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Abstract

Protein structure refinement during CASP11 by the Feig group is described. Molecular dynamics 

simulations were used in combination with an improved selection and averaging protocol. On 

average, modest refinement was achieved with some targets improved significantly. Analysis of 

the CASP submission from our group focused on refinement success vs. amount of sampling, 

refinement of different secondary structure elements and whether refinement varied as a function 

of which group provided initial models. The refinement of local stereochemical features was 

examined via the MolProbity score and an updated protocol was developed that can generate high-

quality structures with very low MolProbity scores for most starting structures with modest 

computational effort.

Keywords

CASP; structure prediction; scoring; protein; Molprobity

INTRODUCTION

Computational protein structure prediction has long aspired to overcome experimental 

limitations and provide structures at the same rate as new sequences are discovered. Today, 

this has been achieved at least in part1. Useful models can be built for most sequences by 

taking advantage of available structures in the PDB either as a whole or in the form of 

fragments that are assembled during the prediction process. However, structural accuracy 

that is high enough to make experimental validation nonobligatory has not become routine 

yet. While the question of when predicted structures can be trusted in lieu of experiment is a 

complex issue that depends on the questions that are being asked2, an ambitious conservative 

goal that we wish to put forward are Cα RMSD values below 1 Å or GDT-HA scores above 

80 when compared to experimental structures. Sometimes, models with such accuracy can 

be generated but typical predictions with modern template-based methods fall short of this 

goal by producing models with 2–10 Å RMSD values and GDT-HA scores between 40 and 
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70 based on examples from CASP1. Recent rounds of CASP suggest that template-based 

modeling and derivative fragment assembly protocols have reached a plateau where 

significant further improvements in accuracy have become unlikely3. Some room for 

improving alignment accuracy and model generation and selection remains, and the use of 

contact predictions based on evolutionary conservation4 may provide additional gains but 

overall we have probably come close to the limits of knowledge-based structure prediction.

Physics-based methods offer an alternative strategy for structure prediction based on first 

principles. While such methods involve substantial computational costs and require finely 

tuned complex force fields, there is increasing evidence that such methods can match and 

surpass the accuracy in structure prediction that is achievable via template-based methods. 

This is evidenced by successful protein folding simulations from a number of groups. Most 

notable is the landmark study by the Shaw group where eight out of twelve small proteins 

were folded to within 2 Å RMSD from their respective native structures by simply using 

molecular dynamics (MD) simulations with a recent force field5. MD-based structure 

prediction will remain far too expensive for most structure prediction applications especially 

when protein sizes reach hundreds of residues, but one practical approach is the 

incorporation of limited knowledge from bioinformatics or experimental data to reduce the 

conformational search space6.

Another strategy is the application of physics-based sampling in the refinement of 

approximate template-based models. The idea of refinement of template-based models via 

MD simulations is not new and anecdotal success stories have appeared in the literature for a 

while7–25. However, consistent success with MD-based structure refinement for a large set 

of targets was only recently demonstrated26. At CASP10, our group managed to refine all 

but two out of 27 targets via MD simulations13. As described in detail previously, this 

success was attributed to a number of factors: extensive sampling with 30 × 20 ns = 600 ns 

per target under restraints to prevent large deviations from the initial models, a recently 

refined version of the CHARMM force field, generation of ensemble averages rather than 

selection of a single structure, and the use of quality assessment filters to remove decoy sets 

where scoring was likely not going to discriminate native-like from non-native structures. 

The averaging was especially important since it reproduces the ensemble averaging in 

experiment but also amplifies recurring native-like features in a large set of structures over 

non-native elements as discussed in detail recently27. Achieving consistency in refining 

template-based models was a significant milestone, but the extent of refinement remained 

rather modest with an average of 2.6 GDT-HA units and a maximum improvement by 6.5 

GDT-HA units for model 1 submissions.

In this paper we are describing further progress with MD-based structure refinement during 

CASP11. As a result of methodological improvements we were able to improve structures 

by on average 3.8 GDT-HA units while four targets refined by more than 10 GDT-HA units. 

