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The goal of cancer immunotherapy is to boost a patient’s immune response to

a tumour. Yet, the design of an effective immunotherapy is complicated by

various factors, including a potentially immunosuppressive tumour micro-

environment, immune-modulating effects of conventional treatments and

therapy-related toxicities. These complexities can be incorporated into math-

ematical and computational models of cancer immunotherapy that can then

be used to aid in rational therapy design. In this review, we survey modelling

approaches under the umbrella of the major challenges facing immunotherapy

development, which encompass tumour classification, optimal treatment

scheduling and combination therapy design. Although overlapping, each

challenge has presented unique opportunities for modellers to make contri-

butions using analytical and numerical analysis of model outcomes, as well

as optimization algorithms. We discuss several examples of models that

have grown in complexity as more biological information has become avail-

able, showcasing how model development is a dynamic process interlinked

with the rapid advances in tumour–immune biology. We conclude the

review with recommendations for modellers both with respect to method-

ology and biological direction that might help keep modellers at the

forefront of cancer immunotherapy development.
1. Introduction
The involvement of the immune system in all stages of the tumour life cycle,

including prevention, maintenance and response to therapy is now recognized

as central to understanding cancer development from a systemic point of view.

Therefore, it is not surprising that one of the most rapidly developing and excit-

ing fields in cancer treatment is that of cancer immunotherapy, i.e. therapy that

boosts the function of the patient’s own immune system in targeting the cancer.

The development of a knowledge-base of tumour–immune interactions and

basic and clinical work on cancer immunotherapy has been paralleled by the

development of mathematical and computational models that use this knowl-

edge-base to design in silico model systems upon which immune-based and

other treatments can be modelled. In the best case scenario, these models can

serve to guide clinicians and developers of clinical trials towards optimizing

mono- and combination therapies and basic scientists in understanding the

underlying mechanisms of the effectiveness (or, ineffectiveness) of therapy

combinations. Therefore, in a field as rapidly developing and clinically impor-

tant as cancer immunotherapy, mathematical and computational modelling can

play a central role in helping to guide the direction the field takes.

In this review, we survey the mathematical modelling work in cancer

immunotherapy organized by the ‘major challenges’ that the immunotherapy

community is currently grappling with. We will also outline strategies that
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modellers, ideally in collaboration with experimentalists, can

use to further enhance their contribution to addressing these

challenges.

This review is organized as follows. In §2, we give a brief

overview of tumour immunology and cancer immunotherapy.

We also outline ‘major challenges’ that have been posed in the

immunotherapy community. In §§3–5, we survey how each

challenge has been addressed by the modelling community;

in §6, we provide recommendations as to what techniques

the community can employ to further progress on each chal-

lenge and to address other rising challenges, and in §7 we

summarize our findings.
.Soc.Interface
14:20170150
2. The major challenges for cancer
immunotherapy

A tumour can, in principle, be recognized and controlled by the

patient’s immune system via a coordinated process that has

recently been summarized as the ‘cancer-immunity’ cycle [1].

Dying tumour cells present and release proteins that contain

unique tumour-associated antigens that are either mutated

or differentially modified post-translationally relative to

normal cells [2]. Tumour cells also release inflammatory

signals in the form of cytokines and other factors (such as

heat-shock proteins) that lead to a local innate inflammatory

response. Dendritic cells (DCs), which form a part of this

response, can uptake these antigens and, if properly activated

by other factors in the tumour microenvironment, differen-

tiate to present these antigens to lymphoid cells via their

MHC class I and II molecules. Activation of cytotoxic CD8þ T

cells results in their proliferation and trafficking to the tumour

site in order to kill the tumour cells, leading to the release of

more tumour-associated antigens and thus repeating the

cycle. This process by which the immune system keeps a

tumour in check is defined as cancer immunosurveillance.

Via a counter-process termed immunoediting, tumour cells

can evolve and strengthen various mechanisms to escape

immunosurveillance [3–5].

The goal of cancer immunotherapy is to boost the response

of the immune system to the tumour by intervening at one or

several points of the cancer-immunity cycle. The antigen-

based activation of DCs can be achieved by administration of

a therapeutic vaccine harbouring one or multiple tumour-

associated antigens, with or without additional factors that

prime DCs for activation. Another approach has been to extract

peripheral blood monocytes and stimulate them using cyto-

kines and/or other mechanisms [6] to become DCs ex vivo
before reintroducing them into the patient. An FDA-approved

example of the latter is the drug Provenge (sipuleucel-T;

Valeant Pharmaceuticals), which improves median survival

time in advanced prostate cancer by approximately 4% [7].

Therapies that directly boost anti-tumour T-cell activity include

adoptive T-cell therapy and inhibition of T-cell checkpoint mol-

ecules. In adoptive cell therapy (ACT), T cells are collected from

a patient, expanded ex vivo and reintroduced into the patient.

