922-933 Nucleic Acids Research, 2005, Vol. 33, No. 3
doi:10.1093/nar/gkil 87

A new computational method for the detection
of horizontal gene transfer events

Aristotelis Tsirigos' and Isidore Rigoutsos

2,3,%

"New York University, Computer Science, New York, NY 10021, USA, 2Bioinformatics and Pattern Discovery
Group, IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
and ®Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469,

Cambridge, MA 02139, USA

Received October 7, 2004; Revised and Accepted December 21, 2004

ABSTRACT

In recent years, the increase in the amounts of
available genomic data has made it easier to appreci-
ate the extent by which organisms increase their gen-
etic diversity through horizontally transferred genetic
material. Such transfers have the potential to giverise
to extremely dynamic genomes where a significant
proportion of their coding DNA has been contributed
by external sources. Because of the impact of these
horizontal transfers on the ecological and pathogenic
character of the recipient organisms, methods are
continuously sought that are able to computationally
determine which of the genes of a given genome are
products of transfer events. In this paper, we intro-
duce and discuss a nhovel computational method for
identifying horizontal transfers that relies on agene’s
nucleotide composition and obviates the need for
knowledge of codon boundaries. In addition to being
applicable to individual genes, the method can be
easily extended to the case of clusters of horizontally
transferred genes. With the help of an extensive and
carefully designed set of experiments on 123 archaeal
and bacterial genomes, we demonstrate that the
new method exhibits significant improvement in
sensitivity when compared to previously published
approaches. In fact, it achieves an average relative
improvement across genomes of between 11 and
41% compared to the Codon Adaptation Index
method in distinguishing native from foreign genes.
Our method’s horizontal gene transfer predictions
for 123 microbial genomes are available online at
http://cbcsrv.watson.ibm.com/HGT/.

INTRODUCTION

As early as 1944, scientists began accumulating experimental
evidence on the ability of microbes to uptake ‘naked” DNA
from their environment and incorporate it into their genome
(1). Several years later, in 1959, plasmids carrying antibiotic
resistance genes were shown to spread among various bacterial
species. And as the twentieth century came to a close, there was
increased appreciation of the fact that genes found in mito-
chondria and chloroplasts are often incorporated in the nuclear
genome of their host organism (2—4). Nonetheless, there
have been intense debates through the years on the possibility
that the transfer of genetic material among different species
may play a significant role in evolution. This process is known
as horizontal gene transfer (HGT) or, equivalently, lateral
gene transfer (LGT).

Before the advent of the genomics era, only a handful
of horizontal gene transfer events were documented in the
literature (5). And even though it had been argued that
gene acquisition from foreign species could potentially have
a great impact on evolution (6), it was not until after the
genomic sequences of numerous prokaryotic and eukaryotic
organisms became publicly available that the traditional
tree-based evolutionary model was seriously challenged,
considering even the possibility of substantial gene
exchange (7,8). In particular, it was first observed that
some Escherichia coli genes exhibit codon frequencies
that deviate significantly from those of the majority of its
genes (9). Also, the genomes of Aquifex aeolicus and
Thermotoga maritima, two hyperthermophilic bacteria,
supported the hypothesis of a massive gene transfer from
archaeal organisms with which they shared the same lifestyle
(10,11).

Subsequent phylogenetic studies at a genomic scale have
demonstrated that the archaeal proteins can be categorized
into two distinct groups with bacterial and eukaryotic
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homologues (12-14). The latter comprise the so-called
informational genes (involved in translation, transcription
and replication), and their existence can be explained in the
context of the model of early evolution which dictates that
eukaryotes and archaea descended from a common ancestor,
whereas the former appear to be the result of numerous gene
transfers among archaea and bacteria.

The significance of horizontal gene transfer goes beyond
helping interpret phylogenetic incongruencies in the evolu-
tionary history of genes. In fact, there is strong evidence
that pathogenic bacteria can develop multi-drug resistance
simply by acquiring antibiotic resistance genes from other
bacteria (15,16). More evidence of gene transfer as well as
a detailed description of the underlying biological mechanisms
can be found in (17). And in (18), the authors present a
quantitative estimate of this phenomenon in prokaryotes
and propose a classification comprising two distinct types
of horizontal gene transfer.

Over time, a number of methods were devised for the iden-
tification of horizontally acquired genes. Traditionally, phylo-
genetic methods have been used to prove that a gene has been
horizontally transferred (19). These methods work well when
sufficient amounts of data are available for building trees with
good support; but very frequently this is not the case and other
approaches need to be exploited in order to identify horizont-
ally transferred genes in the genome under consideration.
Examples of such approaches include the unexpected rank-
ing of sequence similarity among homologs where genes
from a particular organism show the strongest similarity to
a homolog from a distant taxon (18), gene order conservation
in operons from distant taxa (20,21), and atypical nucleotide
composition (22).

Many of the previously published methods for horizontal
gene transfer detection were based on gene content and
operated under the assumption that in a given organism,
there exist compositional features that remain relatively con-
stant across its genomic sequence. Genes that display atypical
nucleotide composition compared to the prevalent composi-
tional features of their containing genome are likely to have
been acquired through a horizontal process. Consequently,
over the years, a number of features have been proposed
for defining ‘signatures’ that would be characteristic for a
genome: any gene deviating from the signature can be marked
as a horizontal transfer candidate. We continue with a brief
summary of the various signatures that have been discussed in
the literature.

