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This review discusses strategies for the identification of metabolites in complex 
biological mixtures, as encountered in metabolomics, which have emerged in the 
recent past. These include NMR database-assisted approaches for the identification of 
commonly known metabolites as well as novel combinations of NMR and MS analysis 
methods for the identification of unknown metabolites. The use of certain chemical 
additives to the NMR tube can permit identification of metabolites with specific 
physical chemical properties.
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A fundamental characteristic of all living sys-
tems is their extraordinarily high complexity 
at the molecular level [1,2]. This includes both 
large and small molecules, most of which are 
part of complex biochemical reaction net-
works [3–5]. The footprint of all small bio-
logical molecules, or metabolites, provides 
unique information about the state of a liv-
ing organism, which is a prerequisite for the 
understanding of the activity of biochemical 
pathways and their consequences for homeo-
stasis, health and disease, aging, as well as 
for elucidation of the effect of mutations 
and other biological, chemical or physical 
perturbations [6–9]. Over the past few years, 
the field of metabolomics (also referred to 
as ‘metabonomics’) has assumed a critical 
role in the comprehensive characterization 
of the metabolites of biological systems and 
their relationship to the biological state of an 
organism [10–13]. Specifically, metabolomics 
is providing new insights into the metabo-
lite makeup of biofluids, such as serum and 
urine, cells, tissues and organs and their role 
in biochemical pathways [14–16]. Metabolo-

mics allows the identification of biomark-
ers that are characteristic for particular 
phenotypes, such as a specific disease, even 
before the ‘classical’ symptoms occur [17–19]. 
Metabolomics also promises to be useful for 
monitoring the treatment of many different 
health conditions and opens up the prospect 
for new approaches to wellness and person-
alized medicine [20,21]. Therefore, the bio-
medical implications of metabolomics are of 
paramount significance and are expected to 
continue to rapidly grow in importance due 
to the high likelihood within this decade of 
routine applications for diagnosis and treat-
ment of various conditions and diseases based 
on a wide range of metabolomics tools [22,23].

MS and NMR spectroscopy are the two 
major experimental analysis techniques 
in metabolomics [24,25]. This is primarily 
because of the exceptional resolution power 
of both of these techniques to detect individ-
ual metabolites in complex mixtures while 
requiring little or no purification or physical 
separation of mixture components [26–28]. 
However, detection of signals alone is often 
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Figure 1. Metabolite identification by using the customized TOCSY 1H(13C)-TOCCATA database (see facing page). In the 2D 1H-1H 
TOCSY spectrum of Escherichia coli cell lysate (orange), a 1H TOCSY trace displayed as green cross-section is extracted (upper panel). 
Next, its cross-peaks are queried against the database using the webserver [61]. The query correctly and exclusively assigned the trace 
to the nicotinamide ring portion of NADP+ (see lower panel depicting a snapshot of the web server).
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not sufficient for the unambiguous identification of 
metabolites. In fact, many of the signals observed in 
MS and NMR spectra of metabolomics studies belong 
to molecules whose identification is notably diffi-
cult [29,30]. Identification of these ‘unknown’ metabo-
lites has been recognized as one of the major challenges 
in the metabolomics field.

By contrast, for the identification of ‘known’ metab-
olites, which are those metabolites whose identities are 
already cataloged in accessible databases, querying of 
metabolomics databases can be very accurate and effi-
cient [31–33]. Over the recent past, both MS and NMR 
metabolomics databases have undergone significant 
expansions of metabolite repositories and enhance-
ments of querying platforms [34–37]. These have led to 
significantly improved querying results both in terms 
of an increased true positive rate and lowered false pos-
itive rate. A general goal is to expand metabolite data 
repositories with data of newly discovered metabolites 
so that database querying can identify an ever-larger 
number of metabolites in real-world applications.

Other advancements in metabolite identification 
have occurred by utilizing different instruments for 
the analysis of the same sample to further increase the 
accuracy of metabolite identification. Methods com-
bining NMR spectroscopy with MS have received 
particular attention, because of the high complemen-
tarity of these two analytical techniques [38]. These 
studies integrated NMR and MS by means of multi-
variate statistical analysis applied to a large number of 
samples [39–41].