This method has been highly successful in melanoma and is

being explored for other cancers [8]. The success of ACT can

be further boosted by genetic modification of the T cells with

chimaeric antigen receptors (CARs), which are fusion proteins

of a TCR signalling domain and an antigen-binding moiety

specific for tumour-associated antigens [9]. There are currently
over 100 clinical trials in progress on CAR T-cell therapy [10].

Checkpoint therapy involves antagonizing T-cell inhibitory

receptors (such as CTLA-4 or PD-1). Reciprocally, there are a

number of activating costimulatory receptors on T cells

(such as OX40, 4-1BB, GITR and CD27) that can be engaged

to boost T-cell clonal expansion and acquisition of tumourici-

dal effector functions [11]. Major successes using this method

include the FDA-approved Yervoy (ipilimumab; Bristo-

Myers Squibb), a monoclonal antibody (mAb) to CTLA-4

that is used for patients with melanoma [12,13]. In 2016,

the FDA approved Tecentriq (atezolizumab; Genentech), an

inhibitor of the ligand for PD-1 (PD-L1) that is expressed on

tumour cells and that would otherwise engage PD-1 on

tumour-infiltrating T cells, for treatment of locally advanced

or metastatic bladder cancer [14]. For a more extensive discus-

sion of cancer immunotherapies and drugs in clinical

development, see [1,11,15].

There are particular challenges that present themselves in

almost all applications of cancer immunotherapy and have

been addressed by the mathematical community. These

major challenges include

(i) tumour classification for treatment and prediction of

response;

(ii) optimal scheduling and dosage of treatment; and

(iii) design and identification of combination treatment

regimens.

In this review, we use these ‘major challenges’ as a means

by which to present how mathematical modelling can help to

address each challenge and thereby help to progress the field

of immunotherapy research and application. A summary of

the tumour–immune and immunotherapy interactions con-

sistently addressed by the models across these challenges is

depicted in figure 1.
3. Challenge: tumour classification for treatment
and prediction of response

Tumour classification, usually based on histopathological

grading, does not serve as a strong predictive tool for post-

treatment outcome. More sophisticated methods of tumour

classification, such as immune profiling [16], inclusion of mar-

kers of the tumour microenvironment [17] and incorporation of

high-throughput data [18], can improve the predictive strength

of the classifications. Nevertheless, due to both the increasing

availability of patient data and the treatment options, it can

become difficult to predict how a patient with a specific set

of tumour characteristics will respond to a given treatment.

Modelling efforts in this regard have been used to identify

which patient parameters may be most important to predicting

therapy outcomes. As mathematical models, unlike statistical

models, are typically mechanistic, they can be used to predict

the effect of therapy or therapy combinations that have not

yet been tried in the clinic (i.e. for which patient data are as

yet unavailable).

We begin with the Panetta–Kirschner (PK) model [19], one

of the first to layer immunotherapy into a tumour–immune

model. The PK model consists of system of three ordinary

differential equations (ODEs) that model the dynamics of effec-

tor (E) and tumour (T ) cells, and the cytokine IL-2 (IL). For the

sake of expediency and since one of the parameters is especially
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Figure 1. Summary of modelling efforts in immunotherapy. Generally, models (both mathematical and computational) are at the cell-population level and consist
of tumour and immune cells (immune cells may be represented cumulatively as effector cells or more specifically by cell types), cytokines and other immune-
activating or inhibiting factors such as VEGF or TGFb, with therapies (in green) targeting any of these factors. Models can assume spatial homogeneity (ordinary
differential equation, ODE models) or be spatially heterogeneous (agent-based and partial differential equation (PDE) models). For addressing tumour classification
for treatment (Challenge 1, §3), analytical, numerical and/or parameter sensitivity analysis is performed on the models to determine which system parameters
contribute most strongly to prediction of treatment response. Control theory and evolutionary algorithms (depicted by cogwheels) are applied to modelled treat-
ments to optimize scheduling and dosage (Challenge 2, §4), and all these methods can be applied to multiple treatments, including non-immune therapy such as
chemo- and molecular therapy, to model combination treatment regimens (Challenge 3, §5). CTL, cytotoxic T cells; DC, dendritic cells; CD4, CD4þ T cells,
M, macrophages.
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important in the analysis of model behaviour, we only show

the equation for E,

dE
dt
¼ cT � m2Eþ p1EIL

g1 þ IL
þ s1: ð3:1Þ

The antigenecity of the tumour is modelled by the par-

ameter c, m2 represents the death rate of E, and the

proliferative effect of IL on E is in Michaelis–Menten form to

model saturation of response. Therapies are considered by

terms s1 and s2 added to the right-hand side of dE/dt and

dIL/dt, respectively. Michaelis–Menten terms are also used

to model the negative effect of E-induced tumour destruction

on T, and the positive effect of tumour-resident E on IL pro-

duction. Tumour growth is modelled using the logistic

growth function. The authors show that with no therapy, if c
is below a critical c0, the only stable steady state is a large

tumour. As c increases, the tumour size oscillates between

large and small, with the time it spends in its ‘large’ state

(and the magnitude of the ‘large’ state) decreasing with increas-

ing c. Adding therapy s1 creates a tumour-free equilibrium that

is stable if s1 . s1
crit, where s1

crit depends on several parameters

of the model. A bifurcation diagram of s1
crit versus c shows that

there exist regions where the tumour will either die or survive

depending on c, hence providing a mathematical basis for

tumour classification for treatment. The authors show similar

results for s2 . 0 and both s1 and s2 . 0.