The simplest and historically earliest type of proposed
genomic signature is a genome’s composition in terms of
the bases G and C, known as the genome’s G + C content
(22). It is important to note that due to the periodicity of the
DNA code, as this periodicity is implied by the organization of
the coding regions into codons, the G + C content varies
significantly as a function of the position within the codon.
As a result, four discrete G + C content signatures can be
identified. The first corresponds to the overall G + C content
and is computed by considering all of the nucleotides in a
genome. Each of the remaining three signatures, denoted by
G + C(k), with k= 1,2,3, corresponds to the value of the G+ C
content as the latter is determined by considering only those
nucleotides occupying the kth position within each codon;
unlike the G + C signature which is computed across all
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genomic positions, only coding regions are used in the com-
putation of G + C(k).

A related variation of the G + C(k) content idea is the
so-called Codon Adaptation Index (CAI) which was intro-
duced in (23). CAI measures the degree of correlation between
a given gene’s codon usage and the codon usage that is
deduced by considering only highly expressed genes from
the organism under consideration.

In yet another variation introduced in the context of a study
of the E.coli genome, Lawrence and Ochman (24) identified
atypical protein coding regions by simultaneously combining
G+ C (1) and G + C (3). Moreover, and for each gene in turn,
they computed a ‘codon usage’ that assessed the degree of bias
in the use of synonymous codons compared to what was
expected from each of the three G + C(k) values. A gene
was rendered atypical when its relative ‘codon usage’, as
defined above, differed significantly from its CAI value.

The codon usage patterns in E.coli were also investigated
by Karlin et al. in (25) who found that the codon biases
observed in ribosomal proteins deviate the most from the
biases of the average E.coli gene. Using this observation,
they defined ‘alien’ genes as those genes whose codon bias
was high relative to the one observed in ribosomal proteins
and also exceeded a threshold when compared to that of
the average gene.

Another popular genomic signature is the relative abund-
ance of dinucleotides compared to single nucleotide composi-
tion. Despite the fact that genomic sequences display various
kinds of internal heterogeneity including G + C content vari-
ation, coding versus non-coding, mobile insertion sequences,
etc., they nonetheless preserve an approximately constant
distribution of dinucleotide relative-abundance values, when
calculated over non-overlapping 50-kb-wide windows cover-
ing the genome; this observation was demonstrated by Karlin
et al. in (26,27). But more importantly, the dinucleotide
relative-abundance values of different sequence samples of
DNA from the same or from closely related organisms are
generally much more similar to each other than they are to
sequence samples from other organisms. In related work,
Karlin and co-workers introduced the ‘codon signature’,
which was defined as the dinucleotide relative abundances
at the distinct codon positions 1-2, 2-3 and 3-4 (4 = 1 of
the next codon) (28): for large collections of genes (50 or
more), they showed that this codon signature is essentially
invariant, in a manner analogous to the genome signature.

A genomic signature comprising higher-order nucleotides
was proposed by Pride and Blaser in (29), where the observed
frequencies of all n-sized oligonucleotides in a gene are con-
trasted against their expected frequencies estimated by the
observed frequencies of (n — 1)-sized oligonucleotides in
the host genome. In the accompanying analysis, the authors
focused on identifying horizontally transferred genes in
Helicobacter pylori, and for that genome they showed
that signatures based on tetranucleotides exhibit the best
performance, whereas higher-order oligonucleotides did not
result in any improvement. However, since their analysis was
based on a single genome, it is not possible to deduce any
generally applicable guidelines.

Hooper and Berg (30) propose as a genomic signature the
dinucleotide composed of the nucleotide in the third codon
position and the first position nucleotide of the following
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codon. [This is effectively the 3—4 signature from (28).] Using
the 16 possible dinucleotide combinations, they calculate how
well individual genes conform to the computed mean dinuc-
leotide frequencies of the genome to which they belong.
Mahalanobis distance, instead of Euclidean, is used to gener-
ate a distance measure on the dinucleotide distribution. It was
also found that genes from different genomes could be sep-
arated with a high degree of accuracy using the same distance.

Sandberg et al. investigated the possibility of predicting the
genome of origin for a specific genomic sequence based on the
differences in oligonucleotide frequency between bacterial
genomes (31). To this end, they developed a naive Bayesian
classifier and systematically analyzed 28 eubacterial and
archaeal genomes, and concluded that sequences as short as
400 bases could be correctly classified with an accuracy of
85%. Using this classifier, they demonstrated that they could
identify horizontal transfers from Haemophilus influenzae to
Neisseria meningitis.