A non-scientific, but non-negligible drawback of 
combining NMR with MS approaches is the increased 
cost of high-end NMR and MS instrumentation 
required, especially when purchased by individual labs. 
Since the scientific output of metabolomics research 
now benefits many research areas, universities, govern-
ment agencies and companies have started to set up 
core facilities specifically designed for metabolomics 
research that include both NMR and MS instruments. 
This not only makes state-of-the-art measurements 
more affordable and more easily accessible to the larger 
research community, but also provides opportunities for 
the development of increasingly standardized protocols 
for sample preparation and data collection, opening the 
door for the routine analysis of the same metabolomics 
sample by complementary analytical techniques [42–45]. 
These developments have led to a surge in the number 
of combined NMR/MS metabolomics studies in the 
literature, a trend expected to continue.

Finally, a significant advance is that new chemical 
agents have been discovered that selectively interact 
with certain types of metabolites and thereby either 
enhance or weaken their NMR and/or MS spectra. 
Such information not only provides additional physi-
cal and chemical information about metabolites such 
as their electric charge, hydrophobicity and specific 
functional groups, but it also allows metabolite identi-
fication by correlating the signals of the same metabo-
lite across multiple NMR and/or MS spectra. In the 
following sections, we give an overview of some of 
the recent advances in metabolite identification and 
discuss remaining challenges.

Database-assisted metabolite identification
One-dimensional (1D) 1H NMR is the most com-
monly used approach in NMR-based metabolomics, 
allowing the analysis of hundreds or even thousands of 
samples in a relatively short period of time, especially 
when assisted by automated sample changers [46,47]. 
However, identification of metabolites in complex 
mixtures solely based on 1D 1H NMR is a challenge 
because many peaks tend to overlap in highly crowded 
spectra as typically encountered in metabolomics [48]. 
Substantially improved spectral resolution can be 
obtained by going from 1D to two-dimensional (2D) 
NMR experiments at the expense of prolonged experi-
mental times [49,50]. In 2D experiments, spin magne-
tization is transferred between different nuclear spins, 
which is then depicted in the form of ‘cross-peaks’ 
when plotting the spectrum against two frequency 
axes (dimensions). Compared to the 1D spectrum of 
the same compound, peak overlap in 2D is thereby 
greatly diminished. Two of the most commonly used 
2D NMR experiments in metabolomics are the 2D 
13C-1H heteronuclear single quantum coherence spec-
troscopy (HSQC) experiment [51], which provides cor-
relations between chemical shifts of 1H spins with their 
directly attached 13C spins, and the 2D 1H-1H total 
correlation spectroscopy (TOCSY) experiment [52], 
which provides the chemical shifts of all 1H spins 
within the same molecule or spin system. The TOCSY 
experiment contains valuable information about entire 
groups of resonances that belong to the same molecule, 
which is not directly available from 1D experiments, 
but is beneficial both for the identification of known 
compounds and for the elucidation of the structure 
of unknown compounds in complex metabolite mix-
tures. Many metabolomics groups only use 2D NMR 
in special situations [53,54], whereas others rely almost 
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Figure 2. Screenshots taken from COLMAR 13C-1H HSQC web server. The HSQC peak list with 165 cross-peaks of Drosophila 
melanogaster metabolite extract (upper panel) is queried against the database (continued on facing page). List of matching 
compounds returned by the query (lower panel) containing the highest true positive and the lowest false-positive identification rate 
among 13C-1H HSQC metabolomics web servers. COLMAR 13C-1H HSQC is available for public use at [62]. 
Reproduced with permission from [33] © American Chemical Society (2015).
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Figure 3. Metabolite identification by using the recent 2D J-resolved NMR database SpinCouple. The database 
contains 1H chemical shift and 1H-1H J-coupling information of 598 metabolite standards. It is publically available 
for querying at [68]. 
Reproduced with permission from [67] © American Chemical Society (2016).
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exclusively on 2D NMR experiments for the accurate 
and comprehensive identification of metabolites [55–57]. 
Some of these experiments can benefit from fast NMR 
methods that speed up the collection of NMR data 
using a variety of approaches [56,58–59].

