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Abstract

Canonical correlation analysis (CCA) has been used in functional Magnetic Resonance Imaging 

(fMRI) for improved detection of activation by incorporating time series from multiple voxels in a 

local neighborhood. To improve the specificity of local CCA methods, spatial constraints were 

previously proposed. In this study, constraints are generalized by introducing a family model of 

spatial constraints for CCA to further increase both sensitivity and specificity in fMRI activation 

detection.

The proposed locally-constrained CCA (cCCA) model is formulated in terms of a multivariate 

constrained optimization problem and solved efficiently with numerical optimization techniques. 

To evaluate the performance of this cCCA model, simulated data are generated with a Signal-To-

Noise Ratio of 0.25, which is realistic to the noise level contained in episodic memory fMRI data. 

Receiver operating characteristic (ROC) methods are used to compare the performance of different 

models. The cCCA model with optimum parameters (called optimum-cCCA) obtains the largest 

area under the ROC curve. Furthermore, a novel validation method is proposed to validate the 

selected optimum-cCCA parameters based on ROC from simulated data and real fMRI data. 

Results for optimum-cCCA are then compared with conventional fMRI analysis methods using 

data from an episodic memory task. Wavelet-resampled resting-state data are used to obtain the 

null distribution of activation.

For simulated data, accuracy in detecting activation increases for the optimum-cCCA model by 

about 43% as compared to the single voxel analysis with comparable Gaussian smoothing. Results 

from the real fMRI data set indicate a significant increase in activation detection, particularly in 

hippocampus, para-hippocampal area and nearby medial temporal lobe regions with the proposed 

method.
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1. INTRODUCTION

Multivariate analysis methods have a broader range of uses than univariate analysis methods 

in functional Magnetic Resonance Imaging (fMRI) studies because these methods can 

simultaneously use a multitude of aspects in the data to determine activation patterns more 

reliably. The most common methods are based on independent component analysis (ICA) 

[Calhoun et al., 2009] and covariance and multiple-regression-derived analysis such as 

sparse partial least square (PLS) regression [Monteiro et al., 2015] and canonical correlation 

analysis (CCA). CCA is a statistical method that finds linear associations of two random 

variables so that the correlation between the variables is maximized [Hotelling, 1936], and 

can be defined by a multivariate extension of the general linear model [Thompson, 2005]. 

One of the first applications of CCA in neurological data analysis was carried out by Friman 

et al [2001] who applied CCA in local neighborhoods such as 3 3 (or similar) in-plane voxel 

regions to detect activation status in fMRI data during a mental calculation task. Other 

successful applications of CCA include fusion of multimodal neurological data (for a review, 

see [Calhoun and Sui, 2016]). Complimentary information from different modalities can be 

captured through joint multivariate data-driven approaches and therefore brain disease can 

be better investigated. For example, in studying schizophrenia, Sui et al applied a CCA+ 

ICA based model for multi-task data fusion [Sui et al., 2010] and a multi-set CCA analysis 

combining fMRI, electroencephalogram and structural MRI data [Sui et al ., 2014]. More 

recently, Levin-Schwartz et al [2016] proposed a principal component analysis (PCA) + 

CCA approach to jointly estimate the degree of similarities between multiple datasets with 

limited samples.

In this paper, we focused on improving the CCA models to detect activation maps more 

accurately from fMRI data. When CCA is applied locally in fMRI data, sensitivity in 

detecting activations is increased substantially if more than one voxel in the neighborhood 

was indeed activated. However, assigning activation status to a specific voxel in the 

neighborhood is less feasible because of the multivariate nature of the approach. Usually, for 

a 3 3 neighborhood CCA analysis, activation status is given to the center voxel to obtain 

maps with increased specificity whether or not the center voxel is active from a univariate 

standpoint. Several publications have shown the usefulness of this center-voxel assignment 

scheme, for example Friman et al [2001] and Nandy and Cordes [2004]. The most useful 

application of CCA is in obtaining activation maps for locations in the brain that are difficult 

to image, for example prefrontal and inferior temporal regions of the brain where 

susceptibility artifacts are usually strong and the signal-to-noise ratio (SNR) is smaller than 

in other cortical regions. Activation status in such regions are usually weak during memory-

related task fMRI but critical for patients with amnestic mild cognitive impairment (aMCI) 

[Dickerson et al., 2004]. Local multivariate analysis may improve detection of activation in 
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areas where activations are weak [Nandy and Cordes, 2003] and therefore is more suitable in 

detecting activation during episodic memory tasks.