In the following, our CASP11 structure refinement protocol is described in detail before 

results are presented und discussed. Finally, we will look forward and outline where we see 

the major challenges towards routinely reaching experimental accuracy via refinement of 

template-based models.
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METHODS

CASP11 refinement protocol

We employed molecular dynamics (MD) based sampling followed by structure filtering and 

averaging to obtain refined structures from initial models provided by the assessors during 

CASP11 as refinement targets (see Figure 1). The MD stage consisted of 40 × 30 ns 

simulations in explicit solvent, each started from the same initial model but using different 

initial velocity distributions. Therefore, a total of 1.2 μs was simulated for each target at an 

approximate average cost of 100,000 core hours per target. The use of multiple shorter 

trajectories instead of a single long trajectory facilitates the broader exploration of 

conformational space with limited amount of resources but is also more convenient from a 

computational perspective. In each simulation, the recent c36 version of the CHARMM 

force field was used28. Water was modeled using the CHARMM version of the TIP3P 

model29. Na+ or Cl− counterions were added as needed to neutralize each system. Periodic 

systems were constructed with enough water to maintain at least 10 Å from any protein atom 

to the edge of the box. Electrostatics were evaluated using particle-mesh Ewald30 with a 1 Å 

grid spacing. A 10 Å cutoff (switched beginning at 8.5 Å) was applied to the direct space 

part of the Ewald sum and to Lennard-Jones interactions. A 2 fs time step was used in 

combination with holonomic constraints to keep waters rigid and maintain other bonds 

involving hydrogens at their equilibrium values. All simulations were initially equilibrated 

by minimization and step-wise heating to 298K. In the production phase, a Langevin 

thermostat and barostat were used to maintain an NPT ensemble at 298 K and 1 bar. Since 

unrestrained simulations have a greater tendency to move away from the native state rather 

than move towards it, we applied weak harmonic positional restraints on all Cα atoms using 

a force constant of 0.05 kcal/mol/Å2. The uniform use of weak restraints for all targets 

differs from the use of partial restraints with stronger force constants for some targets during 

CASP10 for those regions where we believed that the initial models were already very 

accurate. Post-analysis of CASP10 suggested that the indiscriminate use of weak restraints is 

the better strategy. All simulations were carried out using NAMD31, version 2.9, on high-

performance clusters.

Once the simulations were completed, 750 snapshots were extracted at 40 ps intervals from 

each 30 ns trajectory resulting in a total of 30,000 snapshots for each target. Each snapshot 

was then scored using RW+32. While we used DFIRE33 in CASP10, we found slightly better 

performance using RW+ in preliminary tests. As in CASP1013, we also calculated the 

RMSD of each snapshot from the respective initial models for each target (“initial RMSD”, 

iRMSD). Again, as in CASP10, we used a combined filter based on the knowledge-based 

score and iRMSD with the rationale that proximity to the initial model and low RW+ scores 

are orthogonal predictors of structures being close to the native structure. As in CASP10, we 

selected structures with scores in a radial segment relative to the center of the distribution. 

The exact selection criterion used in CASP11 was slightly modified from CASP10, again as 

a result of CASP10 post-analysis: If s and r denote the RW+ and iRMSD scores, we first 

calculated normalized scores according to:
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and

where  and  are the mean and σs and σr the standard deviations of the two scores.

Then, we required that

and

with ρ=1, θ=240, and γ=35. The first criteria selects scores at a radial distance from the 

origin, the second further limits scores to an angular segment between 240 +/− 35 degrees.

Using this criterion, we selected between 2,000 and 6,600 structures for each target. The 

structures in the resulting subset were then averaged based on the Cartesian coordinates. The 

averaging step mimics the ensemble averaging that is inherent in experiments, but it also 

greatly reduces sensitivity to noise in the scoring function. Because the averaging step 

results in locally distorted geometries, a final short refinement step consisting of 2000 steps 

of minimization followed by 8 ps of MD simulation was used to improve the model quality. 

In the final step, Ca atoms were restrained with a force constant of 100 kcal/mol/Å2 to 

maintain improvements in the backbone geometry while allowing the refinement of bonds, 

angles, and side chains.

The final structure from the protocol described above was submitted as model 1. Using the 

refined model, additional, shorter, simulations were carried out to explore whether a second 

round of refinement can lead to further refinement. In the second round, regions that moved 

most during the initial refinement step were allowed to move further while keeping the 

remainder of the structure highly restrained. In some cases, the additional simulations led to 

further refinements but we did not see consistent improvements. On average, the first round 

refined models were the best predictions. Thus, the following discussion will focus only on 

the model 1 submissions from our group.

