify the effects of nanoparticle size on extrava-

sation and interstitial diffusion. There was a significant

decrease in both parameters between the 100 and 200 nm nano-

particles [191]. Bagley et al. demonstrated the use of plasmonic

nanoantennae to enhance transport into a model of ovarian

cancer via heat generation. They also used temperature-

controlled microfluidic devices to measure diffusion of the

nanoparticles in vitro [192]. The use of microfluidic devices to

aid in the rapid development of translatable nanoparticles for

TME studies is a very active and promising area of research.

4.3. Analysis of transcription
Using droplets in a microfluidic platform is an effective way to

conduct transcription analysis on the level of single cells. Zhang

et al. [193] developed a microfluidic device for performing

single copy RT-PCR (reverse transcription polymerase chain

reaction) using agarose droplets, which contained both

sample and RT-PCR reagents. The platform was validated by

showing significant differences in expression of the EpCAM

cancer biomarker gene between different types of cancer cells

[193]. Microfluidic droplets were also used in a separate study

by Hayes et al. [194] to evaluate ECM gene expression levels

in patient samples of colorectal cancer in order to find a poten-

tial correlation between differential expression and metastatic

potential. A study by Jang et al. [195] demonstrated that a

droplet-based model of microtumours can be used effectively

to analyse the gene expression of markers related to the EMT.

Developing high-throughput single-cell analytical techniques

and using patient samples to find correlates or clusters of

genes of interest has the potential to greatly expand the

number of therapeutic targets currently known to us.

4.4. Proteomic analysis
Quantitative analysis of the cancer proteome has the potential to

have a tremendous impact not only on molecular diagnostic

technology, but also on discovering novel therapeutic targets.

In a study by Sun et al. [196] a microfluidic cytometry imaging

system was developed that is capable of quantitative, single-

cell proteomic analysis in both cultured cell lines and patient

samples, using as little as 1000 cells. Its clinical application

was demonstrated by analysing four proteins within the

mTOR signalling pathway using human brain tumour samples,

and comparing the results to that using well-established clinical

immunohistochemical (IHC) protocols. The IHC findings cor-

roborated the single-cell analysis in all but one case [196]. In a

study by Jeong et al. [179], human colorectal cancer cells were

co-cultured with fibroblasts on a PDMS microfluidic chip,

which was then used to quantify the level of proteins involved

in angiogenesis, apoptosis and cell motility (figure 7c). On a

larger scale, Xu et al. [197] designed a biomimetic multi-organ

microfluidic chip to assess changes in the expression levels of

CXCR4, RANKL and other markers in the various ‘distant

organs’ after tumour cell invasion.

4.5. Analysis of metabolites and energy metabolism
Cancer cells tend to continuously multiply without cell cycle

check, thus understanding the mechanism of cancer cell
energy metabolism is critical to both basic cancer research and

cancer therapeutics. Microdevices are well suited to study

tumour cell energy metabolism by controlling both the

oxygen supply and nutrient depletion to the cells. Xu et al.
[198] designed a three-dimensional microfluidic chip to study

the energy metabolism in tumour-associated fibroblasts and

bladder tumour cells, specifically measuring lactic acid concen-

tration and mitochondrial-related gene expressions. Culture

media were perfused through the microfluidic channels which

contained fibroblasts or bladder tumour cells or both. The con-

ditioned media of co-cultured cells had the highest lactate

concentration, suggesting that the aerobic glycolysis increased

under the co-culturing condition. This microfluidic platform

provided a unique non-contact co-culture condition to investi-

gate energy metabolisms between different cell types. Zhu

et al. [199] also examined cancer cell metabolism using a micro-

fluidic tumour–endothelial cell co-culture system. Lactic acid

and mitochondrial protein levels were measured and found to

increase in the co-culture group. Similar approaches can also

be adopted to screen for drug resistance, or investigate energy

metabolism in regenerative medicine [200,201].