Hayes and Borodovsky demonstrated the connection
between gene prediction and atypical gene detection in (32).
Working with bacterial species, they addressed the problem of
accurate statistical modeling of DNA sequences and observed
that more than one statistical model were needed to describe
the protein-coding regions. This was the result of diverse
oligonucleotide compositions among the protein-coding
genes and in particular of the variety of their codon usage
strategies. In the simplest case, two models sufficed, one
capturing typical and the other atypical genes. Clearly, the
latter model also allowed the identification of good horizontal
transfer candidates. Along similar lines, Nakamura et al. (33)
recently conducted a study of biological functions of horizont-
ally transferred genes in prokaryotic genomes. Their work did
not introduce a new computational method, but rather applied
anew the method originally introduced by Borodovksi and
Mclninch (34) in the context of gene finding. In a manner
analogous to deciding whether a given open reading frame
(ORF) corresponds to a gene, Nakamura ef al. determined
whether a given gene was horizontally transferred and com-
piled, and reported results for a total of 116 complete genomes.

In (35), the authors identified horizontal gene transfer can-
didates by combining multiple identification methods. Their
analysis is based on a hybrid signature that includes G + C and
G + C(k) content, codon usage, amino-acid usage and gene
position. Genes whose G + C content significantly deviates
from the mean G + C content of the organism are candidate
gene transfers provided they also satisfy the following con-
straints: (i) they have an unusual codon usage (computed in a
similar way); (ii) their length exceeds 300 bp; and (iii) their
amino-acid composition deviates from the average amino-acid
composition of the genome. However, the authors stressed the
need to exclude highly expressed genes from the set of can-
didate transfers: such genes may deviate from the mean values
of codon usage simply because of a need to adapt so as to
reflect changes in tRNA abundance. As an example, ribosomal
proteins are filtered out and are not included in the list of
predictions. Similar in flavor, the method described in (36)
applies several approaches simultaneously, e.g. G + C content,
codon and amino-acid usage, and generates results for 88
complete bacterial and archaeal genomes. The putative hori-
zontally transferred genes are collected and presented
in the HGT-DB database that is accessible on-line.

It is important to note that the methods in (35) and (36) do
not introduce a new genomic representation scheme, but rather
combine several distinct modalities into one feature vector. As
is always the case with feature vectors comprising distinct and
non-uniform features, it is difficult to derive a distance func-
tion that properly takes into account the different units, the
different ranges of values, etc. Notably, and in direct contrast
to this approach, our proposed method which is outlined below
uses a single feature in order to determine whether a gene is
indigenous to a genome or not.

In (37), surrogate methods for detecting lateral gene transfer
are defined as those that do not require inference of phylo-
genetic trees. Four such methods were used to process the
genome of E.coli KI2. Only two of these methods detect
the same ORFs more frequently than expected by chance,
whereas several intersections contain many fewer ORFs
than expected.

Finally, we should mention an approach that is radically
distinct from the ones described above. Ragan and Charlebois
(38) organize ORFs from different genomes in groups of high
sequence similarity (using gapped BLAST) and look at
the distributional profile of each group across the genomes.
Those ORFs whose distribution profile cannot be reconciled
parsimoniously with a tree-like descent and loss are likely
instances of horizontal gene transfer. In other words, instead
of deciding whether a gene is typical or atypical by comparing
its composition to that of the containing genome, they perform
a statistical comparison of similar genes across genomes.

In what follows, we present a novel methodology that
exploits genomic composition to discover putative horizontal
transfers. Notably, our method does not require knowledge of
codon boundaries. By carrying out a very extensive set of
experiments with 123 archaeal and bacterial genomes, we
demonstrate that our method significantly outperforms previ-
ously published approaches including the Codon Adaptation
Index (CAI), C + G and all its variants as well as methods
based on dinucleotide frequencies.

MATERIALS AND METHODS

In this section, we present and discuss our method for deriving
generalized compositional features (single modality).

Generalized compositional features

Our proposed approach extends and generalizes composition-
based methods in three distinct ways:

* First, we advocate the use of higher-order nucleotide
sequences (templates) so as to overcome the diminished
discrimination power exhibited by the previously proposed
di- and trinucleotide models. Our use of richer composi-
tional features is expected to lead to an increased ability in
identifying genes with atypical compositions and thus an
improved ability to classify.

* Second, we extend the composition-based model in a manner
that allows us to ‘ignore’ certain nucleotide positions; this is
achieved through the use of generating templates that include
‘gaps’ and thus do not comprise consecutive nucleotides.
Gaps are indicated with the help of a ‘dot’ or ‘don’t care’
character: any nucleotide that occupies the ‘don’t care’ posi-
tion will be ignored during the computation of the signature.



As an example, the template A.G will match any of AAG,
ACG,AGG or ATG, while ignoring the identity of the nucleo-
tide occupying the middle position.

¢ Third, we optionally take into account the periodicity of the
DNA code; in particular, when collecting the instances of a
template, we can impose the constraint that a template be
position-specific. For example, when calculating the codon
frequencies, the trinucleotide templates to be considered are
only the ones that start at positions 3k + 1, where k is a non-
negative integer.

In our augmented model, let us denote the compositional
feature vector for any given DNA sequence s over a set of
templates 7 = {7y, m,...,7q} as P(s) = (a1, @z, ..., Qy);
here «; is the frequency of template 7r; in sequence s.