Models with a relatively small number of equations can

be analysed in this way and have consistently shown that

knowledge of system parameters can help lead to tumour

classification for treatment via bifurcation and stability analysis

(e.g. [20–23]). Identification of parameters where thresholds
exist with respect to system response to therapy can aid in

the identification of effective therapies. For example, for the

system modelled in [19], a therapy that increases the antigene-

city, c, of the tumour can push the tumour past the critical point

necessary for response to other therapies and/or towards a

reduction in size to a small, stable steady state. An excellent

review of simpler tumour–immune models and their associ-

ated analyses, which may or may not incorporate

immunotherapy, can be found in [24]. A meta-modelling

approach was taken by d’Onofrio et al. [25] to synthesize the

analytical results of such models. These models can serve as

baseline models that can be extended to incorporate

immunotherapy.

Numerical analysis of models has also focused on the con-

cept of thresholds for predicting patient response. For example,

Kronik et al. [26] set out to answer the question whether ‘math-

ematical modelling would help to define the prerequisites

of an effective immunotherapy approach’. They extended a

previously published model of T-cell transfer immunotherapy

for glioblastoma [27] to a model of ex vivo expanded tumour-

specific T-cell transfer for melanoma and used clinical data to

retroactively validate it. The model consists of a system of

ODEs with five equations representing tumour and immune

cells, and critical signalling molecules produced by the two

cell populations (TGFb, IFNg and MHC class I molecules).

The authors varied initial tumour size and growth rate to imi-

tate a virtual population of patients with heterogeneous

tumour profiles. Four different T-cell therapy regimens were

then simulated over this population that corresponded to

four different clinical trials. For one such trial, the model was

able to offer an explanation for the lack of a dose–response

relationship with therapy: the model showed that for patients
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with large enough tumours, the therapy would have no effect,

whereas in smaller tumours a dose–response relationship

could be identified, again pointing to a threshold for therapy

effectiveness, this time via simulation in lieu of a bifurcation

analysis. Indeed, the authors suggested that volumetric

tumour analysis is a better predictor for clinical effectiveness

of T-cell therapy than the traditional staging method. The

authors also called for large doses of T-cell therapy due to the

presence of thresholds for efficacy of T-cell killing with respect

to T-cell concentrations, although this recommendation should

be considered in light of potential toxicities. More broadly, par-

ameter sensitivity analysis has played a critical role in the

numerical analysis of models of immunotherapy (e.g.

[28–31]) by helping to elucidate which tumour characteristics

are most predictive of therapy success.

To investigate how spatial organization of different cell

types can impact tumour–immune evolution and response

to therapy, Wells et al. [32] developed a hybrid discrete-

continuous (HDC) agent-based model (ABM). These models

treat cells as agents that sit on a lattice and can interact with

and respond to other cells in a stochastic manner through

growth factors and cytokines that can diffuse throughout the

lattice. The cell types in this model were naive, M1 (tumour-

suppressive), and M2 (tumour-promoting) macrophages, and

live and dead tumour cells. In addition to secreted factors,

oxygen diffusion was also implemented in the model, thereby

creating oxygen-rich and hypoxic regions in the tumour and its

microenvironment. The authors used a multiparametric sensi-

tivity analysis to observe that the ratio of M2 to other cell types

(termed the Macrophage Polarization Index, MPI) early in the

simulation is predictive of tumour survival. Another key pre-

dictive outcome of the model was that increased tumour

heterogeneity is associated with tumour survival. Tumour het-

erogeneity was associated with locally elevated stimulated

macrophages, leading to local peaks of M2 differentiation

which increased overall MPI. It followed that a decrease in

secretion of differentiation factors for M2 cells abrogated the

association between tumour heterogeneity and survival in

the simulation. Therefore, the model provided a novel hypo-

thesis for tumour-induced immunosuppression via increases

in tumour-heterogeneity, but also a potential new prognostic

tool for tumours where biopsies and cell-specific stains are

available. This observation was further used by the authors

to hypothesize and test in silico that introduction of genetically

engineered macrophages that could block the M2 transition

would be effective in killing the tumour by blocking the

feedback loop that generates localized sites of highly concen-

trated immunosuppressive M2 cells, thereby constructing a

novel treatment using their observations of the most critical

contributors to tumour growth.