Ordinary CCA has been shown to yield a significant smoothing artifact, as activations of 

strongly active voxels tend to bleed into the neighboring voxels [Cordes et al., 2012a]. 

Therefore, ordinary CCA suffers from a low specificity and incorrectly classifies a voxel as 

active when there is a strong active voxel anywhere in the neighborhood irrespective of the 

activation state of the center voxel [Friman et al., 2001; Nandy and Cordes, 2004]. To 

address this problem of low specificity, a non-negative spatial weight constraint has been 

imposed to the CCA model [Friman et al., 2003; Ragnehed et al., 2009]. Recently, CCA has 

been improved further by considering stronger spatial constraints, called dominance 

constraints of the center voxel in the local neighborhood [Cordes et al., 2012b; Jin et al., 

2012a]. Other improvements have been suggested by generalizing CCA in a non-linear 

context [Akaho, 2006; Hardoon et al., 2007] and by combining linear or non-linear 

relationships between different data sets [Dong et al., 2015a].

Spatial constraints are used to control the relationship between the weights of the center and 

all other neighboring voxels in each local neighborhood. Three suggested models use 

constraints αj > 0, ∀j [Friman et al., 2003],  and α1 ≥ maxk>1 αk [Cordes et 

al., 2012b] where α1 specifies the spatial weight of the center voxel and the αk (k > 1) are 

the weights of all other neighborhood voxels. Cordes et al [2012b] have shown that when a 

large spatial dominance constraint is applied to the center voxel 

, weak localized activations could be detected 

with a significant reduction in the false positive rate (FPR). This method leads to an 

improved sensitivity for a given specificity.

However, with the spatial constraints suggested above, CCA methods still suffer from 

bleeding artifacts, especially in regions where SNR is large. In this study, we would like to 

further explore the spatial constraint space in CCA methods to see whether the local 

constrained CCA model can be improved and how much improvement is possible. An 

important theoretical interest is to investigate whether there is a more flexible and 

generalized model that covers the entire spatial constraint space. Therefore, the constraint in 

the CCA model could be determined based on the fMRI data set itself and thus our improved 

CCA model is more flexible in activation detection.

We address the above problem by proposing a family of spatial constrains for CCA 

(abbreviated as cCCA model), parameterized by two indices p and ψ in terms of 

 as the constraint. The two parameters p and ψ control the spatial weights 

of the center voxels (α1) in relation to the local neighboring voxels (αk, k = 2, … , m). The 

new family-cCCA model incorporates previously proposed models when (p, ψ) = (1, 0) 

(non-negative spatial weight constraint [Friman et al., 2003, Cordes et al., 2012b], which we 

call non-negative-cCCA in this study), (p, ψ) = (1, 1) (sum constraint [Cordes et al., 2012b], 

which we call sum-cCCA in this study) and (p, ψ) = (∞, 1) (max constraint [Cordes et al., 

2012b], which we call max-cCCA in this study), respectively. However, the solution of the 
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cCCA model is non-trivial. We use numerical optimization techniques to solve the cCCA 

model. Using simulations, we show the improvements of cCCA with optimum parameters p 
and ψ over standard mass-univariate analysis and previously proposed CCA-related models. 

We validate the selected optimum parameters of the family-cCCA model by using a novel 

validation technique based on area under the Receiver Operating Characteristic (ROC) 

curves. We apply the validated optimum-cCCA model to real fMRI data and demonstrate 

superior performance of cCCA over other analysis methods in activation detection. The 

optimum performance of cCCA is shown further by a classification and prediction for aMCI 

subjects and normal controls (NCs) using activation patterns in the medial temporal lobe 

(MTL) obtained from different analysis methods.

2. THEORY

2.1 Model Formulation

Let Y = (y1, … , ym) ∈ ℝt×m be a matrix of continuous variables representing the time 

courses (t time points) of m voxels (e.g., m = 9 for 3 × 3 regions in a 2D slice), and let X = 

(x1, … , xn) ∈ ℝt×n represent n functions used to model the blood oxygenation level-

dependent (BOLD) response. Using cCCA, we find spatial weight vectors α ∈ ℝm×1 and β 
∈ ℝn×1, under certain spatial constraints, that maximize the correlation ρ(α, β) between Yα 
and Xβ, which is also known as canonical correlation between Y and X. Concretely, we 

maximize the multivariate function

(1)

defined for non-zero α and β, under the following constraints on spatial coefficient vector α:

(2)

where p > 0 and ψ > 0 are two parameters of the model.