Instead of using the absolute template frequencies, we may
choose to normalize these frequencies over the expected
template frequencies: the latter can be derived from the single
nucleotide composition with respect to some background
reference sequence under the assumption of an i.i.d. model.
Typically, if the sequence of interest is a gene g, or a DNA
fragment belonging to a genome G, the single nucleotide
frequencies of genome G ought to also reflect the expected
single nucleotide frequencies of an endogenous gene g.
The relative (normalized) frequencies are thus given by the
following equation:

Py(m;) ’
[17) Pe (my)

;=
where 7;; is the jth nucleotide of template ;, P,(;) is the
observed frequency of template 7r; in gene g € G, whereas
the single nucleotide probabilities Pg(7;) in the denominator
are computed from the entire genome G, and we can choose to
make them position-specific or not. The probability of the
‘dot’ character is one.

From compositional features to gene typicality scores

Given a genome sequence, our ultimate objective is to char-
acterize the genes in the genome in terms of how ‘atypical’
they are. Under the assumption that any given genome exhibits
a relatively constant composition over intervals that may not
be contiguous, genes whose template composition differs sub-
stantially from the typical composition of their host genome
are likely to have been acquired through a horizontal transfer
event. In our work, we assign a ‘typicality’ score S;(g) to each
gene g of genome G: the higher the score the more typical the
gene is for the genome. Consequently, genes with low scores
will correspond to gene transfer candidates.

A straightforward approach towards the computation of
a gene’s typicality score given its feature vector ¢(g) is to
compare it to the feature vector ¢(G) for the whole genome.
The comparison can be performed in many different ways and
it will yield a score that gauges the similarity between the gene
in question and the genome as a whole. Five commonly
used similarity measures are correlation, covariance, )(2 test,
Mahalanobis distance and relative entropy.

The first method involves the calculation of the classic
Pearson correlation between the gene and genome vectors.
In this case, the gene’s typicality score Ss(g) within the
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‘context’ of genome G can be written as:

m

> (¢k(g) - /‘Ld)(g)) : <¢k(G) - M¢(G>>

k=1

Sc(g) =
MO 4(5)T(G)

Very similar to the correlation measure is the covariance of

two vectors:

Sol6) = 13" t4(8) - (6.
=1

The standard y? test measures the deviation of a vector from
its expected value by summing up the deviations of each
vector component. In this case, the gene score is obtained
by negating the x* score, so that high x* values (and thus
high deviations) will correspond to low and, thus, atypical
gene scores:

o) — Elb@)
6@=-2 """ ool

Here, the expected value for component & is estimated by
the mean value of the component across all ns genes in the
genome:

Elbi(0)) = - Y (o)

geG

The need to use the Mahalanobis distance arises in the case
where the selected compositional features are significantly
correlated with each other, and as a result their covariance
matrix K contains important information. Their score is
obtained by negating the corresponding Mahalanobis distance,
so that high distance values will correspond to low and, thus,
atypical gene scores:

Sa(g) = —(¢(3) — d(G))" K '(b(g) — $(G)).

In the case where the feature vector defines a probability
distribution (e.g. all trinucleotides), we can assign a score to
each gene by measuring the distance of the distribution defined
by the gene vector from the one defined by the genome vector
using the concept of relative entropy (also known as Kullback—
Leibler distance):

Sa(g) ==Y _ di(g)In 8)
%

b
¢4 (G)
Again the gene score is obtained by negating the distance

value, so that high distance values will correspond to low,
hence atypical gene scores.

Our proposed algorithm, Wn, for HGT detection:
individual genes

Here we describe in detail our proposed algorithm. Given any
genome G, the algorithm returns a list of putative horizontal
gene transfers. The goal is to first compute a typicality score
for each gene in the genome that reflects the similarity of the
gene sequence to the whole genome with respect to the selec-
ted compositional features.

Through our analysis, we have discovered that for template
sizes greater than two, the optimal performance is obtained
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Figure 1. Example of a template.

when we ignore the periodicity of the genetic code (i.e. by
ignoring codon boundaries and counting all the templates
including those that begin at the second and third codon
positions), use no gaps in the templates, and by choosing
‘covariance’ as the similarity measure for computing the
final scores. We use Wn to denote our method, where 7 is
greater than two and is equal to the size of the template. An
example of a template is shown in Figure 1. It should be
stressed here that, allowing representations based on general-
ized templates comprising both gap and non-gap characters
seems to yield no further improvement for the particular set of
genomes we experimented with. Nonetheless, we can expect
that, as the sequences of more complete genomes become
available, the additional flexibility provided by the gapped
templates that we introduced in this work has the potential
of further improving performance.

We observed that the performance of our method increased
with the size of the template, reaching a maximum at size 8;
increasing the size of the template further resulted in a sharp
drop of performance. With respect to the choice of template
size, one needs to keep in mind that higher template sizes will
result in greater specificity provided of course that the regions
of DNA being processed can yield a sufficient percentage of
non-zero counts. As a rule of thumb, smaller size templates
should be used when individual gene transfers are sought,
whereas larger size templates can be chosen when attempting
to identify clusters of horizontally transferred genes, which
in turn can be done by using the sliding window method
described below.