Lattice- and/or ABMs can provide additional information

regarding spatially explicit parameters influencing tumour–

immune interactions and response to immunotherapies. In

addition to [32], this approach has been used by Papalardo

and colleagues [33,34] to develop an agent-based simulator

of the Triplex vaccine, SimTriplex, which is effective in pre-

venting mammary carcinoma in HER-2/neu transgenic

mice, and Dréau et al. [35] to examine the interactions

between a vascularized tumour and the immune response.

While partial differential equation (PDE) models have been

much more sparsely employed to model immunotherapy,

they can be especially useful when modelling a large

number of interacting cells in a tissue, in which case building
a corresponding ABM would be too computationally costly.

For example, Eikenberry et al. [36] developed a PDE of mela-

noma with immune infiltrate, and showed that surgical

removal of primary tumours with high levels of immune infil-

trate could promote growth of satellite metastases, as was

observed clinically, thereby providing a model-based hypoth-

esis for tumour classification with respect to responsiveness to

therapy (in this case, surgery).
4. Challenge: optimal scheduling and dosage of
treatment

For any given treatment, an exhaustive experimental search

for optimal dosage and/or scheduling is unrealistic. There

are several techniques which developers of mathematical

models for immunotherapy have used to identify optimal

treatment schedules in silico, including optimal control and

genetic algorithms.
4.1. Optimal control theory
Optimal control theory has played a prominent role for using

mathematical models of cancer immunotherapy for design of

optimal therapy regimens. We can consider a system of

ordinary differential equations,

x
: ¼ fðxðtÞ, uðtÞÞ ðt . 0Þ
xð0Þ ¼ x0,

�
ð4:1Þ

where x [ Rn and u [ U , Rm is a control parameter (e.g.

x(t) can represent concentrations of tumour cells, immune

cells and cytokines and u(t) can represent an immunotherapy

treatment), and an initial condition x0. The optimal u, u*, is

chosen from a space U of admissible controls based on con-

straints on x and u via calculation of an extremal of an

objective functional

J(u) ¼
ðT

0

r(x(t), u(t)) dtþ g(x(T)), ð4:2Þ

where r is termed the running payoff and g the terminal payoff
[37]. This formulation is termed the Bolza form. The optimal

u* found using this method then represents the best possible

therapy given conditions on the control parameters (such as

minimization of tumour cells, minimization of therapy

dosage, maximization of immune response, etc.).

Optimal control theory has been applied extensively to

the PK model [19], described in §3. Burden et al. [38] made

ACI therapy in the PK model into a control parameter, u,

and built an objective functional

J1(u) ¼
ðT

0

[x(t)� y(t)þ z(t)� 1

2
B � u(t)2] dt, ð4:3Þ

where x(t) are activated effector cells, y(t) are the tumour

cells, z(t) the local concentration of IL-2, and B the strength

of patient tolerance to treatment (i.e. B is inversely correlated

to side effects of treatment). For t [ [0,T], the class of

admissible controls was set to

U ¼ fuðtÞ piecewise continuous j 0 � uðtÞ � 1g,

and u* was found such that max0�u�1 J1(u) ¼ J1(u�), which

minimized tumour mass and therapy administration, and

maximized effector cell and IL-2 concentration. A down-

side to the model was that at the end of treatment, tumour
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mass tended to start regrowth. Ghafferi & Naserifar [39]

improved upon the model of Burden et al. [38] by including

a linear penalty, 2vy(tf ), where v is constant, y is the quan-

tity of cancer cells and tf is the final time-point of observation,

such that their objective functional is J2(u) ¼ 2vy(tf ) þ J1(u)

(note that 2vy(tf ) is the terminal payoff for J2(u), as defined

above). The updated objective functional allowed for identifi-

cation of a treatment that stops tumour regrowth and also

acts faster than the treatment identified with J1(u).

Similarly, Castiglione & Piccoli [40] used optimal control

for a model they developed to investigate dendritic cell vac-

cine (DCV) therapy for solid avascular tumours. For N total

number of vaccinations and h total time for one vaccination,

the space of admissible controls, U, was taken to be

U ¼ fus ¼ S [ USg,

where S ¼ fti : i ¼ 0, . . ., N 2 1, 0 � t0 � T 2 hg is in the space

of DCV injections schedules US, and for every S [ US, the

control u was taken to be

us(T) ¼
XN�1

i¼0

�u(t� ti)x[ti ,tiþh], ð4:4Þ

where �u : ½0,h� 7! ½0,�V�, �V, maximum vaccine amount and x

the indicator function. For every us, the therapy consisted of

vaccine injections, modelled by �u, at time-intervals [ti 2 h,

ti] for all ti in S. The objective functional (here termed the

cost functional since it was minimized) was taken to be the

final value of the tumour mass M, and the optimal control

problem was stated as follows: for initial condition x0, what

is the schedule S [ US such that M attains a minimum? The

problem stated as such is known as the Mayer form, which

can be used when the running payoff, r, is zero in equation

(4.2). The authors took T ¼ 6 months, N ¼ 10 DCV injections

and h ¼ 0. An initial schedule S0 was chosen randomly and

2000 optimization steps were taken to find the optimal �S,

which resulted in almost complete clearance of a tumour.