Optimization of MolProbity scores

A more extensive protocol for optimizing MolProbity34 scores was applied during the post-

analysis of CASP11. The protocol is outlined in Figure 6. It involves a series of restrained 
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minimization steps that alternate with targeted backbone and side chain rebuilding steps to 

correct cis-backbones in non-proline residues, bonds crossing ring residue side chains 

(tyrosine, phenylalanine, histidine, tryptophan), and side chains with poor rotamers. After 

the final minimization step, a series of short MD simulations (over 10 ps) at different 

temperatures and with different restraint force constants were carried out to generate an 

ensemble of snapshots. Since MolProbity scoring does not require knowledge of the native 

structure, MolProbity scores were calculated for each ensemble snapshot and the snapshot 

with the lowest score was chosen as the final model.

All of the minimization and MD steps used a distance-dependent dielectric (∈=4) implicit 

solvent model for speed. Two variants of the CHARMM c36 force field were used28. In the 

first, force constants for backbone bonds and angles were increased to bring the respective 

bonds and angles closer to the minima of the harmonic functions. In the second variant, in 

addition to the modified bonds and angles, a modified CMAP potential was used where 

sampling outside the most populated areas of the Ramachandran map according to 

crystallography was penalized further over the original CMAP of the c36 force field.

CHARMM was used for the minimization and MD steps and the MMTSB Tool Set35,36 was 

used for backbone and side chain rebuilding.

RESULTS AND DISCUSSION

Overall CASP11 performance

Table I provides a detailed account of model 1 predictions resulting from our MD-based 

refinement protocol during CASP11. The results shown here were obtained by our own 

analysis and since we did not have experimental structures available for two targets (TR795 

and TR828) the corresponding results are not shown and those two targets were excluded 

from further analysis. The results show that, as in CASP10, refinement was possible in most 

cases. On average, GDT-HA scores were improved by 3.8 GDT-HA units. Four targets were 

improved by more than 10 GDT-HA units, one (TR765) by almost 20 units. However, for 

five targets the GDT-HA scores became significantly worse (by more than 0.5 units). Table I 

also lists the improvement in GDT-HA for the best individual snapshots generated during the 

MD sampling. If those structures could have been selected, an average GDT-HA 

improvement of 8.7 units would have been achieved. For eleven targets, the best structures 

are better by 10 GDT-HA units indicating that the MD sampling is able to routinely generate 

significantly improved models. An interesting observation is for two targets (TR217 and 

TR817) the best individual snapshot is actually worse than the refined model obtained via 

ensemble averaging in our protocol.

Figure 2 shows refinement in terms of GDT-HA as a function of the GDT-HA scores of the 

initial models. It seems that one could divide the targets into three categories: If initial scores 

are below about 45, refinement is not always possible with our protocol (two targets were 

not refined) and while refinement was possible in other cases, the overall best snapshots did 

not surpass GDT-HA scores of 50. On the other hand, for initial GDT-HA scores between 45 

and 65, essentially all targets were refined and the GDT-HA scores of the best snapshots 

approached or surpassed 70 for most targets. Finally, for the best initial models, refinement 
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was again challenging. None of the three best initial models (with initial GDT-HA scores 

between 65 and 75) could be refined and even the best snapshots generated via MD were 

worse than the initial models. This interesting observations suggests that our current MD-

based refinement protocol is not effective for the very best template-based models and that 

the goal of routinely reaching GDT-HA scores of 80 with MD-based refinement remains 

very challenging. It could be that further improvements in the force fields are necessary, but 

it is also likely that we are starting to see the effects of crystal packing, possible 

oligomerization, omitted parts of the structure that were present in the experiment but not 

the initial models provided by CASP, and/or other experimental conditions (salt, co-solvents, 

temperature) that are not fully reproduced in the refinement simulations.

