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Arthropod flow-sensing hair length ranges over more than an order of magni-

tude, from 0.1 to 5 mm. Previous studies repeatedly identified the longest hairs

as the most sensitive, but recent studies identified the shortest hairs as the most

responsive. We resolved this apparent conflict by proposing a new model,

taking into account both the initial and long-term aspects of the flow pattern

produced by a lunging predator. After the estimation of the mechanical

parameters of hairs, we measured the flow produced by predator mimics

and compared the predicted and observed values of hair displacements in

this flow. Short and long hairs respond over different time scales during the

course of an attack. By harbouring a canopy of hairs of different lengths, form-

ing a continuum, the insect can fractionize these moments. Short hairs are

more agile, but are less able to harvest energy from the air. This may result

in longer hairs firing their neurons earlier, despite their slower deflection.

The complex interplay between hair agility and sensitivity is also modulated

by the predator distance and the attack speed, characteristics defining flow

properties. We conclude that the morphological heterogeneity of the hair

canopy mirrors the flow complexity of an entire attack, from launch to grasp.
1. Introduction
The ability of animals to sense biotic and abiotic changes in their environment

depends greatly on the performance of their sensors. The peripheral sensory

structures and their associated sensory neural circuits have evolved to deal

with complex sensory information, by matching their properties to the character-

istics of the most crucial sensory stimulus they need to detect [1,2]. Arthropods

can detect the movement of the surrounding fluid, usually through the deflection

of long filiform hairs from their resting position [3]. The survival of wood crickets,

living on forest litter, is at least partly dependent on their ability to detect their pre-

dators with hundreds of these filiform hairs, each of which is lodged into a socket

and connected to a single neuron [4]. When a hair moves to a given angle from its

resting position, it transfers enough energy to the attached neuron to trigger an

action potential. The disturbances of air flow upstream of running spiders have

been assessed by particle image velocimetry and computational fluid dynamics

with the finite-element method [5,6]. It appears that the perturbation of the sur-

rounding air flow in front of running arthropods is similar to the perturbation

produced by the predators of fish prey in water [7]. The relationship between

attack speed and the maximal distance at which the cricket can perceive the

danger is parabolic. This implies an immediate perception of the danger, from

the onset of predator attack, at the distances and speeds observed in nature [6].

The cricket cercal system is known to be one of the most sensitive sensory systems

in existence, and it is widely assumed that increasing hair length is associated

with greater individual hair sensitivity [8,9]. However, longer hairs are heavier

and more inert, and would therefore be expected to be less responsive. These
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conflicting views may result from the use of different criteria

for optimality, but they may also be due to differences in

the nature of the stimuli used in experimental studies. In

most studies, the filiform hairs were considered to respond to

highly controlled oscillating flows [8–10] or to generic impulse

flows [11]. Historically, the cricket mechanosensor has been

described as an inverted pendulum, a second-order mechan-

ical system, and studied through engineering approaches,

through the determination of its harmonic response. However,

studies of biologically relevant stimuli focusing on the flow

generated by running spiders have shown that the flow is

neither a simple sinusoidal nor an impulse flow, instead a

hybrid between the two [5,6].

Elucidating the response of sensors to this complex stimu-

lus will provide us with information about their specific

functionality. We know, for instance, that short hairs are sensi-

tive to high-frequency flows, but does it translate to an increase

in their sensitivity to a specific predator attack strategy? Hair

responses to biologically relevant stimuli have been studied

by Kant & Humphrey [12] and, more recently, by Cummins &

Gedeon [11]. In earlier models, preceding that of Kant and

Humphrey, the hair was considered as a harmonic oscillator,

oscillating in a harmonic flow, without taking into account its

initial motion. Kant and Humphrey showed that early move-

ments were of key importance and could not be neglected.

They predicted the deflection of hairs of various lengths sub-

jected to a flow generated by an accelerating sphere. They

modelled the flow as an accelerating pulsation that decreased

in magnitude over time and with increase in the distance

from the source. This temporal decay was approximated by a

Gaussian function, itself the function of a binary rectangular

switch that produces the pulsation resulting in the impulse

characteristics. The authors were interested in both the increase

and decay of the flow perturbation. The use of this approxi-

mation enabled them to model the flow boundary layer and,

thus, the drag forces promoting hair deflection. Based on the

results they obtained with this novel approach, they claimed

that shorter hairs could respond more sharply and with a

greater amplitude than longer hairs. Cummins & Gedeon

[11] calculated the impulse response function (IRF) of the

hairs and their response to a rapid change, as a Dirac pulse.

They did not convolve this IRF with different air velocities to

predict the hair response to relevant signals but restricted

their analysis to the IRF of different arrangements of hairs.

Their prediction of an earlier and stronger reaction of shorter

hairs is consistent with the findings of Kant and Humphrey,

but completely opposed to previous thinking, ascribing low

sensitivity to short hairs. Unfortunately, the temporal changes

in flow velocity and acceleration generated by an approaching

predator and the deflection of the stimulated hairs were not

quantified in any of these studies, leaving these more realistic

situations untested. In this study, we consider the entire

temporal history of the flow field generated by a predator,

rather than focusing exclusively on a sudden flow generated

by an accelerated cylinder, as in the study by Kant and Hum-

phrey. We aimed to find an explanation for the presence of a

continuum of hair lengths in real hair canopies, as observed

in crickets. The resolution of the discrepancy between short-

hair responsiveness and long-hair sensitivity required the

deconstruction of a long-held analogy in which the cricket

cercus is compared with the hardware implementation of a

spectrum analyser. This deconstruction is described in our

general theory of hair moving in impulsive transient flow.
This model was validated on experimental data on large deflec-

tions and extrapolated to smaller deflections, to resolve the

conflict and demonstrate that both short and long hairs are

optimal, but in response to different inputs. The resolution of

this conflict is possible only with the use of new and com-

prehensive optimality criteria based upon both sensitivity

and responsiveness.
2. A general theory of hair moving in impulsive
transient flows

Both this study and that of Kant & Humphrey [12] involve the

development of a physical–mathematical model simulating

the response of a filiform hair to an airflow pulsation Vf(t) gen-

erated by the sudden attack of a predator running at a velocity

Vp. Our model of hair deflection is based on that of Kant and

Humphrey. The main difference between the two approaches

concerns the choice of temporal history of predator approach,

and, thus, flow conditions. In the Kant and Humphrey

model, the predator stops immediately after making a very

rapid movement, producing an instantaneous flow impulse

that attenuates in a Gaussian fashion (figure 1a). By contrast,

we chose to model the entire time history of the flow produced

by the predator, from its start until eventual prey capture

(figure 1b). The knowledge of the temporal evolution of hair

deflection during the approach of a predator will inform us

of the specific capability to detect more accurately an attack

at a particular velocity.