A recent development in NMR-based metabolite 
identification has been the introduction of customized 
metabolomics databases that were specifically designed 
for the querying of 2D TOCSY NMR experiments, 
which has resulted in significantly increased accuracy of 
metabolite identification. These include the 13C-TOC-
CATA customized database [31,60], which specializes on 
the querying of 13C-13C TOCSY spectra of uniformly 
13C labeled metabolomics samples, and the 1H(13C)-
TOCCATA customized database [32,61], which permits 
the querying of 1H-1H TOCSY and 13C-1H HSQC-
TOCSY spectra of complex metabolite mixtures at 
natural 13C abundance. The novel element of these 
two databases is that they sort the spectral informa-
tion of each metabolite into its individual spin systems 
and, if present, its slowly interconverting isomers. Since 
selected cross-sections of the 2D TOCSY spectrum 
reflects the 1D spectrum of spin systems (or isomers) 
rather than the entire 1D spectrum, this increases the 
accuracy of metabolite identification by more than 35 
and 21% over existing 1D 1H and 1D 13C NMR metab-
olomics databases, respectively [31,32]. The procedure of 
metabolite identification using the 1H(13C)-TOCCATA 
customized database is illustrated in Figure 1.

Currently, many researchers use multiple metabolo-
mics NMR databases for the querying of their data in 
order to maximize the number of identified metabo-
lites in their samples, because the metabolites of dif-
ferent databases overlap only partially. This amounts 
to an extra effort for the user who will have to go back 
and forth between databases and their different user 
interfaces, scoring conventions, etc. In order to facili-
tate the analysis, a customized NMR metabolomics 
database for the analysis of 13C-1H HSQC spectra 
was introduced. This database, termed COLMAR 
13C-1H HSQC [33,62], unifies the NMR spectroscopic 
information of two of the largest public metabolomics 
databases, namely the Biological Magnetic Resonance 
Data Bank (BMRB) [63,64] and The Human Metabo-
lome Database (HMDB) [65,66]. COLMAR 13C-1H 
HSQC sorts HSQC spectra of metabolites into their 
individual isomeric states, which permits improved 
querying, because it is isomer-population insensitive, 
in other words, as long as one of its isomers can be 
detected, the molecule will be identified. Together with 
an improved query algorithm, the COLMAR 13C-1H 
HSQC metabolomics database increases the accuracy 
of metabolite identification by more than 37% and 
decreases the false-positive identification rates by more 
than 82% over existing 13C-1H HSQC metabolomics 
databases [33]. Example application of COLMAR 13C-
1H HSQC to a real-world metabolite sample can be 
found in Figure 2.
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A novel metabolomics database, SpinCouple [67,68] 
(Figure 3), was introduced for the analysis of 2D 
J-resolved (Jres) 1H NMR spectra [69]. SpinCou-
ple [67] as well as Birmingham Metabolite Library [70] 
(BML) [71], allows querying of 2D Jres 1H NMR spec-
tra of complex metabolite mixtures against 2D Jres 1H 
NMR spectra of metabolite standards. One of the rea-
sons for spectral crowdedness in 1D 1H NMR spectra 
is the presence of homonuclear proton-proton scalar 
J-couplings resulting in an increase of the total peak 
widths. The 2D Jres 1H NMR experiment maps the 
chemical shift and J-coupling effects onto two orthog-
onal frequency axes and, hence, leads to an increase 
in spectral resolution [72]. Since the 2D Jres 1H NMR 
experiment is a homonuclear 1H experiment, at natural 
13C abundance it is more sensitive than a 2D 13C-1H 
HSQC; however, its resolution is much lower than the 
one of the 2D 13C-1H HSQC.

Querying of experimental 2D NMR spectra against 
metabolomics databases achieves unambiguous iden-
tification of a majority of the cataloged metabolites in 
model organisms such as Drosophila melonagaster and 
Escherichia coli [33]. However, this strategy fails when 
two or more metabolites have very similar chemical 
shifts, which is often because they have a very similar 
structure, as is the case, for example, for creatine versus 
creatine-phosphate and ADP versus ATP metabolites. 
On the other hand, these metabolites often have dif-
ferent m/z ratios and, hence, it should be possible to 
differentiate them when including MS information.