Refinement in terms of RMSD is less obvious with an average decrease of −0.13 Å for Ca 

atoms and with the largest reductions in RMSD only slightly better than 0.5 Å for our 

submitted models. And even if the best snapshots are considered, there is only one target 

(TR759) where the best structure is improved by more than 1 Å. Since the calculated RMSD 

may depend on how structures are superimposed, we also tried to superimpose only those 

Cα atoms that are involved in regular secondary structures (α-helices or β-sheets), but we 

did not find a significant difference in the resulting RMSD values. Figure 3 shows the 

improvement in RMSD vs. the RMSD of the initial model. Generally, RMSD improvements 

are greater when initial models are closer than 5 Å from the experimental structure. The 

limited improvement in the global RMSD score is easily understood as a direct consequence 

of our sampling protocol that employs weak overall restraints with respect to the initial 

model. On the other hand, given the more significant improvements in GDT scores, which 

focus only on the most accurate parts of a given model, it appears that our protocol may 

trade improvements in parts of a structure in exchange for making other parts worse. This 

will be discussed in the following section.

Which parts of a structure can be refined?

An important question is which parts of a given model were improved with our protocol. 

Figure 4 shows both successful and unsuccessful refinement in different parts of target 

TR759. Refinement was successful for residues 75 to 94 where the two helices were brought 

closer to the experimental structures by shifting/rotating the two helices. However, for 

residues 53 to 60, a long loop connecting to β sheet strands the initially very different 

structure could not be improved significantly towards the experimental structure. The use of 

restraints in our protocol prevented the large conformational change to reach the correct 

native structure while the more subtle rearrangements of the helices were possible within the 

restraint envelope. Therefore, it is clear that larger steps in refinement will require at least in 

part unrestrained sampling and that challenges with unrestrained sampling tending to at least 

initially move away from the native state will have to be overcome. One could argue that the 

refinement of the helices near the core of this structure is more relevant than the failure to 

improve the presumably more flexible loop. However, this question is difficult to address 

without having more detailed structural data from experiment, ideally from both NMR and 

crystallography, along with biochemical data that confirms which structural aspects are most 

important for function.
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Leaving the issue aside of whether refinement success differs for more and less important 

parts of a structure, we analyzed simply how refinement varies as a function of secondary 

structure and initial deviation according to residue-by-residue RMSD deviations. The results 

in Table II, averaged over all CASP11 targets, suggest that refinement of helical regions may 

indeed have been more successful than extended or coil regions, although the difference in 

the overall average is not dramatically different (−0.15 Å vs. −0.1 Å change in RMSD). It 

may be understandable that coil regions are more difficult to improve because of the large 

sampling space. On the other hand, elements of β sheets could be difficult to move if many 

hydrogen bonds would have to be broken and reconnected.

The picture becomes more complicated when the analysis is broken down as a function of 

the initial model accuracy. Especially striking is that residues that are already within 1 Å are 

more likely to move away from the experimental structure than towards it while the opposite 

is true for residues further away than 1 Å. This appears to be especially true for residues in 

coil regions which are less restricted and therefore are likely to sample a larger 

conformational space within the refinement MD simulations. Structural deviations in parts 

of a model that are already very close to the experimental structure during MD simulations 

are not unexpected. Individual snapshots of a dynamic structure at finite temperature will 

always deviate from the ensemble average that is captured in the experiment. Force field 

inaccuracies and differences between the simulated system and the experimental crystals as 

mentioned above further aggravate the issue. This justifies the use of restraints during the 

MD simulations without which this effect would become dominant over refinement 

successes and motivates the averaging step employed in our refinement protocol.

We also analyzed refinement success as a function of amino acid type (see Table III). 

Overall, we noticed that only the Cα atoms of the sulfur-containing amino acids cysteine 

and methionine became worse on average pointing at possible force field issues. On the 

other hand, the largest improvements were seen for histidine, phenylalanine, proline, serine, 

and asparagine, but at the same time, essentially correct proline and histidine residues (with 

initial RMSD values of less than 1 Å) were also made worse to the largest extent by 

refinement. One explanation would be that more attention needs to be paid to cis-trans 

isomerization in proline and Nδ vs. Nε protonation in histidine.