We provide below a detailed description of the differences

between the two approaches. We first explain the equation for

the motion of a hair, linking the hair deflection angle u to the

total torque T due to the drag force, added mass force and

pressure gradient force (figure 2a, §§2.1 and 2.2). The total

torque T acting on a hair depends on the deflection of the

hair itself, as the forces applied to the hair depend on its

motion relative to the surrounding fluid Vf: Vr ¼ Vf � y _u

(figure 2a). We separated all components relating to hair deflec-

tion from those relating to flow velocity in the expression of

torque. This made it possible to express the forcing function

QSC, related only to fluid velocity Vf and independent of hair

deflection angle u. We describe (i) the analytical expression of

pulse fluid velocity VKH
f used in the Kant and Humphrey

model and its corresponding Fourier series VmKH
0 and (ii) the

numerical temporal flow generated by a simulated predator

attack VSC
f and its corresponding Fourier series VmSC

0 , the

input of our model. In §2.3, we focus on our choices for the

boundary layer effect, describing the modification of flow vel-

ocity Vf by the hair substrate (figure 2b). Section 2.4 provides a

resolution of the equation of motion and the development of a

general analytical solution. After defining the boundary con-

ditions for hair deflection, we obtained a general solution

superimposing (i) the homogeneous solution of the equation

of motion, i.e. the natural response of the system, and (ii) the

particular solution of the equation of motion, i.e the forced

response of the system. Finally, §2.5 describes the relationship

between hair sensitivity and agility.

2.1. Modelling the intrinsic response of a hair
A hair is represented as a straight cylinder of length L and

diameter d, standing vertically on a flat plate and rotating

around its base (figure 2a). The conservation of angular
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momentum for the motion of a filiform hair, approximated as a

forced, damped harmonic oscillator, is given by

Ih
€uþ Rh

_uþ Shu ¼ T, ð2:1Þ

where u (rad), _u (rad s21) and €u (rad s22) are the angular displa-

cement, velocity and acceleration of the hair about its pivot

point, respectively. Ih (N m s2 rad21) is the moment of inertia

of the hair; Sh (N m rad21) and Rh (N m s rad21) are the hair tor-

sional restoring constant and damping constant, respectively;

and T (N m) is the total torque acting on the hair. This model

was introduced by Humphrey et al. [9].

The joint linking the hair to the cuticle is modelled as a

linear viscoelastic element that resists hair deflection u with

a torque 2Shu and also experiences a frictional torque Rh
_u,

reflecting the rotational energy dissipated by the hair at the

joint. In the Kant and Humphrey approach, the total torque

acting on the hair is determined from the hair and flow

geometry and is given by

TKH ¼
ðL

0

(FD þ FAM þ FPG)y dy, ð2:2Þ

where (i) FD (N m21), (ii) FAM (N m21), and (iii) FPG (N m21)

are forces per unit length acting on the hair, due to (i) the vis-

cous drag, (ii) the added mass of air around the hair, and

(iii) a pressure gradient force, respectively. The Reynolds

number is low, Re ¼ Vrd/n , 0.1, with d the filiform hair

diameter (ranging from 5 to 10 mm) and n ¼ 1.56 � 1025 m2

s21 the kinematic viscosity of air. The viscous forces thus

dominate, and the drag force is given by the classical Oseen

[13] equation. FD simplifies to

FD ¼
pmVr

2
, ð2:3Þ
with m ¼ 1.81 � 1025 kg (ms)21 being the dynamic viscosity

of air. The added mass force FAM is due to the added mass

of air accelerated with the hair it surrounds and is given by

FAM ¼ p
d
2

� �2

r _Vr: ð2:4Þ

The pressure gradient force FPG is the force required to

accelerate the air that would occupy the volume of the

length of the hair if it were absent and is equal to

FPG ¼ p
d
2

� �2

r _Vr, ð2:5Þ

where Vr ¼ Vf 2 Vh (m s21) is the relative velocity of the air

(Vf ) with respect to that of the hair (Vh). The velocity of the

hair depends on its distance y (m) from the substrate and is

given by Vh ¼ y _u. Replacing this value in the integral of

total torque TKH gives

TKH ¼
ðL

0

pm

2
(Vf � y _u)þ p

d
2

� �2

r( _Vf � y€u)þ pr
d
2

� �2

_Vf

 !
y dy

ð2:6Þ

and

TKH ¼
ðL

0

pm

2
Vf þ p

d
2

� �2

r _Vf

 !
y dy� p

d
2

� �2
rL3

3
€u

� pmL3

6
_u: ð2:7Þ

Substituting equation (2.7) in the equation of motion (2.1)

gives

(Ih þ Ir)€uþ (Rh þ Rm) _uþ Shu ¼ QKH, ð2:8Þ
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with

Ir ¼ p
d
2

� �2
rL3

3
ð2:9Þ

and

Rm ¼
pmL3

6
ð2:10Þ

being additional inertia and damping contributions due to

the air medium, respectively. The quantity QKH is the forcing

function used by Kant and Humphrey:

QKH ¼
ðL

0

pm

2
Vf þ p

d
2

� �2

r _Vf

 !
y dy: ð2:11Þ

In our approach, previously described for harmonic

flows in the study by Bathellier et al. [14] and generalized

here to impulse flows, the total torque acting on the hair is

defined as

TSC ¼
ðL

0

cos (a)(FAM þ FD)y dy ð2:12Þ

with

FAM ¼ rp
d2

4

@(Vf � Vh)

@t
ð2:13Þ

and

FD ¼
pm

2
(Vf � Vh) ð2:14Þ
and cos(a) reflecting the effect of the preferential directio-

nality of the hair and a (rad) being the angle between the

direction of flow and the preferential orientation of the hair.