Unfortunately, there has been a lack of strategies for 
the rapid identification of cataloged metabolites using 
both NMR and MS spectra as input. Traditionally, 
cataloged metabolites are identified in the NMR spec-
trum by using NMR metabolomics databases, whereas 
cataloged metabolites in the MS spectrum are iden-
tified via MS metabolomics databases. Metabolites, 
along with their names, identified by both methods are 
then compared with each other [73,74]. This approach 
is labor intensive and does not fully capitalize on the 
power of these two analytical approaches even when 
the two datasets stem from the same sample. In order 
to address this limitation, a fully automated hybrid 
NMR/MS approach, the ‘NMR/MS Translator’, [75] 
has recently been developed. The principle behind 
this approach is shown in Figure 4A. The NMR/MS 
Translator first generates metabolite candidates from 
experimental 1D and/or 2D NMR spectra by NMR 
database query, which is followed by the automated 
prediction of the masses (m/z) of all likely ions and 
adducts of metabolite candidates with their character-
istic isotope distributions. The expected m/z ratios are 
then compared with the experimental MS1 spectrum 
for the direct assignment of those signals of the mass 

spectrum that correspond to the metabolites gener-
ated from the NMR spectra. In this way, the MS and 
NMR spectra are simultaneously assigned in a fully 
automated manner. Furthermore, since chemical shift 
and accurate mass data were co-analyzed, it substan-
tially increases the accuracy of metabolite identifica-
tion as compared with entirely separate studies by 
NMR and MS alone. When the NMR/MS Translator 
was applied to human urine by combining 2D 13C-1H 
HSQC with direct infusion ESI-MS spectra, it was 
able to identify 88 metabolites that have consensus sig-
nals in both NMR and MS spectra, whereby molecules 
that share very similar structures such as creatine ver-
sus creatine-phosphate could be easily distinguished. 
The remarkably large ‘cross-section’ of metabolites 
identified in this way compares very favorably to com-
pletely separate NMR and MS studies, including some 
of the most extensive studies of this kind reported in 
the literature [75].

Identification of unknown metabolites
The above-mentioned database-assisted strategies 
achieve highly accurate and efficient metabolite iden-
tification, however, only for those metabolites that 
have already been compiled in databases. Although 
excellent progress has been made in the expansion and 
compilation of NMR metabolomics databases, such 
as MMCD [77,78], BMRB [63,64], HMDB [65,66] and 
COLMAR [31–33,79], the further expansion of these 
databases, while on-going, is time and labor-intensive. 
The current databases typically contain approximately 
300–1000 metabolites, whereas the number of dif-
ferent metabolites in a single organism has been esti-
mated to be in the thousands. Therefore, approaches 
that rely on databases have clear limitations when it 
comes to the determination of the entire metabolome 
of a complex biological system.

In a recent analysis of a pooled human urine sample 
using the NMR/MS Translator, we found that out 
of 1012 detected NMR 13C-1H HSQC cross-peaks, 
only 437 could be assigned to a total of 98 known 
metabolites [75]. Assuming a similar number of HSQC 
cross-peaks per compound, another approximate 130 
metabolites are estimated to be present; the identities 
of these molecules, however, cannot be determined due 
to the lack of database information. Although some of 
these unknown compounds might have been encoun-
tered and possibly even characterized in previous stud-
ies, including those in other fields of chemistry, in the 
context of metabolomics they all classify as unknown 
compounds as long as their structure and NMR spec-
troscopic information are not readily available. Discov-
ery of these unknown compounds and their charac-
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Figure 4. Recently proposed combined MS/NMR approaches for the rapid and accurate identification of known 
and unknown metabolites in complex metabolite mixtures (continued on facing page). (A) The NMR/MS 
Translator strategy allows rapid identification of cataloged metabolites. (B) The SUMMIT MS/NMR strategy allows 
rapid identification of unknown metabolites. 
(A) Reproduced with permission from [75]. 
(B) Reproduced with permission from [76].
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terization in terms of their chemical composition and 
structure is a key objective of metabolomics as such 
compounds participate in biochemical pathways and 
exert biological roles in health and disease. The tra-
ditional approach to the characterization of unknown 
compounds is based on purification and isolation of 
each compound followed by spectroscopic and crys-
tallographic characterization [80]. The labor and time-
intensive nature of this approach makes it unsuitable 
for routine investigations of samples with variable 
complexity encountered in metabolomics, which 
underlines the need for high-throughput approaches.