Our proposed algorithm, Wn, for HGT detection:
clusters of transferred genes

For completeness, we now describe a modification of the
proposed Wn algorithm so that it can be also applied to the
problem of detecting clusters of putative gene transfers: in-
stead of computing the feature vectors over individual genes,
the computation is now applied on sliding windows that span
multiple, neighboring genes. The size of the window is given
in terms of the number of genes that it spans and not in terms of
a nucleic acid span: the number of genes to be included in the
computation is a parameter in this modified version of our
algorithm, while n of course still denotes the template size.
For each such window, we obtain a score: the score of a given
gene within the window is computed as the average of the
scores of all of the windows that include the gene in question.
In the next section, we discuss the application of our algorithm
on the genome of Enterococcus faecalis which contains a
known cluster of horizontally transferred genes conferring
vancomycin resistance.

=—Scores
threshold
—derivative

0.80

0.60

0.40

gene typicality score

0.20 N

—-———;—/_

1 201 401 601 801 1001 1201 1401 1601 1801
rank of genes sorted by their typicality score

0.00

Figure 2. Demonstrating the automatic method for selecting a score threshold
using the genome of A.pernix as a test case—see also text.

Our proposed algorithm, Wn, for HGT detection:
automated threshold selection

Given the typicality scores that Wn computes for each gene of
a genome, we need to be able to automatically determine a
threshold value: all genes with scores below it are considered
to be horizontal transfers. We illustrate our automated thresh-
old selection methodology with the help of the genome of
Aeropyrum pernix. The distribution of the obtained scores f,
sorted in order of increasing values, is shown in Figure 2. In
the same figure, we also show the derivative f’ of the distri-
bution, properly smoothed by taking the average over sliding
windows and normalized so that its values range from zero
to one.

It can be seen that the scores increase very fast for the first
few genes, but once we make the transition from atypical
genes to genes of higher typicality, the derivative remains
approximately constant. It is precisely at this point that we
set the threshold value T on the derivative f’. With the score
threshold having been decided automatically, we define
the number Nygr of predicted horizontal gene transfers to
be the smallest value i for which the derivative of the ranked
scores becomes equal to the threshold T: these Nygr lowest
scoring genes comprise our list of putative gene transfers.

RESULTS

In order to assess the potential of using compositional features
in the detection of horizontal gene transfers in a host genome,
we designed and carried out a very large number of experi-
ments that simulated gene transfer. The experimental proced-
ure was as follows: we created a pool of donor genes, and
randomly sub-selected an appropriate fraction of these genes
that were then incorporated into the bacterial or archaeal host
genome under consideration. The task at hand is that of
recovering as many as possible of the inserted donor genes.

It is important to note that, unlike previously proposed
random experiments where artificial genes were produced
as random sequences which obeyed some very general
statistics (e.g. a given observed mononucleotide frequency
distribution), our simulations are carried out using real
genes and thus are realistic simulations of what happens in
nature (as we currently understand it). Constructing and using



random sequences to simulate gene transfers is simply not a
valid approach.

We have carried out experiments with two distinct pools of
donor genes. The first pool was built from the gene comple-
ment of the 27 phages that are shown in Table 1 and comprised
1485 genes. The second pool comprised approximately
350 000 archaeal and bacterial genes and is discussed later
in this section. In both sets of experiments, we used as ‘host’
genomes a collection of 123 fully sequenced prokaryotic gen-
omes (archaea and bacteria), which we downloaded from the
NCBI/NIH ftp server.

Case 1: donor pool comprising phage genes

For each of the 123 host organisms in turn, we conducted
k = 100 experiments of simulated transfers from the pool of
phage genes into the genome of the host organism. In each
case, the number of added genes was chosen to be a fixed
percentage of the number of genes in the host genome. The
‘transferred’ genes were selected from the donor pool at ran-
dom and with replacement. So as to be more realistic, we
carried out the simulated-transfer experiment for transfer per-
centages that ranged between 1% and 8% of the genes in the
host genome at hand. For each genome and transfer percentage
combination, the task was that of recovering as many of the
artificially transferred genes as possible, without using any a
priori knowledge about the host genome or the donor genes.
For the genome and percentage combination being considered,
we accumulated results from over 100 repetitions of the
transfer-and-recover experiment and reported the arithmetic
average.

In the ideal case, a method ought to be able to recover every
single one of the added genes. But the reader should keep in

Table 1. List of phages

Phage GenBank ID  Genes

NC_000872 50
NC_001330 10
NC_001335 85
NC_001697 42
NC_001902 32
NC_001942 15
NC_002194 8
NC_002628 35
NC_002649 35
NC_002747 56
NC_003050 53