Replacing equations (2.13) and (2.14) in equation (2.12)

gives

TSC ¼ cos (a)

ðL

0

pm

2
Vfrþ p

d2

4
_Vf

� �
y dy� pmL3

6
_u

� p
d
2

� �2
rL3

3
€u: ð2:15Þ

Substituting equation (2.15) in equation of motion (2.1) gives

(Ih þ Ir)€uþ (Rh þ Rm) _uþ Shu ¼ QSC: ð2:16Þ

The quantity QSC is our forcing function:

QSC ¼ cos (a)

ðL

0

pm

2
Vf þ p

d2

4
r _Vf

� �
y dy: ð2:17Þ

Thus, in our model, equation (2.16) is equivalent to eqn (8) in

the Kant and Humphrey model. In summary, a first differ-

ence between the two models is the smaller contribution of

the time derivative of flow velocity to the forcing function

of equation (2.17) in our model. We do not explicitly include

the pressure gradient force FPG in the balance of forces acting

on an element of hair length dy, as it is already contained in

FAM. We chose to neglect this pressure gradient force, as we

estimated that its analytical expression introduced by Kant

and Humphrey was redundant with the added mass force.

Moreover, as explained in electronic supplementary material,
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appendix A, the added mass force and the pressure gradient

force are negligible compared with the drag force.

2.2. Modelling forcing flows away from the hair
In the forcing function of Kant and Humphrey, QKH, the vel-

ocity of the flow Vf is the analytical solution of a flow field

parallel to the longitudinal axis of an infinitely long cylinder

representing the cercus. The authors assume that the velocity

distribution due to a flow produced by a predator lunging

towards its prey will consist of linearly superposed harmonic

sinusoids with arbitrary frequencies, vm ¼ 2pmDf, with Df
being the frequency step of the discrete Fourier transform

of Vf. The summation of these harmonic sinusoids results

in the following expression of the velocity flow:

VKH
f (t) ¼

X1
m¼0

Vm
0 KH e�ivmt, ð2:18Þ

where V0 KH
m is the amplitude of the sinusoidal wave associated

with frequency vm. In the Kant and Humphrey model, the flow

results from the sudden movement of a predator in the vicinity

of its prey, represented by a pulsation velocity function with a

rich frequency content. They chose to use a temporal Gaussian

pulsation that was a function of a binary rectangular switch, as

they were interested in both the development of this pertur-

bation and its decay. Thus they modelled the movement of a

hair due to a infinitely quick acceleration of an incoming pred-

ator at a distance zp from its prey, moving at a velocity Vp and

stopping immediately after the start of the movement. The dis-

tance from the prey thus remains de facto unaltered in their

model. In their model, the frequency content of the stimulus

flow is not a function of the velocity of the attack, but is instead

determined by the characteristic duration of the pulsation s ¼

(2b)21/2. This duration varies between 7 and 220 ms. The

impulse flow can thus be described as follows:

VKH
f (t) ¼ Vp 1þ

zp

D

� ��3

e�bjtj
2

: ð2:19Þ

This equation of impulse flow can be expressed in terms of a

Fourier series, in the same spirit as equation (2.18); Vf
KH can

also be expressed as

VKH
f (t) ¼

X1
m¼0

Vm
0 KH(zp,b) e�ivmt, ð2:20Þ

with the amplitude of the sinusoidal waves associated with the

frequency vm:

Vm
0 KH(zp,b) ¼ Vp 1þ

zp

D

� ��3 1

p

ðp
�p

e�bt2

e�ivmt dt: ð2:21Þ

We chose to use the discrete Fourier series of more bio-

logically relevant flows directly, rather than using a forcing

function to represent the Gaussian decay of the flow. These

flows correspond to the entire temporal flow produced by a

piston mimicking the predator, measured as described in

electronic supplementary material, appendix B.

2.3. Modelling forcing flows in the vicinity of the hair
and cercus

The flow velocity Vf(t) is modified in the vicinity of the hair

substrate (figure 2b). We describe here the Kant and

Humphrey expression for the boundary layer, and the

boundary layer effect in their model. At this scale, Vf is not
merely a function of time t, but also depends on the distance

to the substrate y. The velocity of flow in this boundary

layer is expressed as Vf(y, t), with the boundary conditions

Vf(1, t) ¼ Vf(t) and Vf(0, t) ¼ 0.

Kant and Humphrey solved their equation of motion (2.8)

by determining an explicit analytical form of the velocity Vf
KH

that was a function of the boundary layer effect dependent on

the distance y from the surface of the cercus. They used the

Fourier decomposition of Vf
KH(t) and estimated the boundary

layer affecting each harmonic component of the Fourier

series. The equation for a boundary layer in a harmonic oscil-

latory flow past a longitudinal cylinder (i.e. the cercus) was

given by Humphrey et al. [9]. The shape of this boundary

layer depends mainly on flow frequency and cercus diameter.

Assuming that Vf
KH(t) is the sum of sinusoidal flows of ampli-

tude V0 KH
m and frequency vm, Kant and Humphrey expressed

the velocity profile along component y as

VKH
f (y, t) ¼

X1
m¼0

Vm
0 KH e�ivmt 1� K0(lmR)

K0(lm)

� �
, ð2:22Þ

where lm ¼ (D/2)(ivm/n)1/2, the flow oscillation vm ¼

m(2pf ), R ¼ 1 þ y/(D/2), D is the cercus diameter, V0 KH
m is

the amplitude of the sinusoidal wave associated with the fre-

quency vm, n is the kinematic viscosity of the air and K0() is

the modified Bessel function operator of the second kind.