2D NMR spectroscopy has been used for the char-
acterization of the backbone topologies of unknown 
molecules in metabolomics samples toward the eluci-
dation of metabolite structures in complex mixtures. 
In this way, it was possible to identify 112 individual 
carbon backbone topologies from a single E. coli cell 
lysate [81]. In a parallel development, MS of metabolite 
mixtures has made important inroads in recent years, 
providing information that is highly complementary to 

the one derived from NMR. With increasing resolu-
tion of mass spectrometers, such as Q-TOF, orbitrap, 
and FT-ICR, the determination of ‘accurate masses’ 
of individual metabolites is becoming increasingly 
routine. This information allows one to deduce the 
molecular formula of metabolites that underlies each 
peak in the mass spectrum. However, it is a long way 
from the knowledge of molecular formulas to the iden-
tification of individual molecules, because of the large 
degeneracy of the structural space (manifold) belong-
ing to a given accurate mass. For example, according to 
the ChemSpider database [82,83], there are 999 different 
molecules that have the same mass as tyrosine. With 
increasing mass, this degeneracy increases exponen-
tially. The mass spectrometric solution to this problem 
is the measurement of MS/MS spectra of molecular 
fragments, provided that they are unique for each mol-
ecule. However, since fragmentation cannot be accu-
rately predicted, this requires the compilation of MS/
MS databases, such as METLIN [84,85], using experi-
mental fragmentation data of individual metabolites. 
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Figure 5. The protocol integrating the SUMMIT MS/NMR with the NMR/MS Translator for the systematic and efficient identification 
of both known and unknown metabolites in complex metabolite mixtures (see facing page).

Figure 6. A chemo-selective approach to detect the same metabolites using NMR and MS by chemical modification. 15N-labeled 
cholamine attaches selectively and covalently to carboxyl group containing metabolites and enables their enhanced detection by both 
MS and NMR.  
Reprinted with permission from [87] © American Chemical Society (2013).
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This makes the identification of unknown (i.e., uncat-
aloged) metabolites very challenging by MS alone. By 
contrast, NMR spectroscopic data can be predicted 
with reasonable accuracy for a given metabolite struc-
ture [86]. NMR chemical shifts are particularly suit-
able, since they are very sensitive to the nature of the 
local chemical bonding and hence the chemical shifts 
will significantly change between most isobaric iso-
mers. Because most metabolites have multiple nuclear 
spins and, hence, multiple chemical shifts, the overall 
agreement between experimentally determined chemi-
cal shifts and predicted chemical shifts provides an 
effective filter to identify those metabolites that best fit 
the experimental data.

Novel combinations of MS and NMR open up new 
opportunities to address the structure elucidation chal-
lenge of unknown metabolites with a transformative 
potential for the metabolomics field. Very recently, a 
purification-free hybrid MS/NMR metabolite identi-
fication strategy, SUMMIT MS/NMR, has been pro-
posed [76]. The approach first extracts accurate masses 

of all detected metabolites from high-resolution mass 
spectra and generates all structures consistent with the 
derived chemical formulas (‘structural manifold’). The 
comparison of the predicted NMR spectra of all can-
didate structures with the experimental NMR spectra 
of the same sample permits accurate identification of 
the structures present in the complex mixture of inter-
est. The procedure is sketched for the three metabo-
lites N-acetylputrescine, aspartate and nicotinate in 
Figure 4B. SUMMIT MS/NMR was applied to E. coli 
cell extract, where it correctly identified a wide range of 
different types of metabolites [76]. The results suggest 
that SUMMIT MS/NMR should become suitable for 
high-throughput applications for the discovery of new 
metabolites in biological and biomedical mixtures, 
without the need for experimental MS and NMR 
metabolite databases or extensive metabolite purifica-
tion for the elucidation of the structures of unknown 
metabolites.