Streptococcus thermophilus bacteriophage Sfi21

Coliphage alpha3

Mycobacterium phage LS

Haemophilus phage HP1

Methanobacterium phage psiM2

Mpycoplasma arthritidis bacteriophage MAV'1

Chlamydia phage 2 virion

Methanothermobacter wolfeii prophage psiM100

Bacillus phage GA-1 virion

Lactococcus lactis bacteriophage TP901-1

Streptococcus pneumoniae bacteriophage
MM]1 provirus

Sulfolobus islandicus filamentous virus

Bacteriophage PSA

Halovirus HF2

Cyanophage P60

Lactobacillus casei bacteriophage A2 virion

Vibrio cholerae 0139 fsI phage

Salmonella typhimurium phage ST64B

Pseudomonas aeruginosa phage PaP3

Streptococcus pyogenes phage 315.4 provirus

Staphylococcus aureus phage phi 13 provirus

Yersinia pestis phage phiAl122

Xanthomonas oryzae bacteriophage Xp10

Enterobacteria phage RB69

Burkholderia cepacia phage BcepNazgul

Ralstonia phage p12J virion

Bordetella phage BPP-1

NC_003214 72
NC_003291 59
NC_003345 114
NC_003390 80
NC_004112 61
NC_004306 15
NC_004313 56
NC_004466 71
NC_004587 64
NC_004617 49
NC_004777 50
NC_004902 60
NC_004928 179
NC_005091 75
NC_005131 10
NC_005357 49
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mind that our artificially transferred genes compete with all of
the bona fide horizontal transfers, already present in the gen-
ome under consideration, for the same top putative transfer
positions. Nonetheless, this situation poses no problem for the
purposes of simulation as it holds true for all of the tested
methods, and thus no method is favored at the expense of
another.

Each tested method computes a ‘typicality’ score for each
gene based on different gene features each time. Let p be the
number of genes that we artificially added to the genome being
studied: the various methods are evaluated according to their
‘hit ratio’, which is defined as the percentage of artificially
added genes occupying the p-lowest typicality score values. In
other words, we measure how many of the artificial transfers
end up occupying the p-lowest positions. Clearly, the more
successful a method is in discovering gene transfers, the closer
the computed hit ratio will be to 100%. If m denotes a gene-
scoring method, G is the genome under consideration and
r"'(G) is the hit ratio obtained by the method m at the ith
iteration of the experiment (with 1 < i < k), then we can
define the performance Perfy; of method m on genome G as
the ‘average of the hit ratios’ that we observed across the
k experiments:

m 1 a m
Perf( = Z ;ri (G).
Similarly, we define the ‘overall performance’ Perf™ of
method m as its average performance across all N organisms:

m 1 m
Perf™ = N ;Peifa.

We experimented with numerous methods, based on differ-
ent compositional features and similarity measures and com-
puted the overall feature-based typicality of the genes. In
Table 2, we provide a summary of the methods that we
have discussed here: four of the methods have appeared pre-
viously in the literature whereas the fifth one is Wn, the method
we propose and discussed in this manuscript.

Each of the five methods computes a score for each gene
according to the method’s rules. The Codon Adaptation Index
(CAI) is computed and assigned to each gene as its score. The
lower this score is the more atypical the gene is considered to
be, and its synonymous codon composition deviates from the
one observed in its genome. The CAI value for gene g in
genome G is given by the following formula:

CAI(g) = exp Zf, Inw;

Table 2. Gene scoring methods

Name Width  Step  Measure Description

CG 1 1 X G + C content

3/4 2 3 X Dinucleotide composition of
codon positions 3 and 1

CODONS 3 3 X Codon composition

CAI 3 3 N/A Codon Adaptation Index

W8 8 1 Covariance  8-nucleotide composition

(no gaps)
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where f; is the relative frequency of codon i in the coding
sequence, and w; the ratio of the frequency of codon i to
the frequency of the major codon for the same amino acid
in the whole genome. In the CG method, the G + C content for
each gene is computed and compared against the G + C content
of the genome using the x* test and the x* value is negated in
order to yield the gene typicality score. The third method is
based on the composition of the dinucleotides formed by the
third position of codon j and the first position of codon j + 1.
As before, the y* test is used to compute the gene scores.
CODONS uses the y* test and W8 covariance as the similarity
measures and templates of size 3 and 8 respectively to form
their compositional features: in the case of CODONS, only the
trinucleotides that correspond to codons are used in the
calculation; however, in the case of W8, we count all 8 nt
templates without observing codon boundaries.

In Table 3, we list the overall performance Perf™ of all five
methods for different percentages of artificially added genes.
Notably, across all percentages of added genes, our WS
method outperforms the rest. The entries of Table 3 are
also shown in Figure 3a in the form of a plot.

Table 4 shows the improvement achieved by our method
when compared to the remaining four methods: the improve-
ment is shown both in absolute percentage points (Table 4A)
and in terms of relative values (Table 4B), and represents the
average across the 100 experiments that we carried out with
each genome and amount of artificial transfers. The data in
Table 4B is also depicted graphically in Figure 4. The amount
of relative improvement that W8 achieves relative to method
m is computed as the average increase in the number of arti-
ficially transferred genes that our method detects:

1 1 < Perf"3(G)—Perf™(G)
Rel" = — S Rell = —
=N ; 6=y ; Perf"(G)

and is a measure of how many more horizontal transfers are
detected by W8. For example, in the experiments with 2%

Table 3. Overall performance Perf™ for the methods under evaluation

%HGT CG (%) 3/4 (%) CODONS (%) CAI (%) W8 (%)
1 38.81 36.80 27.68 43.83 51.28
2 44.41 43.08 34.41 49.58 56.26
4 50.33 49.34 41.59 55.30 61.21
8 56.41 56.24 49.79 61.11 65.88

Table 4. Improvement of reported WS method over previous methods

%HGT WS vs W8 vs WS vs W8 vs
CG (%) 3/4 (%) CODONS (%) CAI (%)
(A) % improvement in overall performance
1 12.47 14.48 23.60 7.45
2 11.85 13.18 21.85 6.68
4 10.88 11.87 19.62 591
8 9.47 9.64 16.09 4.77
(B) % average relative improvement
1 146.57 93.01 232.79 41.61
2 70.57 59.82 129.98 27.87
4 32.90 37.24 78.96 18.18
8 19.88 22.04 45.05 11.64

added genes from the prokaryotic pool, our method discovered
27% (respectively 70%) more artificial transfers than CAI
(respectively CQG).