Equation (2.22) reflects the fact that non-harmonic flow in

the boundary layer over a substrate is the sum of the bound-

ary layers of each of its frequency-dependent components

[15]. Taking equations (2.11), (2.18) and (2.22), and using

Vf
KH(y, t) and its time derivative, Kant and Humphrey

defined the forcing function QKH as

QKH ¼
X1
m¼0

pm

2
� ivmp

d2

4
r

� �
Vm

0 KHKKH(vm, L) e�ivmt: ð2:23Þ

The parameter KKH in equation (2.23) encompasses the

boundary layer effect and was explicitly calculated by Kant

and Humphrey as

KKH(vm, L) ¼
ðL

0

1� K0(lmR)

K0(lm)

� �
y dy

¼ R2
L � 1

2
� RLK1(RLlm)� K1(lm)

lmK0(lm)
, ð2:24Þ

with RL ¼ 1 þ L/(D/2).

In our model, we chose to use another expression of the

velocity Vf (according to [16]):

VSC
f (y, t) ¼

X1
m¼0

Vm
0 SC e�ivmt 1� e�(1þi)

ffiffiffiffiffiffiffiffiffiffi
vm=2n
p

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y=D

p
 !

, ð2:25Þ

so that our forcing function becomes

QSC ¼ cos(a)
X1
m¼0

pm

2
� ivmp

d2

4
r

� �
Vm

0 SCKSC(vm, L) e�ivmt,

ð2:26Þ

with the boundary layer effect factor being

KSC(vm, L) ¼
ðL

0

1� e�(1þi)
ffiffiffiffiffiffiffiffiffiffi
vm=2n
p

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y=D

p
 !

y dy: ð2:27Þ

While the formulations are different between Kant and

Humphrey and ours, the underlying physics is identical,

as confirmed by the very similar numerical outputs of

equations (2.24) and (2.27).



1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

time (s) (×10–3)

ha
ir

 d
ef

le
ct

io
n 

an
gl

e 
q 

(°
)

natural response of the hair
forced response of the hair
total response of the hair
air flow velocity

Figure 3. Comparison of the natural and forced response components of the
total response (red) of a 500 mm long hair to a 20 Hz single-frequency air
flow impulse. The natural response of the hair is described by the homogeneous
solution of the equation of motion (2.34), whereas the forced response is
described by the particular solution of equation (2.34). The total response of
a hair is determined as the sum of its natural and forced responses.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170324

6
2.4. Synthesis: hairs moving under impulsive transient
flows

The final steps for solving the equation of a hair movement

consist in solving the second-order inhomogeneous differen-

tial equation (2.16). Here, we do not describe the resolution of

the Kant and Humphrey hair deflection equation, but rather

focus on the resolution of our model. We, however, followed

the method of Kant and Humphrey. Some of the following

steps are well known and kept here only for comprehensive-

ness. The general solution (u(t)) of equation (2.16) consists of

the homogeneous (uh(t)) and particular (up(t)) solutions [17].

The classical steps of solving such an equation (see electronic

supplementary material, appendix C) lead to

uSCðtÞ ¼
X1
m¼0

cosðaÞðpm=2� ivmpðd2=4ÞrÞVm
0 SCKSCðvm, LÞ

�ITvm
2 � ðRh þ RmÞvm þ Sh

vmiþ g2

g1 � g2

e�g1t � vmiþ g1

g1 � g2

e�g2t þ e�ivmt
� �

,

ð2:28Þ

where

g1 ¼ �Rh þ Rm

2IT
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRh þ RmÞ2

IT
2

� Sh

IT

s0
@

1
A

and

g2 ¼ �Rh þ Rm

2IT
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRh þ RmÞ2

IT
2

� Sh

IT

s0
@

1
A

and where, IT ¼ (Ih þ Ir) is the total moment of inertia. This

expression is similar to the solution of Kant and Humphrey,

except that the quotient in the sum factor of our equation (2.28),

which we will name the mechanical transfer function Fmec,

FSC
mec ¼

1

�ITvm
2 � i(Rh þ Rm)vm þ Sh

, ð2:29Þ

is different from the one appearing in Kant and Humphrey

equations (2.29), (2.31), (2.32) and (2.33):

FKH
mec ¼

1

V2�vm
2� 2iVzvm

¼ 1

Sh=IT�vm
2� iððRhþRmÞ=ITÞvm

ð2:30Þ

¼ 1

ð1=ITÞðSh� ITvm
2�ðRhþRmÞvmÞ

¼ IT:FSC
mec : ð2:31Þ

We give a new equation for the mechanical transfer function

FSC
mec because the use of the Kant and Humphrey equation of

FKH
mec leads to inconsistent results. We assume there might be

a mistake in their paper because we were unable to retrace

their results.

The disparity of formalism between the hair deflection

equations of Kant & Humphrey [12] and Bathellier et al.
[14] blurs the fact that the formalism used by Bathellier

et al. [14] is actually just a particular part of the general

Kant and Humphrey solution. Electronic supplementary

material, appendix A, highlights the analogies between the

model of Kant and Humphrey and our model.