This analysis may suggest that structural regions that are highly accurate in the initial model 

should be restrained more strongly than other regions. However, we tried such a protocol in 

CASP10 and found that weaker restraints applied to all residues actually result in better 

refinement. One reason for that may be that it is difficult to accurately guess without 

knowing the experimental structure which parts are likely already within 1 Å and that 

overconstraining residues further away that could be refined otherwise is overall less 

effective. Another reason may be that in order to refine incorrect parts while maintaining 

structural integrity may require minor adjustments of correct parts, at least on the time scale 

of the short refinement simulations, so that fixing presumably correct parts may prevent 

refinement elsewhere.
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Does it matter where the models come from?

The initial models provided by CASP were chosen from top predictions in the regular 

prediction category. This resulted in models that were generated with a variety of methods 

(see Table IV). While it is not always clear what exactly was done, we attempted to roughly 

classify different methods into the following groups: ‘Modeller’, ‘Raptor’, ‘Zhang’ group, 

‘Rosetta’, ‘Lee’ group, and ‘Other’. Using this classification we then examined whether the 

method used to generate the initial models affected the refinement results. The results are 

given in Table V. It can be seen that the average improvement in GDT-HA does indeed seem 

to depend on how the models were generated, with Modeller and Raptor models being 

improved only modestly while models from Lee and Other methods were improved most. 

However, the initial GDT-HA also varies greatly as different methods are optimal for 

different types of targets. Therefore, the most meaningful comparison is between methods 

with similar initial average GDT-HA scores. There are two such pairs. In comparing 

Modeller vs. Raptor models, Modeller models were more difficult to improve and in Zhang 

vs. Rosetta models, Zhang models were more difficult to improve. Although the differences 

are relatively small it may reflect different degrees of refinement that is already included in 

the respective prediction pipelines.

Another point for comparison are MolProbity scores that measure local structural accuracy. 

There is a surprisingly wide range of initial scores with Modeller models for example having 

MolProbity scores that are twice those of Raptor despite similar initial GDT-HA values. 

However, after refinement and further optimization of MolProbity scores (see below) we did 

not find a strong trend in the final MolProbity scores as a function of how the initial models 

were generated.

Amount of sampling vs. refinement success

In CASP11 we used twice as much sampling per target (40 × 30 ns = 1.2 μs) compared to 

CASP 10 (30 × 20 ns = 600 ns). A key question is whether the increased sampling correlated 

with improved refinement. A direct comparison between CASP10 and CASP11 is 

problematic because of possible variations in the difficulty of the targets. Instead, we re-

generated predictions for the CASP11 targets using varying subsets of the full trajectories. 

Figure 5 shows that the average GDT-HA improves with increasing sampling and the 

maximum improvement in the GDT-HA score is indeed observed for the maximum amount 

of sampling (1.2 μs). However, after a rapid initial increase, there is only slight improvement 

in GDT-HA from 200 ns to 1200 ns total sampling time. Increasing trajectory length leads to 

better refinement but the benefit levels off beyond 20 ns. On the other hand, using multiple 

trajectories vs. a single trajectory improves GDT-HA scores when five or ten trajectories are 

used, but there is little additional benefit of using more than ten trajectories. In general, it 

appears that given an amount of total sampling time that can be afforded, fewer longer 

trajectories are better than larger numbers of shorter simulations.

Based on the data in Figure 5, an optimal balance between computational cost and 

improvement in GDT scores is the use of 5 × 30 ns or 10 × 20 ns, less than the amount of 

sampling used in CASP10 (30 × 20 ns). Therefore, we have to conclude that using more and 
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longer simulations in CASP11 vs. CASP10 offered just a small benefit at significant 

additional computational costs.

One possibility for why additional sampling seems to offer little additional benefit is that 

significant kinetic barriers prevent broader exploration of conformational space. The use of 

enhanced sampling methods could address such an issue. However, it is more likely that 

hundreds of nanoseconds may actually be sufficient to explore the majority of the restricted 

conformational space under the weak positional restraints that were applied here. In the 

latter case, weakening the restraints further may be necessary to reach more refined 

structures but this strategy is limited by an increased likelihood of sampling diverting to non-

native states as restraints are reduced to near zero.