In principle, SUMMIT MS/NMR is capable of elu-
cidating structures of all types of metabolites regard-
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Figure 7. The combined use of the paramagnetic spin relaxation agent gadolinium (Gd3+) and CPMG 1H NMR to 
selectively suppress signals of metabolites in a complex mixture. A low concentration of Gd3+ combined with a 
short T2 filter only suppresses the signals from citric acid (blue). Next, a higher Gd3+ concentration along with a 
longer T2 filter suppresses the signals from acetylcysteine (yellow). The remaining signals in the CPMG 1D 1H NMR 
spectrum belong to mannitol (red), which is least affected by Gd3+ and the T2 filter. 
Adapted with permission from [90] © American Chemical Society (2015).
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less of being known or unknown, but the approach 
is most beneficial for the identification of unknown 
metabolites. In order to systematically apply this pro-
tocol to complex biological mixtures, we developed a 
strategy integrating SUMMIT MS/NMR [76] with 
the NMR/MS Translator [75] which is depicted in 
Figure 5. In a first step, the NMR/MS Translator pro-
tocol is applied to rapidly identify cataloged metabo-
lites observed both in NMR and MS spectra acquired 
of the same sample. In this way, a maximal number of 
NMR and MS signals are assigned to known metabo-
lites, while at the same time, the remaining signals are 
identified as fingerprints of unknown compounds. 
Next, for those signals belonging to unknowns, we 
apply the SUMMIT MS/NMR approach. This two-
step strategy reduces the number of experimental m/z 
ratios that has to be taken into account for chemical 
shift prediction in the SUMMIT MS/NMR protocol, 
and therefore significantly reduces the complexity and 
the computational time for the discovery of unknown 
metabolites. Application of this integrated strategy to a 
variety of different metabolomics samples is currently 
underway in our laboratory.

Although these approaches can be applied for the 
comprehensive identification of most, if not all, com-
ponents of a complex mixture, for certain applications 
it may be of advantage to focus on a subset of com-
pounds that have the largest potential as biomarkers 
as their concentrations correlate strongest with the 

phenotype. Such an approach has the potential for sig-
nificant speed up as only a subset of all NMR and MS 
signals need to be analyzed [39–41,44].

Use of chemical agents for improved 
metabolite identification
Certain chemical agents are capable of specifically 
interacting with certain types of metabolites and 
change their signal intensities both in NMR and MS 
spectra. This characteristic has recently been utilized 
to improve metabolite identification. Two 15N labeled 
agents, cholamine tag [87] and aminooxy probe [88] 
have been introduced that selectively and covalently 
attach to carboxyl and carbonyl group containing 
metabolites, respectively. This makes signals of these 
metabolites directly visible in 2D 15N-1H HSQC NMR 
spectra and mass spectra because of the introduction 
of a permanent charge, thereby linking NMR and 
MS signals of the modified metabolites. A schematic 
representation of this strategy is shown in Figure 6.

Gadolinium (Gd3+) has been introduced because 
of its paramagnetic property as a tool for NMR signal 
suppression of individual components in complex mix-
tures according to their Gd3+-complexing ability [89]. 
The metabolites that interact with Gd3+ relax faster 
(shorter transverse relaxation time T

2
), which results 

in the broadening and partial suppression of their 
signals and might help their identification. However, 
these effects are mainly restricted to anionic species; 
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Figure 8. Effect of anionic silica nanoparticles on 1D 1H and 2D 13C-1H HSQC spectra of 10-compound 
metabolite model mixture consisting of lysine, arginine, histidine, citric acid, lactic acid, shikimic acid, alanine, 
dimethylglycine, glucose and valine 2 mM each (A) without and (B) with anionic silica nanoparticles. Blue squares 
highlight the cross-peaks of lysine, arginine, histidine and dimethylglycine that are suppressed in the presence of 
silica nanoparticles (red squares).  
Reproduced with permission from [92] © American Chemical Society (2015).
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they are easier to filter than neutral and cationic spe-
cies, because of their stronger complexing ability with 
Gd3+. Recently, an alternative, Carr-Purcell-Meiboom-
Gill (CPMG) edited version of the approach has been 
introduced [90]. CPMG is popular in NMR-based 
metabolomics for the analysis of blood/serum samples 
and tissues. With appropriate T