It is worth pointing out that our method outperforms CAI
across all amounts of artificial insertions with which we have
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Figure 3. Overall performance Perf™ of five scoring methods that has been
averaged over 123 genomes: (a) case of a phage donor gene pool and (b) case of
a prokaryote donor gene pool.
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Figure 4. Achieved relative improvement Rel “*' of W8 versus CAI averaged
over all experiments and all genomes (see also text).



experimented, and exhibits significant relative improvements
that range between 11% and 41%. Equally important is the fact
that our method exhibits much greater sensitivity and shows a
very significant advantage over all of the earlier methods when
the number of horizontally transferred genes is small com-
pared to the number of genes in the host genome.

Figure 5 shows a detailed analysis of the performance of W8
compared to the CAI method for each of the 123 genomes and
for those experiments where we added 2% donor genes. In this
figure, we use green-colored bars for those genomes in which
W8 outperforms CAI, and a red-colored bar if the opposite
holds true. The height of each bar shows the magnitude of the
relative improvement Rel(; achieved by our method over CAI
as an average over the 100 experiments and can be either
positive (green bars) or negative (red bars). As can be seen
here, for the majority of the organisms (91 versus 32), the W8
method recovers more of the artificially inserted genes
than CAI does. But more importantly, W8 does so while
achieving a significantly higher relative improvement margins
than CAI The performance of our W8 method on each genome
(both average and SD) can be found in the Supplementary
Figure 1.
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Next, we exhaustively studied the impact that the size of the
template has on the overall performance. Using the same
experimental protocol as above and carrying out 100 experi-
ments per organism, we observed that for template sizes
greater than 2, the optimal performance is achieved when
we ignore codon boundaries and use covariance to compute
the similarity scores. Figure 7a shows atypical gene detection
performance as a function of the employed template size. It is
evident from this figure that an increase in template size leads
to continuous increase in performance reaching a maximum
for template sizes between 6 and 8 inclusive. In fact, the
performance is nearly identical for these three template
sizes. Any further increase in the template size leads to a
quick drop in performance.

Case 2: donor pool comprising genes from archaeal
and bacterial genomes

We also repeated the above experiments but this time the pool
from which the donor genes were selected comprised the
approximately 350000 genes from the 123 genomes that
we used as hosts. In other words, we effectively simulated
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the case where our host genomes could exchange genes with
one another in any conceivable combination. To the best of our
knowledge, this kind of simulation has not been previously
used in the context of evaluating a horizontal gene transfer
method. Naturally, we added a bookkeeping stage in this
simulation that ensured that all the genes that were artificially
inserted in genome G originated in genomes other than G.

In order to account for the bigger size of the donor pool, we
conducted £ = 1000 repetitions for each artificial transfer
experiment. In Figure 3b, we show the overall performance
of the five evaluated methods as a function of the percentage of
added genes, and in Figure 6 we plot the relative improvement
achieved in each genome by our method compared to CAL
The performance of our W8 method on each genome (both
average and SD) can be found in the Supplementary Figure 2.
Finally, the effect that changing the template size has on per-
formance is shown in Figure 7b. Not surprisingly, the results
obtained during the simulation with the prokaryotic donor pool
are in agreement with those obtained from the simulation with
the phage donor gene pool.

There still remains the issue of which of the three
best-performing template sizes to use. This depends on the

expected size of the DNA fragment that will be processed.
Given that the sensitivity achieved by template sizes 6 through
8 is virtually the same, use of the largest possible template size
will allow us to achieve greater specificity, provided of course
that the regions of DNA under consideration can generate a
substantial number of non-zero counts. As a rule of thumb, we
propose that smaller template sizes be used when isolated gene
transfers are sought. Larger size templates will be more
appropriate when attempting to identify clusters of horizont-
ally transferred genes.