Finishing touches: generating models with low MolProbity scores

A key step in our refinement protocol is the averaging of an ensemble subset. The resulting 

structures are consistently closer to the native structure when measured base on backbone 

Cα positions, but the averaging compromises local bonding geometries, especially for parts 

that exhibit significant dynamics. As a result, the averaged models have very poor 

MolProbity scores. A short restrained MD simulation before submitting the refined 

structures greatly improved MolProbity scores with a minimal effect on GDT scores but the 

resulting average MolProbity scores of 1.88 indicate that there were still significant issues 

with the quality of the local structure. Specifically, we identified a number of problems that 

are not easily fixed with simple MD simulations: occasional cis-pepitde bonds for non-

proline residues, ring penetrations where bonds cross tyrosine, phenylalanine, or tryptophan 

side chains, clashes involving poorly packed side chains that cannot move out of the way 

because of restraints on the backbone, and a large number of statistically unlikely bonds, 

angles, and backbone and sidechain torsion angles when compared to crystallographic data.

In order to address the above issues we devised a more extensive protocol that consisted of 

multiple minimization and MD steps in addition to targeted backbone and side chain 

rebuilding (see Figure 6 and Methods section). Furthermore, we used a modified force field 

to reduce the sampling of bonds, angles, and torsion angles away from typical values seen in 

crystallographic structures. This strategy results in models that are mostly below 1.0 with an 

average of 0.76 while still maintaining almost the same improvement in GDT-HA scores as 

without the aggressive refinement of MolProbity scores (see Table VI). Not using the 

modified force field still provided structures of significantly higher quality than the 

submitted models with an average score of 0.85. The computational cost of the protocol 

proposed here is on the order of tens of minutes using a single core and therefore it seems 

that probably most reasonable models could be readily transformed into stereochemically 

acceptable models.

Targeting lower MolProbity significantly increases the overall quality of predicted 

structures. However, not all structures fit exactly in the statistically prescribed norms what 

high-quality structures are expected to look like. Furthermore, there may be concerns that 

the structure quality norms are at least in part influenced by pre-conceived bond distances 

and angles and torsion angle distributions that are imposed by crystallography software 

during the structure determination process. As all-atom force fields continue to improve it 
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will be interesting to see how exactly crystallographic structures compare with MD-

generated ensemble averages and inform to what extent MD-generated structures may be 

preferable over structures with perfect MolProbity scores.

CONCLUSIONS

The prediction of protein structures at a level of accuracy that is truly comparable to 

experiment remains a formidable challenge. Results from our group in CASP11 described 

here suggest that the refinement of template-based models via physics-based molecular 

dynamics simulations maybe a route for reaching that goal. Our MD-based protocol allowed 

for consistent improvements of most targets to at least some degree while some targets were 

refined significantly by more than 10 GDT units. Most successful was the refinement of 

targets where initial structures had GDT-HA scores between 45 and 65. At the lower end, 

refinement was mixed, while all of the targets with GDT-HA scores above 65 were made 

worse. Refinement appeared to be somewhat more successful for residues in helical regions 

vs. extended or coil regions and we found small variations in refinement success as a 

function of how the initial models were generated. However, it is not entirely clear how to 

use such information to devise a more successful refinement protocol.

The performance of our method in CASP11 exceeded our CASP10 performance but overall 

the amount of refinement is still relatively modest. Increased sampling in CASP11 played 

only a limited role with additional contributions coming from protocol optimizations. Going 

forward this suggests that new algorithms are likely necessary to make more substantial 

progress.

While refinement success is primarily measured in terms of GDT or RMSD improvements, 

increasing attention has been paid to local structural accuracy as for example measured by 

the MolProbity score. While we did not pay special attention to this aspect during CASP11, 

we applied a more extensive protocol for improving MolProbity scores to our CASP11 

predictions that resulted in average MolProbity scores well below one at relatively little 

computational expense. This suggests that refining models in terms of their local 

stereochemistry is not a key challenge.