As cancer cells that release high levels of lactate correlate to

increased metastasis [202], a microdevice has been developed

to perform single-cell analysis of metabolites. Mongersun

et al. [203] developed a droplet microfluidic platform that quan-

tifies the lactate release rate down to single-cell resolution. The

PDMS/glass microfluidic chip with the flow focusing design

produced droplets containing single cancer cells and allowed

real-time monitoring of lactate release within each individual

droplet [203]. Performing metabolic analysis on single popu-

lations of tumour cells can yield significant insights into the

mechanisms of tumour heterogeneity and energy metabolism

reprogramming, both are important for predicting cancer

metastatic potential as well as drug resistance [204].
5. Conclusion and future perspectives
To fully realize the potential of tumour-on-a-chip approaches, a

number of key questions must be addressed. For example, how

to model the mechanism of intravasation and extravasation

using such a system; how to allow tumour-associated tissues

to mature on a chip with respect to self-organization, if there

is a minimum number of components needed to construct a

tumour-on-a-chip system that allows a tumour to grow on

a chip. Clearly, different approaches need to be developed to

quantitatively analyse tumour–matrix interactions (including

matrix remodelling and growth factors) in order to understand

the enhanced permeability and retention effect as well as the

phenotype of dormancy. It is also very important to reflect

the heterogeneity and evolution present in the tumour by

using a tumour-on-a-chip system. As a control, we need to

have both cancerous and normal tissues grown on a chip in

order to compare different features. It is also possible to

use tumour-on-a-chip approaches to study tumour–immune

response as to how bacteria and viruses trigger oncogenesis.

Tumour-on-a-chip systems may have different designs

and complexities, depending on the medical relevance and

biological question(s) to be addressed. It is necessary to avoid

constructing oversimplified or overcomplicated systems,

and have sufficient complexity driven by need. Accordingly, a

tumour-on-a-chip system may include one or more of the

following considerations: (i) structural features including
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three-dimensional tumour constructs and microfluidics designs;

(ii) biomechanical and kinematic parameters such as matrix stiff-

ness and anisotropy, cell adhesion and flow conditions; (iii) cell

types and sources, including patient cells, cell lines, stromal cells,

stem cells and progenitor cells; (iv) cell metabolism, culture

media transport, waste removal and cytotoxicity; (v) physio-

logical levels of concentration and concentration gradients of

circulating factors. To accurately capture important features

of a tumour, it may also be necessary to consider metastatic

sites, recapitulation of cancer–immune cell interactions, and

integrate real-time, on-chip monitoring of relevant biophysical

and biochemical parameters. While preformed scaffolds for

tumour structure and organization have certain advantages,

the self-organized tumour structure through evolution of

cell–cell interaction may provide a better model for tumour-

on-a-chip platforms. It is likely that different tumour-on-a-chip

systems with different features and complexities are needed

for different cancers and/or to address different questions.

The emerging tumour-on-a-chip technology has the poten-

tial to transform the fields of oncology and cancer biology.

However, there are roadblocks in technology development,

including design, optimization, analysis and validation. Con-

sistency of device properties (such as its biocompatibility, fit

for purpose, ease of handling and mechanical properties)

relies on material choices. Most devices have been built on

PDMS-based substrates, which have been outstanding for

studies on biological mechanisms, but have severe limitations

when used with hydrophobic drugs. Other mouldable and prin-

table surrogates must be explored to overcome this limitation

such as off-stoichiometry thiol-enes [205], epoxy resin [206]

and perfluorinated polymers [207]. Systematic manipulation

and automation of the physical and chemical parameters

within the microfluidic device will require integration of micro-

device printing experts with polymer chemists and material

scientists. Material choice and user operability are chief concerns

when considering the scalability of the device and good manu-

facturing practice development. Further, it is important to
establish the shelf-life (longevity post-manufacturing and pre-

utility) and sustainability (e.g. duration of cell culture and

waste removal in the system) of tumour-on-a-chip devices.

Although the potential of tumour-on-a-chip systems as cancer

research tools has been demonstrated through proof-of-concept

reports, major challenges for translating the technology to clinical

practice remain, including the validation of device functionalities

by comparing with well-established in vivo tumour models, and

thecorrelationof theresultsobtainedusingtumour-on-a-chipsys-

tems with clinical tumour tissues. The tumour-on-a-chip system

has the unique advantages of precisely manipulating the physical

and chemical factors in the TME, co-culturing stromal cells with

cancer cells, providing an optical window for real-time obser-

vation of molecular and sub-cellular processes through

microscopy, and integrating with biosensors for quantitation

[208]. Tumour-on-a-chip systems can be superior to animal xeno-

graft models concerning physiochemical differences, biological

variation, cost, and ease of statistical analysis. To fully realize

the potential of the tumour-on-a-chip technology, it is essential

for researchers in biomedical engineering, material science,

biophysics, cell biology and oncology to make concerted efforts

in designing and optimizing tumour-on-a-chip systems for

cancer research, drug discovery and in translating the technology

to clinical use [209].
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