In order to get an intuitive feeling of the internal working

of equation (2.28), we work through an example to determine

the deflection of a 500 mm hair, using a single mono-

frequency input. To achieve this, we first set the discrete fre-

quency step (frequency sampling interval) to Df ¼ 20 Hz and
Vm
0 ¼ 0 for all values of m, except for m ¼ 1 where V1

0 ¼ 1 m

s21. This results in the equation

Vf(t) ¼
X1
m¼0

Vm
0 e�ivmt ð2:32Þ

becoming

Vf(t) ¼ real(V1
0 e�i2pDft) ¼ cos(2pDft)V1

0 : ð2:33Þ

This temporal expression of velocity corresponds to a sinusoi-

dal wave flow of amplitude 1 m s21 and frequency 20 Hz. At

time t ¼ 0, the velocity is set to Vf(t ¼ 0þ) ¼ 1 m s21. Using

equation (2.28), we can derive the expression of the change

in hair deflection over time:

uðtÞ ¼ cosðaÞTFSC
mec

pm

2
� i2pDfp

d2

4
r

� �
Vm

0 SCKSCðvm;LÞ

2pDf iþ g2

g1 � g2

eg1t � 2pDf iþ g1

g1 � g2

eg2t þ e�i2pDft
� �

ð2:34Þ

equivalent to u(t) ¼ G1 eg1t þ G2 eg2t þ G3 e2i2pDft, with the

boundary conditions u(0) ¼ 0 and _u(0) ¼ 0. For short times

t� 1/2pf, the homogeneous part (G1eg1t þ G2eg2t) is much

larger than the particular part G3 e2i2pDft. The movement of

the hair is constrained by the boundary conditions at t ¼ 0

and is determined principally by the homogeneous coeffi-

cients. This means that the natural response of the hair drives

its behaviour at early time points, as shown in figure 3, in

which the general solution follows its homogeneous com-

ponent for times below 1 ms. For times exceeding 2.5 ms, the

general solution much more closely resembles the particular

solution, indicating that the movement of the hair is then

dependent principally on its forced response.

2.5. Hair agility and threshold angle of firing
The aim of this part is to describe the complex interplay

between hair sensitivity that will determine the maximal

angle of deflection of the sensory hair, and hair agility,

which will determine the angle at which the nerve cell con-

nected to the hair fires, the threshold angle for perception.

By definition, the threshold angle for firing is smaller than

the maximal angle of deflection. The two key factors con-

ditioning the ability of a hair to reach its minimal threshold
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angle are its impulse response time t95 and the energy avail-

able in the fluid medium (i.e. the flow velocity) between t ¼ 0

and t ¼ t95. The impulse response time of the hair, t95, pro-

vides an estimate of the agility of the hair. It should be

noted that the impulse response time (t95) is not necessarily

equal to the reaction time. t95 is only the time required for

the hair to reach 95% of its maximal achievable angle when

subjected to a velocity step function. The maximal achievable

angle is dependent on the mechanical parameters of the hair,

but it is also a function of velocity step function amplitude. If

this maximal achievable angle is smaller than the threshold

angle, the hair sensory neuron will never trigger an action

potential. By contrast, if the maximal achievable angle is

larger than the threshold angle, the deflection of the hair

will eventually reach the threshold angle.

The impulse response time is equal to

t95 ¼
1

g1

				
				 ¼ 1

g2

				
				 ¼ 2IT

�(Rh þ Rm)þ
ffiffiffiffiffi
4
p

					
					, ð2:35Þ

where D ¼ ðRh þ RmÞ2 � 4ShIT.

The computation of t95 for different hair lengths shows

that short hairs of 100 mm have very small response times,

of the order of 100 ms, whereas the response times of long

hairs last up to 2 or 5 ms (figure 4).

Our model of hair deflection in impulsive transient flows

can be used to predict the time elapsed between the start of

predator movement and the instant at which the hair reaches

its minimal threshold angle. Knowledge of the threshold

angle for deflection makes it possible to evaluate hair reaction

times for different velocities. This reaction time is the time

elapsed between the instant the impulsion starts (i.e. the

start of the predator attack), and the instant at which

the hair reaches its threshold angle. This is the threshold

angle that must be reached to compress the tubular body suf-

ficiently for the sensory neuron at the base of the hair to

deliver an action potential [4].

The deflection angle of the mechanosensor triggering an

action potential was estimated by Shimozawa et al. [18] to

be from 0.0018 to 0.18. Moreover, Barth & Höller [19]

showed that, physiologically and regardless of their length,

the trichobothria of spiders are all broadly tuned to a fre-

quency range between about 50 and 100 Hz, with threshold

deflection angles of about 0.18, but as small as 0.018 in

some cases [19]. This triggering angle represents the minimal

angle at which the movement of a hair may be considered not

to be due to Brownian thermal noise anymore, but to result

from a biotic or abiotic change in the surrounding air flow.

Rather than choosing an arbitrary fixed threshold angle, we
choose to define the threshold angle for deflection as pro-

posed by Droogendijk et al. [20]. These authors defined a

Brownian noise equivalent angle un by integrating the mech-

anical–thermal noise due to the Brownian motion of

molecules in air over the full frequency spectrum. The noise

due to Brownian motion is estimated as the product of the

spectral density of white noise 4kBT0R and the mechanical

transfer function jF(v, r, vs, vi)j:

un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1

0

4kBT0
jF(v, r,vs,vi)j2

Rmv2
dv

s
: ð2:36Þ

Figure 5 represents the deflection threshold angle estimated

by equation (2.36) and shows that equation (2.36) leads to

an overestimation of the sensory threshold compared with

the measurements of Shimozawa et al. [18]. For long hairs,

the qualitative trend of decline of the deflection sensory

threshold is, however, appropriate.
3. Experimental validation of the new model
We validated our model by comparing the model output

uSC(t) (equation (2.28)) with measurements of hair deflection

under the flow produced by an approaching piston. As

explained in §2.4, the deflection of the hair is dependent prin-

cipally on its mechanical parameters IT, Rh, Rm, Sh, g2 and g1

and on the flow produced by the piston V0 SC
m . The method-

ology used to estimate the mechanical parameters is

described in detail in electronic supplementary material,

appendix D. Electronic supplementary material,

appendix B, introduces the techniques used to determine

the flow produced by the piston and explains the influence

of the piston movement velocity on the spectral distribution

of flow velocity in the vicinity of the hair.