The use of physics-based methods in protein structure refinement is highly encouraging 

because it is highly complementary to knowledge-based methods and should at least in 

principle allow the eventual routine refinement of protein structures to experimental 

accuracies. It will be exciting to see further success in moving in this direction in future 

rounds of CASP.
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Figure 1. 
Refinement protocol of FEIG group during CASP11.
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Figure 2. 
GDT-HA scores of model 1 submissions from the FEIG group (red) and best snapshots 

generated during sampling for each target (grey) vs. GDT-HA scores of initial models 

provided by CASP.
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Figure 3. 
Cα RMSD values of model 1 submissions from the FEIG group (red) and best snapshots 

generated during sampling for each target (grey) vs. Cα RMSD values of initial models 

provided by CASP.
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Figure 4. 
Successful and unsuccessful refinement in target TR759. The experimental reference is 

shown in red, the initial model provided by CASP in green, and the refined model submitted 

by us in blue. Residues 75–94 (successful refinement) and residues 53–60 (unsuccessful 

refinement) are highlighted with saturated colors.
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Figure 5. 
Average improvement of GDT-HA score for 35 CASP11 refinement targets as a function of 

total simulation time using snapshots from 1–40 trajectories over 2 ns (blue), 10 ns (green), 

20 ns (brown), or 30 ns (red).
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Figure 6. 
Protocol for optimization of MolProbity applied in CASP11 post-analysis.
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Table II

Average RMSD change in Cα positions relative to the experimental reference in Å as a function of secondary 

structure and initial distance from the native. The secondary structure was determined using DSSP on the 

experimental reference structure. Initial and refined models were superimposed onto the experimental 

reference structures using only Cα atoms and per-residue RMSD values rmsdi,initial and rmsdi,refined were 

calculated for the Cα atom of each residue i. The differences Δrmsdi = rmsdi,refined – rmsdi,initial were then 

averaged over all targets according to the secondary structure of residue i and according to the value of 

rmsdi,initial.

Helical Extended Coil

0–1 Å 0.113 0.079 0.350

1–2 Å −0.156 −0.171 −0.073

2–3 Å −0.269 −0.268 −0.177

3–4 Å −0.260 −0.181 −0.348

4–5 Å −0.200 −0.144 −0.395

>5 Å −0.399 −0.091 −0.255

All −0.148 −0.087 −0.101
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Table IV

Predictor groups from which initial models for refinement targets were taken and likely method(s) that were 

used to generate the respective models.

Target Group Group Name Method

TR217 156 Atome2_CBS Modeller

TR228 73 SAM-T08-Server Other

TR274 184 ROSETTA Server Rosetta

TR280 184 ROSETTA Server Rosetta

TR283 38 Nns Lee

TR759 38 Nns Lee

TR760 41 MULTICOM-NOVEL Rosetta?

TR762 50 RaptorX Raptor

TR765 499 QUARK Zhang

TR768 50 RaptorX Raptor

TR769 277 Zhang-Server Zhang

TR772 50 RaptorX Raptor

TR774 381 FALCON_MANUAL Other

TR776 184 ROSETTA Server Rosetta

TR780 499 QUARK Zhang

TR782 184 ROSETTA Server Rosetta

TR783 300 PhyreX Modeller

TR786 184 ROSETTA Server Rosetta

TR792 216 myprotein-me Other (Rosetta/Zhang)

TR795 41 MULTICOM-NOVEL Rosetta?

TR803 216 myprotein-me Other (Rosetta/Zhang)

TR810 184 ROSETTA Server Rosetta

TR811 216 myprotein-me Other (Rosetta/Zhang)

TR816 277 Zhang-Server Zhang

TR817 156 Atome2_CBS Modeller

TR821 216 myprotein-me Other (Rosetta/Zhang)

TR822 251 TASSER-VMT Other

TR823 184 ROSETTA Server Rosetta

TR827 38 Nns Lee

TR828 277 Zhang-Server Zhang

TR829 499 QUARK Zhang

TR833 420 MULTICOM-CLUSTER Rosetta?

TR837 499 QUARK Zhang

TR848 184 ROSETTA Server Rosetta

TR854 184 ROSETTA Server Rosetta

TR856 277 Zhang-Server Zhang
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Target Group Group Name Method

TR857 454 eThread Other
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Table V

Average refinement success in terms of GDT-HA and Molprobity scores as a function of the method that was 

used to generate the initial models.

Avg. Initial GDT-HA Avg. ΔGDT-HA Avg. Initial Molprobity Avg. Refined Molprobity

Modeller 62.4 1.38 3.29 0.91

Raptor 62.2 1.67 1.63 0.84

Zhang 54.2 3.33 2.98 0.70

Rosetta 54.0 3.72 1.94 0.70

Lee 39.7 4.92 2.84 0.62

Other 46.1 5.12 2.79 0.87
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