Nevertheless, resurgence of tumour cells occurred between

vaccinations and the final value of the tumour mass was

highly dependent on the timing of the last vaccination.

In order to correct for this effect, Piccoli & Castiglione [41]

expanded the cost functional in [40] to also minimize the time

during which the tumour is above a maximum mass, Mmax,

necessitating a switch back to the Bolza form for their objective

functional. The authors emphasized that the optimal injection

schedule u* obtained is highly dependent on the parameter

values and initial conditions of the system, indicating that the

parametrization of the system from patient characteristics or

other relevant knowledge should be performed carefully.

Castiglione & Piccoli [42] further expanded the cost functional

in [41] to include, in addition to the previous constraints,

drug holidays and minimization of vaccine injected to lower

toxicity. The authors also considered different types of cost

functions: continuous, impulsive (similar to equation (4.4),

but with h ¼ 0), or hybrid (equation (4.4), h= 0), to take into

account the different scales between duration of drug injection

and tumour growth. The hybrid method was found to be most

effective for their system and the optimal treatment schedule

that was identified consisted of a high initial dose and repeated

smaller follow-up doses.

One can find further examples of optimal control theory

applied to immunotherapy in [43,44]. Notably, both studies

layer an optimal control approach upon previously
developed cancer immunotherapy models. Similarly, the

examples discussed above of optimal control theory applied

to cancer immunotherapy show that the controls are devel-

oped slowly, with complex control functions often built

upon more simple and established ones.
4.2. Genetic algorithms
For computational agent-based models, function optimizers

such as genetic algorithms (GAs) are more suitable. GAs

are part of a class of evolutionary algorithms that work as

follows: a set of n initial binary strings, fS(1)
i gn

i¼1, sometimes

termed ‘chromosomes’, representing possible solutions to

the problem of interest are processed via an evaluation func-

tion, Ei ¼ Ei(Si), which gives a measure of the string’s

performance, and a fitness function, Fi ¼ Fi(fEig), that com-

pares the performance of all the strings to each other. In the

intermediate selection phase, strings S(1)
i are kept and dupli-

cated with probability proportional to their respective

fitness functions, Fi. The strings of this intermediate

population, fS(1*)
i g are then recombined with each other by

cross-over and mutated at a low rate to obtain a new gener-

ation of strings, fS(2)
i g (note that the i do not represent the

same string between the generations (1), (1*) and (2)). This

process is repeated until an ‘optimal’ string is found, either

via running the algorithm for a fixed number of generations,

or until a string is found that surpasses a threshold set by the

fitness function. This optimal string, like u* in optimal control

theory, represents an optimal therapy solution given con-

straints imposed by the evaluation and/or fitness functions.

Importantly, an agent-based or other computational model

can be run with any possible therapy (string), and the results

can be used to determine the output of the evaluation func-

tion, thus the optimal string will give the optimal therapy

vis-a-vis the computational model. We have described the

‘canonical genetic algorithm’ [45] originally developed in

[46], and there exist many modifications that will not be

presented here [45,47].

Lollini et al. [48] set out to use a GA to develop an optimal

vaccine schedule for the agent-based SimTriplex model [33]

described in §3. The Triplex vaccine is a cell-based vaccine

that stimulates an immune response via engineered HER-2/

neu-positive cells that express allogenic MHC class I

molecules (for increased recognition by CD8þ T cells) and

IL-12, which boosts both humoral and adaptive immunity

[49]. The GA was initialized with 80 binary 1200-bit strings,

where each bit represents a time-step where a vaccine injec-

tion is/is not (1/0) given. For each string, the SimTriplex

simulator was used to determine mouse survival time (s)

and maximum number of cancer cells in the transient (N1
cc)

and steady (N2
cc) tumour growth phases. The evaluation

function was then taken to be

f(n, s,b) ¼ n2

s
� b, ð4:5Þ

where n is the number of injections specified by the test string,

andb ¼ b(N1
cc, N2

cc) is proportional to the maximum number of

cancer cells. Note that in this implementation, the aim was to

minimize the fitness function. Via tournament selection (the fit-

ness functions of two or more strings are compared and the

probability of selecting a string is proportional to the fitness

ranking of the string), followed by mutation and elitism (the

best strings are not mutated), an optimal string (i.e. vaccination
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schedule) was selected. Also, in this case, equation (4.5) was

referred to as the ‘fitness’ function, which is not to be confused

with our definition above.