We conclude by applying the sliding-window version of our
algorithm to the genome of E faecalis, where a cluster of
vancomycin-resistance related genes is known to have been
horizontally transferred. As a matter of fact, in E.faecalis
V583, there is a cluster of seven genes, EF2293-EF2299,
that confers vancomycin resistance to E faecalis. Using
the sliding window version of our method over windows of
five consecutive genes, and template sizes that ranged from
6 through 11 inclusive, we computed scores for each of
E faecalis’ genes. CAI values were also generated for the
same gene collection. Our goal was to compare the atypicality
ranks of the genes that are known to be horizontal transfers as

CAI
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these ranks would be deduced by each of five scoring methods.
As stated above, the lower the score of a gene (equivalently:
the lower the gene’s rank), the more atypical it is considered to
be. Given the cluster’s common origin, the ideal method
should be able to report this collection as a group with no
other genes achieving atypicality scores within the range of
values spanned by the cluster’s genes. Moreover, the ideal
method should be able to assign as low scores as possible
to this collection emphasizing its horizontally transferred
nature. In Figure 8, we show the results of the gene ranks
produced by some of the methods. As can be seen here, W6
through W8 perform equally well. The span of gene ranks for
the cluster’s members is low for template sizes 6 through 8 and
equal to the span obtained by the CAI method. As anticipated,
W8 outperforms CAI by reporting the genes of this cluster
earlier in the list of putative horizontal transfers—this is in-
dicated by the overall lower rank values which are assigned to
the cluster as a whole. Further increasing the specificity of the
employed templates by increasing their size results in earlier
reporting of the vancomycin cluster in the list of candidate
transfers. But this is achieved at the expense of increasingly
losing the score coherence, which is expected given that the
genes under consideration are part of the same logical unit.
This last experiment further corroborates the conclusion
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Figure 8. Detecting the vancomycin-resistance cluster of horizontally trans-
ferred genes in E faecalis. In an ideal setting, the genes of this cluster should be
reported as a group (i.e. their ranks for a given scoring scheme should be as close
to each other as possible) and uninterrupted by genes that do not belong to the
cluster. Additionally, the ideal method should be able to report typicality scores
for the group as a whole that are as low as possible or, equivalently, assign gene
ranks to these genes that are as low as possible (see also text).

reached during our artificial-insertion experiments that a tem-
plate size of 8 nt (i.e. W8 method) represents an optimal choice
for Wh.

DISCUSSION

In this paper, we introduced and discussed a new,
composition-based framework for the detection of horizontal
gene transfers. Our proposed method, Wn, is based on com-
positional features but extends and generalizes all previously
proposed schemes. Wn works by assigning a typicality score to
each gene that reflects the gene’s similarity with the containing
genome as this is gauged by the features in use. We have also
described a way to automatically determine a typicality score
threshold. Finally, an extension of Wn for the case where the
sought transfers are likely to appear in clusters (as opposed to
isolated genes) was also described and discussed. We have
created a website comprising the predictions of the horizontal
gene transfers for all 123 archaeal and bacterial genomes based
on our method at http://cbcsrv.watson.ibm.com/HGT/.

We carried out a comparative evaluation of Wn and previ-
ously reported computational methods for the discovery of
horizontal gene transfers. In particular, we evaluated five rep-
resentative methods by inserting random, varying-size collec-
tions of phage and prokaryotic genes in each of 123 host
genomes (archaea and bacteria) and processing those artifi-
cially created genomes with each method. Our objective was
to recover in the lowest-scoring positions (highly atypical
genes) as many of the added phage genes as possible without
making use of any a priori knowledge about either the host
organism or the inserted genes. These experiments as well as
the study of a specific, documented case from E.faecalis
strongly demonstrated that templates with sizes ranging
from 6 to 8 nt yield optimal performance.

We also reported on pairwise comparisons of Wn with the
CAI and G + C methods and for each of 123 genomes in
turn. Combining the results across all 123 genomes, W8
clearly outperformed both CAI and G + C. W8 achieved
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very significant relative improvements over CAI that averaged
25%. The relative improvements over G + C were even more
pronounced.

Arguably, for many years, the essence of computational
methods that relied on genomic DNA alone to draw conclu-
sions on horizontal gene transfers had remained largely
unchanged. In this light, our proposed method is of particular
relevance: it is very fast, it need only access the genomic
DNA in question (i.e. partial or whole sequence of host
genome and partial or whole sequence of candidate stretch
of DNA), it obviates the need for access to databases of
genomic sequences, it obviates the need for comparative
analyses with other genomes, and finally, it does not make
use of any codon boundary knowledge. Despite the minimal
amounts of information that our method uses, a very extensive
series of computational experiments on 123 genomes amply
demonstrated the superiority of our method, which achieved a
relative improvement of between 11% and 41% over CAL

Summarizing, we would like to point out that our method
aims at identifying genes that diverge from the typical gene
profile—measured in terms of template frequencies—of the
genome where they are found. It is known, however, that
in addition to horizontally transferred genes with atypical
profiles, there exist also native to the organism genes that
exhibit atypical characteristics. Classic examples include
the ribosomal RNA proteins whose profiles are often relatively
atypical: these genes belong to the category of informational
genes that are widely believed to have limited mobility and do
not tend to transfer across species (39). Consequently, we
exclude these genes from our final list of candidate gene trans-
fers. It should be noted however that even informational genes
can undergo horizontal transfer, as was recently shown
through a phylogenetic analysis of the ribosomal protein
S14 (40). Other groups of informational genes such as the
aminoacyl-tRNA synthetases, which are essential components
of the genome’s translation machinery, appear to also undergo
horizontal transfer (41-43), but unlike the case of ribosomal
proteins, we do not exclude any aminoacyl-tRNA synthetases
from our reported results.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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