3.1. Methods
Adult male and female crickets (Acheta domesticus) were anaes-

thetized by chilling, and the legs, wings and female ovipositor

were removed to prevent unwanted flow perturbation. The crick-

ets were fixed on a micromanipulator placed in a sealed glass
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box. The moving piston, also placed in the box, was positioned to

move along the anterioposterior axis of the body of the cricket

(figure 6). Hair deflection was monitored with a high-speed

video camera, at 1000 frames per second with a shutter speed

of 500 ms (Vision Research Phantom V9.1), through a binocular

lens. We had to work at high magnification (10� ) to obtain an

accurate estimate of hair deflection. The time origin (t ¼ 0) was

estimated as the time at which the piston started moving.

The velocity of hair deflection was extracted from 1000 Hz

video recordings, by comparing subpixel displacement in

successive images, using a correlation algorithm on an area of 32

pixels2 (Dantec Dynamic Studio 2.30 2009). With this subpixel

interpolation correlation algorithm, a 2-megapixel camera for

imaging and a field of view of 2 � 2 mm2, we expected to obtain

a theoretical displacement resolution of 0.1mm. This represents a

theoretical minimal deflection angle of 0.018 for a hair with a

length of 500mm. The deflection measurements were restricted

to larger attack velocities (30 cm s21 and 58 cm s21), due to back-

ground noise from unwanted residual low-amplitude air

displacements and piston vibrations transmitted through the

cricket cerci. For the two attack velocities (30 cm s21 and 58 cm

s21), we fixed the initial distance between the piston and the cricket

sensory hair to zp ¼ 5 cm. This distance has been chosen as it is the

maximal spider pursuit distance estimated in behavioural studies

[21,22]. We measured the deflection of six isolated hairs (L ¼ 382,

386, 632, 795, 870 and 1063mm) during the approach of the

piston at these velocities. All measurements were made on inde-

pendent videos with the six hairs in different frames. We tried to

identify hairs having representative lengths spanning the entire

spectrum of length. They also had to move in the plane of the

video recording. The hair diameter can be precisely estimated

from the hair length, as there is a strong allometric relationship

between these two variables [8,10,23,24]. The base diameter

varies with hair length according to

d0 ¼ 8:34� L0
1:67: ð3:1Þ

One key element taken into account when fitting our model

(equation (2.28)) was the preferential plane of deflection of the

hair. This factor greatly affects the resistance of the hair to rotation

[24,25]. Unlike its length, the directionality a of the hair was not

known and had to be estimated by regression. We first fitted

equation (2.28), using the V0 SC
m estimated for the piston
approaching at 58 cm s21, with directionality a as the sole fit par-

ameter, from measurements on hairs of six lengths, for a velocity

of 58 cm s21. This made it possible to estimate the directionality

of the hair. We then cross-validated our model by estimating the

deflection of the hair subjected to air flow from the piston

approaching at 30 cm s21, using a as a fixed parameter in

equation (2.28), with V0 SC
m estimated at that speed. At 30 cm s21,

we were able to record deflection for only four hairs. The deflec-

tions of the 386 and 870mm hairs under the flow produced by

the piston moving at 30 cm s21 were too small to be detected.

3.2. Results
The results are summarized in figure 7. In each of the six panels of

the figure, the grey and red solid curves represent the deflection as

modelled with equation (2.28). In this equation, parameters IT, Rh,

Rm, Sh, g2 and g1 are predetermined as they are constrained by

hair length, as shown in electronic supplementary material,

appendix D. V0 SC
m is a complex parameter determined by flow

and estimated in electronic supplementary material, appendix B.

The model predictions are reasonably good, at least for the three

longest hairs. For the smallest hair (382 mm), we recorded a large

mean deflection at intermediate times that the model was unable

to predict.
4. Discussion
While our model represents a generalization of previous

ones, it contains three major assumptions which we discuss,

first starting with aspects related to the flow and its model-

ling. Assumptions regarding the mechanical properties of

single hairs and viscous coupling among multiple hairs are

dealt with under their respective headings.

4.1. Assumptions regarding boundary flows
Our model describes only the deflection of sensory hairs

placed on a straight cylinder in a longitudinal flow. However,

Humphrey et al. [9] observed that flow velocity profiles are

quite different in transverse and in longitudinal flows, trans-

verse flows producing local velocities up to 1.6 times stronger
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than the far-field values. Steinmann et al. [16] also observed

that velocities would be stronger in transverse flow than in

longitudinal flow, as long as the angle is between 608 and

1208. By contrast, the maximal amplification of the far-field

value is only 1.1 for longitudinal flows. The strong spatial

heterogeneity of flow velocities around appendages in

transverse flow could be a rich source of information for

flow-sensing hairs. The relative importance of these trans-

verse and longitudinal air flow components will be a

function of circumferential location of the hair on the cercus

and of the hair length. Steinmann et al. [16] estimated that

short hairs were more sensitive than long hairs to the trans-

verse component of flow from almost any direction, as the

largest differences between longitudinal and transverse
flows are in the boundary layer, in which the small hairs

are totally immersed. Thus, the implications for our model

is that it underestimates the deflections, of short hairs in

particular, in a flow different from a longitudinal one.

Furthermore, Fourier series decomposition is classically

used to model the impulsive transient boundary layer

VSC
f (y, t) in descriptions of the theoretical evolution of turbu-

lent boundary layers [15]. The implicit superimposition

should, however, be validated by means of further particle

image velocimetry experiments on the changes in the bound-

ary layer over a cricket cercus during the increase in

impulsive flow generated by the approach of a piston. Alter-

natively, computational fluid dynamics can be used for the

numerical validation of this approach.
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4.2. Assumptions regarding preferential plane of
deflection and functioning of the socket of
single hairs

The fact that a hair has a preferential plane of deflection

greatly affects its resistance to rotation. The preferential plane

of motion of each sensory hair is an excitatory direction

along each hair and its existence can be explained by the aniso-

tropy of the mechanical properties of the socket [24–26]. The

crucial morphological features conditioning this directionality

are the bilaterally symmetrical form of the hair base and the

way in which the hair shaft is seated in the socket floor [4].