2
 relaxation delays, 

CMPG can selectively suppress the signals of macro-
molecules without significantly affecting metabolite 
signals [91]. The authors applied the CMPG method 
to analyze metabolites in the presence of Gd3+. Using 
appropriate Gd3+ concentrations and T

2
-relaxation fil-

ters, they were able to weaken the NMR signals of dif-
ferent molecular species to a variable degree, thereby 
assisting the identification of those molecules in 
complex mixtures (Figure 7) [90].

Electrically charged silica nanoparticles have been 
introduced as a way to differentiate between mixture 
components in NMR spectra based on their electric 
charge [92]. When it comes to the detection of elec-
tric charge of molecules, NMR spectroscopy is an 
insensitive technique at constant pH. The new tech-

nique addresses this limitation. By adding electrically 
charged silica nanoparticles of approximately 20 nm 
diameter to the solution of NMR sample, metabolites 
of opposite charge bind to the nanoparticles and their 
NMR signals are substantially weakened or entirely 
suppressed due to peak broadening caused by the 
slow rotational tumbling of the nanometer-sized par-
ticles [92]. Comparison of the edited spectrum with the 
original spectrum significantly facilitates analysis and 
reduces ambiguities in the identification of metabo-
lites. This editing approach has been demonstrated for 
both anionic and cationic silica nanoparticles, which 
were able to successfully suppress the signals of posi-
tively charged and negatively charged metabolites, 
respectively, in the NMR spectra of a complex model 
mixture (Figure 8) as well as of human urine [92].

Conclusion
The future trajectory of metabolomics and its impact 
on translational biomedicine largely depend on the 
analytical capabilities of the two main experimental 
techniques, NMR spectroscopy and MS, as well as 
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optimizing the combination of these techniques to 
permit rapid identification and quantitation of a large 
number of metabolites in complex mixtures. Despite 
recent advances in a variety of areas, a large number 
of metabolites in common biological samples are still 
unknown as they are not part of existing metabolo-
mics databases. These unknown metabolites need to 
be identified and structurally characterized in an accu-
rate and efficient manner. Achievement of these goals 
requires the development of new methods involving 
both NMR and MS and their suitable combination 
along with innovative sample preparation approaches. 
In order to make these advances accessible to a broad-
est range of scientists in the biomedical and other 
fields, easy access to state-of-the-art NMR and MS 
instruments, the development of integrated, robust 
and easy-to-use software, web server and databases 
and the development of optimized sample preparation 
protocols will be crucial.

Future perspective
If the developments over the recent past is a guide, we 
anticipate for the near future significant further progress 

toward the reliable and rapid identification of metabo-
lites in complex mixtures. This includes the emergence 
of powerful hybrid experimental and database methods 
that combine multiple techniques into a single platform 
as well as the development of reagents interact with 
specific classes of metabolites for their easy monitoring. 
This will open the door for fully automated analysis 
with applications to a wide range of areas from medial 
diagnostics, quality control, synthesis, to food sciences.
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Executive summary

NMR spectroscopy for mixture elucidation
•	 NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in 

complex mixtures as encountered in metabolomics.
Database-assisted metabolite identification of known compounds
•	 Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful 

web servers with associated databases are available for semi-automated analysis.
Identification of unknown metabolites by hybrid approaches
•	 For the identification of unknown compounds, new combinations of NMR with MS have been developed 

recently that make synergistic use of the mutual strengths of the two techniques.
Use of chemical agents for improved metabolite identification
•	 The use of certain chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged 

silica nanoparticles, permit the identification of metabolites with specific physical chemical properties.
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