An extension of this fitness function was applied in the

algorithm in [48] which incorporated several instances of

in silico mice with varying immune backgrounds to choose

the optimal vaccination schedule, S*. This schedule was

applied to two sets of 100 virtual HER-2/neu-positive mice

and resulted in 90% survival rate (this is in comparison to a

chronic protocol, which requires four vaccinations in a

2-week ‘on’ and 2-week ‘off’ protocol, over the course of at

least 1 year, and has 100% success rate, but is not realistic for

clinical development). A previous ‘trial-and-error’ schedule

was found to reduce the number of injections by approximately

27% over the chronic schedule, whereas the one identified by

the GA reduced it by approximately 42%, yielded excellent sur-

vival, and generated similar immune dynamics to the current

protocol. In a follow-up study, Palladini et al. [34] showed

excellent agreement between the in silico predictions and

in vivo experiments, and made additional observations, such

as the importance of vaccination density in the early phase of

the immune response and dependence of vaccine success on

age of the mouse. GAs and evolutionary algorithms have

also been used to identify potential epitopes for vaccine

development [50], to develop an initial guess for a discrete

optimal control problem based on the model in [42,51], and

to solve a multi-objective optimization problem for a model

of combination chemo- and immunotherapy [52].

By example of optimal control theory and genetic algorithms,

we have shown how mathematical methods in optimization

used in conjunction with appropriate models yield treatment

schedules derived in a systematic, rather than experimental or

computational ‘trial-and-error’ method, that can be used not

only to create optimal treatment schedules, but to also better

understand immune response to treatment, such as the obser-

vations obtained from both methods above to the relative

importance of early versus late immunization protocols.
5. Challenge: design and identification of
combination treatment regimens

Just as combination therapy using non-immunotherapeutic

approaches is a mainstay in cancer treatment, combination

immunotherapy either with just immunotherapeutic agents

or with immune- and non-immunotherapeutic agents can

and should be designed rationally to maximize treatment

response [11,17]. Modelling can contribute to this process as

it can aid in the development of a mechanistic understanding

for effectiveness of combination versus monotherapies and

make the search for an optimal combination therapy more effi-

cient. For example, de Pillis et al. developed a system of six

ODEs for combination chemo- and immunotherapy that

included tumour, NK, CD8þ and white blood cells, as well

as bloodstream concentrations of chemotherapy (doxorubicin)

and immunotherapy drugs, the latter of which include

tumour-infiltrating-lymphocyte (TIL) therapy and IL-2 stimu-

lation [53]. The model extended an earlier model by de Pillis

et al. [54] to include more recent biological findings. The

effect of chemotherapy, M, was modelled using a saturation

term, 1 2 e2dM, where d represents the efficacy of M, and the

boost to CD8þ activity by addition of IL-2 was modelled

using a Michaelis–Menten interaction term, similar to what
we see in equation (3.1) from [19]. Cell–cell interaction

terms were modelled using previously fit equations, often of

Michaelis–Menten type. For example, the CD8þ T-cell

stimulation by the tumour was taken to be

dL
dT
/ j

T
k þ T

L, ð5:1Þ

where T and L represent the tumour and CD8þ populations,

respectively, and j and k are parameters. Following [54], several

parameters of the model, which collectively determine

CD8þ T-cell efficacy at tumour cell killing, were fitted to

patient-specific data. The authors found that the success of com-

bination versus monotherapy differed based on initial patient

characteristics. For example, patients with higher CD8þ T-cell

efficacy would benefit more strongly from immuno- or

combination therapy than patients with low efficacy, since an

injection of IL-2 for the latter group would result in more

CD8þ T cells, but not enough to increase overall anti-tumour

response. Notably, had the authors modelled an immunother-

apy that altered these variables directly (such as injection of

CD8þ T-cell costimulator agonists that boost CD8þ effector

activity), they would have obtained different success rates for

the therapy combinations. Nevertheless, the model can serve

as a forerunner to models parametrized with patient-specific

parameters that can then be used to identify optimal therapy

combinations.

Targeted therapies, such as antibodies against the

breast cancer cell receptors HER2 and EGFR, elicit a strong,

adaptive immune response, raising the implication that com-

bination immunotherapy with targeted therapy can achieve

a synergistic anti-tumour immune response [55,56]. The

humanized antibody to VEGF, Avastin (bevacizumab), is

FDA-approved for a number of different cancers, and in

addition to blocking the pro-angiogenic activity of tumour-

produced VEGF, also blocks the immunosuppressive activity

of VEGF, which includes suppression of DC maturation [57].

Soto-Ortiz et al. [58] hypothesized that a combination therapy

of an anti-VEGF antibody followed by administration of DC

cells would result in a strong anti-tumour response by the

immune system. The authors built upon a model that focuses

on tumour–immune interactions [59] to develop a system of

18 ODEs that include tumour, immune and vascular endo-

thelial cells, and a number of cytokines and growth factors

including IL-2, TGFb and VEGF (both TGFb and VEGF are

considered to be immunosuppressive). The authors simulated

treatment with injection of anti-VEGF antibody and/or unsti-

mulated DC cells and analysed the results numerically. The

simulations showed that for tumours with low immunosup-

pression and high antigenecity, which is represented by a

parameter that models the strength of maturation of DCs

after encounter with a tumour antigen, the immune system

can keep the tumour at a small size and administration of

either therapy can kill the entire tumour. When tumour anti-

genecity was lowered and immunosuppression increased, the

simulated tumour grew and vascularized without therapy.