This translates into the existence of a plane of smallest oscil-

lations, perpendicular to the preferred plane, that passes

through the more rigid part of the socket floor. Each sensory

hair is thus constrained to move back and forth in a preferential

plane by this cuticular hinge at the base of the hair [24]. We

implemented this preferential plane of deflection through the

use of the factor cos(a) in the expression of our forcing function

(equation (2.26)).

Most of the studies of sensory hairs and the results pre-

sented here are based on the representation of the suspension

of the hair by a spring and dashpot viscoelastic model, with

two parameters, a spring and a resistance. This choice of

model, which may seem arbitrary at first sight, has been used

many times [9,14,27]. However, studies concerning the mor-

phology of the hair itself and of the suspension located in the

socket indicate that these two primary elements are secreted

by two types of epithelial cells with different mechanical and

elastic characteristics [27,28]. In addition, Barth & Höller [19]

assumed that the particular viscoelastic properties of the den-

drites themselves could explain the phasic response patterns

of the sensory cells. These sensory cells react preferentially to

movements but not at all to static deformations or com-

pressions. Shimozawa et al. [28] even assumed a divergence

between viscoelastic models of long and small hairs. In a

recent study, Joshi & Miller [26] recall that the structure of the

socket was only rudimentarily characterized from a mechanical

point of view. Their finite-element model indicates that this

structure acts indeed as a spring. However, these authors also

evoke the existence of two spring stiffness, both of which are

numerically obtained by the simulation of the movement of

deflection of the hair, the first spring stiffness being determined

before the contact of the base of the hair with the socket iris. The

second one has been inferred after the contact and has been

numerically estimated as being four times as high as the first.

It turns out that the mechanical properties of the hair sus-

pension in the socket have never been directly measured.

The numerical values of these mechanical constants are gener-

ally inferred via the harmonic response of the sensory hairs in

oscillatory flows. Methods of experimentally estimating the

mechanical properties of sensory hairs have already been pro-

posed by Barth et al. [29]. The method used by these authors

consisted in estimating the forces involved in the return of tac-

tile hairs to their original positions by stimulating them by

means of glass capillaries which deformed under the resist-

ances of sensory hairs. Schaber & Barth [30] have also used

this technique to measure the spring stiffness of the tactile

hairs of the tibia–metatarsus junction in spiders Cupiennius
salei. The atomic force microscopy (AFM) method is even

more precise than the one based on deformation of glass

capillaries. AFM has been used to study mechanosensing
structures, from the mechanical properties of vibration recep-

tors in the cuticule of spiders [31–33] to the nanomechanical

properties of the cupula of the superficial neuromasts in fish

[34]. McConney et al. [35] used AFM in contact mode to

study the mechanical properties of suspensions of C. salei
spider sensory hairs. These authors used AFM probes to deflect

these sensory hairs, allowing to determine simultaneously

their deflection and the force applied to them. They describe

the suspension by means of a new viscoelastic model compris-

ing three elements. The application of AFM to the study of

cricket sensory hairs could also be useful to the understanding

of the specific roles of small and long hairs.

4.3. Assumptions regarding viscous coupling among
multiple hairs

Our model assumes that hairs are independent, and does not,

therefore, take into account the viscous medium coupling effect

between hairs. Humphrey et al. [9] were the first to consider vis-

cous coupling, especially the phase shift between hairs in a

cluster, and how it could affect the combined action potentials

of sensory neurons. Despite its absence from the model

and previous demonstrations of its importance [36–38], we

can predict the quantitative impact of viscous coupling on

the response of hairs to impulsive flows. In Casas et al. [38],

the study of the viscous coupling between tandem hairs

shows that the reduction in the flow velocity inside a hair

canopy will depend on the combination of (i) the frequency

of the flow and (ii) the hair spacing. The statistical analy-

sis of hair spacing shows that most long hairs (longer than

500mm) are regularly distributed over the cercus at distances

up to 60 mm, corresponding to a normalized distance of six

(hair spacing/hair diameter) [39]. The perturbation can be

equal to 50% for an inter-hair distance of six diameters in a

40 Hz flow [38]. The power spectrum analysis of the flow pro-

duced by the piston moving at 30 cm s21 shows that 90% of the

energy contained in the flow is bounded between 5 Hz and 40

Hz (electronic supplementary material, appendix B). So, given

the inter-hair spacing and the frequency content of the flow, we

can expect that long hairs will experience strong viscous coup-

ling in a flow produced by the approach of a piston at 30 cm

s21, reducing their sensitivity by a factor of 2. The power

spectrum analysis of the flow produced by the piston

moving at 58 cm s21 shows that 90% of its energy is contained

between 5 Hz and 80 Hz, the low frequency components

decreasing with increase in the velocity of attack. The pertur-

bation would thus drop to 30% for an inter-hair distance of

six diameters (in an 80 Hz flow). So we can expect that long

hairs will experience a reduced viscous coupling during the

approach of a piston at 58 cm s21. Short hairs are inserted ran-

domly over the surface of the cercus with spacing ranging from

20 to 60 mm and diameter ranging from 3 to 7 mm, correspond-

ing to a normalized distance ranging from 3 to 20 [39]. Heys

et al. [25] quantified the spatial distribution of hairs for various

sizes of circular search windows. They determined that, for a

small search area less than 750mm, the pattern of hairs corre-

sponded to what would be expected for a random Poisson

process of positioning. So, given the large span of inter-hair

spacing and their spatial random distribution, the conclusion

on the effect of a small viscous coupling on short hairs is not

straightforward. We can expect that the closest hairs will

experience a strong viscous coupling, up to 80% in a flow
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produced by the approach of a piston at 30 cm s21. By contrast,

the most widely spaced hairs will experience a very low

coupling of 5% in a flow produced by the approach of a

piston at 58 cm s21. Bathellier et al. [36] extended their viscous

coupling theory to hairs of dissimilar lengths. Short hairs sur-

rounded by a cluster of longer hairs should experience strong

coupling up to 30% in a 40 Hz flow. Thus, the general impli-

cation for our model is that viscous coupling might lead to a

diminution of a hair response, which is nonlinear in flow fre-

quency and hair length. Any further development requires

one to become very specific about the stimulus nature and

the canopy structure, as illustrated above.