The authors observed that for tumours with high immunosup-

pression, DC therapy alone was not sufficient to kill the tumour

without additional modification of the immunosuppressive

microenvironment, which is an example of a prediction for

effectiveness of a mono- versus combination therapy when

given initial system parameters. The authors made a number

of other observations regarding the interdependencies of

tumour growth, antigenecity and immunosuppression that
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would not have been possible in a simpler model. A prediction

arising from this analysis was that there exists a therapeutic

window for optimal effectiveness of different immunothera-

pies that is dependent on the tumour size and growth rate,

and thus knowledge of these tumour characteristics can be

used to design the optimal mono- or combination therapy for

a given tumour/patient. Moreover, synergy in combination

therapy was predicted to occur when immunotherapy fol-

lowed anti-VEGF treatment, thus the model was able to

address questions of efficacy prediction and optimal time

and selection of treatment, and hence effectively address all

the major challenges we have discussed.

Models for various combinations of traditional and immu-

notherapies have been developed [60–63], which generally

build on earlier tumour–immune, monotherapy or even com-

bination therapy models. For example, Chareyron & Alamir

[64] extended earlier models developed by de Pillis et al.
[28,65] to include chemo- and immunotherapy and used con-

trol theory to determine optimal therapy protocols, again

addressing multiple major challenges discussed herein. Such

models can give insights as to mechanism and efficacy of

combination therapies in order to guide clinical development.
6. Recommendations
6.1. Intracellular and multi-scale modelling
Most current immunotherapy models are developed at the

resolution level of cell populations. However, modelling intra-

cellular signalling cascades and metabolic responses in specific

cell types can give insight into how therapies can act at the

intracellular level, and what the relative contribution of differ-

ent therapies is to cell response: intracellular versus cell–cell.

As in the case of population-level models of immunotherapy,

where the therapy component is often added to an existing,

validated model of tumour–immune interactions, the intra-

cellular models of therapy can build on known signalling

pathways that interact with proposed therapies in tumours

and T cells. Intracellular signalling models have been devel-

oped for cancer signalling pathways for a variety of tumour

types [66,67], and can be modified to include subpathways of

interest, such as induction of PD-L1 or secreted immunosup-

pressive factors. Saez-Rodriguez et al. [68] built a Boolean

network model of a signalling network activated upon T-cell

receptor and coreceptor activation and validated it using

both the literature and experimental wild-type and knock-out

data that matched in silico predictions. This network could be

made more specific for different T cells (CD4þ, CD8þ, Treg),

receptors of therapeutic interest (e.g. CTLA-4, PD-1) and

their downstream signalling targets, which can be added to

the model in order to examine how therapy would affect

T-cell activation status. Other intracellular-level models that

can be incorporated into a multi-scale setting include models

at TCR-level resolution, which are particularly important for

therapies that target the TCR, such as CAR T-cell therapies.

For example, James et al. [69] derived a logistic-type growth

equation for chimaeric CAR to show that in a high-antibody

environment, T-cell death and exhaustion or CAR downmodu-

lation acted as limiting factors to CAR activity. Also, optimal

CAR densities/cell were derived for maximal efficacy. Modifi-

cation of networks and other intracellular models identified in

the literature may require additional experimental input,

depending on the current availability of data. Such models
would allow a more granular systems-level analysis of mechan-

isms of pharmaceutical action and subsequent therapy

optimization and combination. Furthermore, since immu-

notherapy drugs can act on multiple cell targets, for example,

CTLA-4 is expressed not only on CD8þ T cells but also Tregs,

development of multi-scale models that incorporate both the

interactions of different immune and tumour cell types and

their respective intracellular dynamics would have the power

to elucidate the multi-scale mechanisms of therapy action.

Indeed, multi-scale modelling has already been identified as

an important method for generating systems-level predictions

of cancer progression and therapy effectiveness [70,71].

6.2. Addressing toxicity
Immune-mediated toxicities, including retinal dysfunction,

liver toxicity and pancreatitis can occur upon administration

of immunotherapy. Toxicity, which is generally caused by

targeting of self-antigens by the treatment-strengthened

immune response, is often associated with clinical response

[72]. Incorporation of immunotherapy-related toxicity into

models can result in estimates of therapy dose that take

into account toxicity-related effects, as was already done in

[38]. Development of more mechanistic models can help to

optimize therapies to maximize effectiveness and minimize

toxicity if mechanisms for each are not entirely overlapping.

This may be especially important in models of combination

immunotherapy, where toxicity-related events tend to be

more common than with monotherapies [73]. One route of

interest towards this goal can be a joint experimental-

modelling focus on Fc–FcR interactions. Immunomodulatory

mAbs such as ipilimumab, a mAb to CTLA-4, are most often

of IgG isotope: in addition to containing two antigen-binding

(Fab) domains, they contain a fragment crystallizable (Fc)

‘tail’ that can bind Fc receptors (FcRs) found on effector cells

such as macrophages and DCs. Fc–FcR interactions have

been shown to contribute to cytokine-related adverse events

during mAb treatment, and hence modulation of these inter-

actions during mAb design could help to decouple

therapeutic from toxic responses. A better mechanistic under-

standing of Fc–FcR engagement and response during

treatment could help lead to rational design of mAbs that

reduce adverse events related to Fc–FcR interactions (reviewed

in [74]). By developing models of Fc–FcR action in concert

with experimentalists, modellers can hasten this process

and use their models to guide development of optimized

therapy options.

6.3. Experimental and clinical validation of
immunotherapy models

We have shown how the models have been retrospectively

(e.g. [26,54]) or prospectively (e.g. [34]) experimentally vali-

dated for a portion of their predictions, but do generally

provide more predictions than are validated. An example of

a cancer immunotherapy model that has been prospectively

validated can be found in Elishmereni et al. [75], who

extended a previously published system of ODEs describing

the interaction of the cytokine IL-21 with immune and

tumour cells to include pharmacokinetic (PK) and pharmaco-

dynamic (PD) data on the IL-21 effect in tumour-bearing mice

from an earlier preclinical study. The authors used a ‘mul-

tiple-modelling’ approach to determine the most robust
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model that fit the available data. The model was retrospec-

tively validated using additional data from the same

preclinical study. The model was then used to search for a

treatment regimen that would be more effective than the

one identified in the preclinical study. Model simulations

showed that fractionating a daily dose of 50 mg IL-21 into

two daily doses of 25 mg per day decreased overall tumour

volume, which was verified in tumour-bearing mice to

whom the treatment regimen was applied. The model also

showed that a daily dose of just 12 mg d21 would give similar

results to 50 mg d21, which was also prospectively validated

in mice. It is possible that a control algorithm such as

described in §4 would have produced an even more effective

regimen that could be prospectively validated in a similar

manner. Similarly, Gorelik et al. [76] used, as a starting point,

a previously published model of vascular tumour growth,

and used patient-specific data along with mouse xenograft

data of the patient’s tumour to develop a combination che-

motherapy regimen. Model parameters were partially fit

using an evolutionary optimization algorithm (the cross-

entropy, CE, method) [77]. Xenograft data were scaled back

to the patient using gene expression ratios between the patient

and xenograft tumours. This regimen was then applied to the

patient, which stabilized the metastatic progression. While the

therapy regimen did not include immunotherapy, the method

of translation from model to clinical application can be applied

to combination therapies involving an immunotherapy

component.

In the modelling/experimental cycle, models are devel-

oped and parametrized using a portion of existing data,

and often partially validated using data that are already

available, but have not been used in model development.

Nevertheless, a model will often provide novel predictions

of system behaviour whose results are not available for test-

ing given current data. Testing these predictions is most

often done through new or existing collaborations between

modellers and experimentalists or clinicians. In some cases,

publicly available data may also be used. While there is an

increasing number of such collaborations, as well as research

groups that integrate both areas of expertise, this requirement

could be considered the main bottleneck for wider validation

and use of mathematical and computational models for the

purpose of developing novel immune therapies for cancer

patients. Both communities would benefit from outreach

efforts for this purpose. Further recommendations on extend-

ing existing models for experimental and clinical applications

can be found in [78,79].
7. Conclusion
Immunotherapy is one of the most exciting recent developments

in cancer treatment, with new drugs coming on the market at an

increasing rate, for an ever-larger number of cancers. But, as this

review highlights, many unanswered questions remain, and the

field faces several challenges. Mathematical modellers have

addressed these challenges as early as the 1980s (e.g. [80]). The

models we have reviewed here and their use in understanding

various aspects of immunotherapy crucial for effective treat-

ment, show that mathematical and computational models can

play the role of a key enabling technology to improve the appli-

cation of this type of treatment. However, as this review also

discusses, there is much work to be done. Almost all immuno-

therapy-specific modelling efforts we could identify focus on

the population level, even though it is clear that a multi-scale

approach is needed that also incorporates the molecular scale.

To aid this process and to stay at the forefront of immunother-

apy technology development, high-throughput data derived

from technologies such as microarrays and RNA-Seq for cell-

level transcriptional information and mass cytometry (CyTOF)

for population-level marker distribution can be incorporated

into model development [81].

Collaborations between modellers, basic scientists and clin-

icians are crucial for the realization of the translational potential

of mathematical modelling in the service of a precision medi-

cine approach to this revolutionary new cancer treatment.

As many of the models show, parameter values matter greatly

in predicting treatment outcomes and devising optimal treat-

ment approaches. Personalized models that can be calibrated

with parameters characteristic of an individual patient will

turn mathematical models into powerful tools that can play

an essential role at the bedside, not just in the laboratory.
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