The impact of viscous coupling between hairs is not

only mechanical, but is also felt at the neuronal ensemble

reaction of an entire cricket cercus. This has been measured

by Mulder-Rosi et al. [40]. They successively stimulate the

sensory hairs positioned at different locations on the cercus,

from its base to its tip, with the help of a multi-nozzle air-cur-

rent stimulus device. They discovered that the ensemble

response of sensory hairs was maximized when the stimulus

was directed from the point at the base of the cercus. They

suggested that the cercal system of the cricket functioned as

a delay line, the hairs closer to the stimulus sources reacting

before the furthest hairs. Dupuy et al. [41] have also measured

the ensemble reaction of an entire cricket cercus. They have

shown that the cumulative number of spikes, recorded through

the abdominal connectives from the terminal abdominal

ganglion, is a function of the velocity of the flow perceived at

the rear of the cricket, multiplied by a factor that increases

linearly with the attack velocity. Our model can predict the
ensemble reaction of a group of hairs of various lengths.

We can predict the ensemble reaction of an entire cercus,

i.e. the different moments at which hairs of different lengths

will reach their threshold angle of reaction one after the

other. For instance, in the flow produced by a predator launch-

ing its attack at a distance of 1 cm and a velocity of 40 cm s21,

the sensory neuron of a 200mm hair will fire 40 ms after the

start of the attack, whereas the sensory neuron of a 2000 mm

hair will fire 1000 ms after the start of the attack (figure 8b).

This temporal pattern of action potentials could be the first

step of the transduction of the characteristic of an attack, like

its velocity. To be realistic, such an ensemble modelling does,

however, require much more information than available,

including viscous coupling, a map of the hairs and their

preferential planes of movement.

4.4. Resolution of conflict: short and long hairs are both
optimal, but to different inputs

The assumptions and limitations of the model having been

covered, we can now proceed to the resolution of the conflict

between the two views regarding the performance of long

and short hairs.

The major result arising from the Kant and Humphrey

model is that short hairs are more responsive than long

hairs to their particular flow pulsation, due to a lower total

inertia, torsional restoring constant and total damping con-

stant. This is at odds with previous results, which identified

long hairs as the most sensitive ones. This discrepancy results

from the use of different definitions of hair reactions, and the
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focus exclusively on steady sinusoidal flows in previous

studies [9,27,28]. Our model resolves this discrepancy by pro-

viding the general solution, a superposition of natural and

forced responses.

We provide now an intuitive illustration of the various

parts of the solution of our model, by working through an

example of a solution to a simpler ‘harmonic impulsion’:

single-frequency sinusoidal flow. There is a great variability

and heterogeneity in the signals produced during an attack.

However, due to the difficulty to explain and visualize the

superposition of responses of hairs to complex sums of harmo-

nic flows, we rather focus our illustration to two simplified

extreme cases of idealized mono-harmonic flows. Real flows

are, of course, multi-frequential and our model also deals

with this more complicated case. Let us first consider four

different hairs, 500, 1000, 2000 and 3000 mm in length, all

subjected to attacks at a speed of 10 cm s21 and at a distance

of 2.5 cm, corresponding to a frequency of 4 Hz (half-period

125 ms). We extended the range of hair lengths beyond the

observed range of lengths in order to highlight the lack of

response improvement of even longer hairs at high frequencies.

The natural responses of the hairs drive their behaviour at early

time points (i.e. before 40 ms), at which the general solution fol-

lows the homogeneous solution (figure 8a). After 40 ms, the

general solution closely follows the particular solution, indicat-

ing that the movement of the hairs is dependent mostly on their

forced responses. Short hairs react quickly, but they cannot har-

vest much energy from the fluid, and may, therefore, not reach

their threshold angle. Long hairs pick up the flow velocity later,

but they deflect to a much greater extent, due to the combi-

nation of a larger surface area and a projection into a region

further away from the body. Long hairs are optimal for pick-

ing up such ‘slow’ flows. Let us now consider a faster attack

at 40 cm s21 and at a distance of 1 cm, corresponding to a

signal of 40 Hz (half-period 12.5 ms). Short hairs again react

quickly, resulting in large hair deflections as the input provides

sufficient energy (figure 8b). The neurons attached to these
hairs are, therefore, likely to fire first. Long hairs cannot

follow the first phase of the signal due to their inertia, and

they attain their threshold angles much later. Thus, the neurons

connected to long hairs cannot fire sufficiently quickly for the

detection of fast flows, a task for which short hairs are much

better suited.

In these calculations, the threshold angle for detection is

the key to determine which hair neuron fires first. Thus, the

sensitivity of a given hair relative to another hair depends

not only on its ability to reach a given triggering angle

rapidly, but also its capacity to extract energy from the

fluid medium and translate it into mechanical energy dissi-

pated at the basal joint. The trade-off between mechanical

agility, which declines with increase in hair length, and sen-

sitivity, which increases with increase in hair length as

explained in §2.5, defines the time required to reach the

firing threshold. Furthermore, this trade-off keeps hair

lengths and firing times in a bounded region. We, therefore,

conclude that prey animals make full use of an array of

hairs of all lengths to cope with interactions as complex

and crucial as the launch of a predator attack, pursuit and

final assault. The morphological heterogeneity of the hair

canopy thus mirrors the flow complexity of an entire attack,

from launch to grasp, and provides another example of a

dynamic matched filter [1,2].
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