For large ψ, the spatial constraint converges to a delta function, which is equivalent to the 

single voxel analysis and for small ψ, the spatial constraint converges to the simple non-

negative constraint. The other parameter p is well-defined for all positive values. Under the 

condition (p, ψ) = (1, 0), (p, ψ) = (1, 1) and (p, ψ) = (∞,1), the family-cCCA model reduces 

to the non-negative constrained CCA (non-negative-cCCA), sum constrained CCA (sum-

cCCA), and max constrained CCA (max-cCCA), respectively. Since for every 

, the max-cCCA can be approximated 

with a finite large p (p ≫ 1) and ψ = 1, i.e. (p, ψ) = (32,1) cCCA in this study.
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2.1.1 Estimating the canonical correlation coefficient giving a set of spatial 
weights—Let CYY and CXX be the within-set covariance matrix and CYX be the between-

set covariance matrix. The canonical correlation coefficient is then given by

(3)

In practice, we estimate the covariance matrices CYY, CXX, CYX by the average of N samples 

in variable Y and X, denoted by SYX, SYY, SXX respectively. If Y and X are the samples after 

the mean of each column has been subtracted from the corresponding column, we obtain:

(4)

The multivariate function that we use is:

(5)

This sample expression of the canonical correlation coefficient is defined everywhere except 

for α = 0 and β = 0. Because Y and X are random matrices with coordinates being 

continuous and linearly independent, their sample covariance matrices are positive-definite 

with probability equal to 1 [Siotani et al., 1985], and therefore we obtain α′SYYαβ′SXXβ>0 

with probability equal to 1. Like the regular Pearson correlation coefficient, the canonical 

correlation coefficient is invariant under scalar multiplication of its arguments. Appendix A.

1 proves the existence of the maximum of the sample version of ρ(α, β). Therefore, given N 
samples of Y and X, the optimization problem combining Eq. (5) and Eq. (2) becomes:

(6)

CCA is a multivariate form of the general linear model [Thompson, 2005]. Therefore, we 

present a constrained multivariate multiple regression model which is mathematically 

equivalent to Eq. (6) in the following section.
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2.1.2 Constrained multivariate multiple regression model—Using the same 

notation, CCA can be converted into an equivalent constrained multivariate multiple 

regression model:

(7)

where Y and X are the data and design matrix, respectively, α is the spatial weight vector of 

Y, B is the matrix of regression weights and E is the residual error matrix of the linear 

regression model Y = XB + E. The least square solution of B equals (X′X)−1X′Y. 

Furthermore, linear weights of X in cCCA (β) can be represented as Bα which equals (X
′X)−1X′Yα. Therefore, cCCA can be rewritten in a constrained least square (cLS) format by

(8)

Both cCCA and cLS are equivalent under conditions α′SYYα = 1 and β = (X′X)−1X′Yα, 

i.e., they have the same optimal solution(s). A formal proof of this proposition is presented 

in the Appendix A.2.

2.1.3 Size of local neighborhood—In analyzing small pixel regions such as 3×3 local 

neighborhoods, family-cCCA can reduce the number of false positives because of its 

improved spatial filter kernel, thus high specificity can be achieved particularly in small 

activated areas such as the hippocampus. Furthermore, we use a 3×3 2D in-plane 

neighborhood rather than a 3×3×3 3D voxel region in the family-cCCA model due to Echo 

Planar Imaging (EPI) limitations of our data acquisition. We are interested in obtaining 

functional detail in cross sections of the hippocampus rather than in the longitudinal 

hippocampal direction. Since our chosen slice thickness is much larger than the in-plane 

voxel size, a 3×3 2D neighborhood is optimal for the analysis. An analysis in only two 

dimensions is also optimal for gray matter in general if cortical unfolding is being used since 

the cortex can then be represented by a 2D sheet.

2.2 Solving the model

The above section 2.1.2 has shown that the cCCA model is equivalent to a constrained 

multivariate multiple regression model, and the linear weights of X in cCCA (β) can be 

represented as Bα which equals (X′X)−1X′Yα. Therefore, the cCCA model with a 3×3 2D 

in-plane neighborhood can be rewritten as:
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(9-1)

which is equivalent to:

(9-2)

We solve the cCCA model (Eq. (9)) from two perspectives:

(i). Das and Sen [1994] showed that solution to the non-negative-cCCA equals an 

unconstrained CCA solution where the weights (α) to one or several original voxels 

are chosen to be zero. Furthermore, a search needs to be carried out over all possible 

α configurations where one or more coordinates of α are equal to zero. The same 

idea is true for the cCCA problem. In section 2.2.1, we describe the sub-spaces of the 

original cCCA problem and the numerical optimization technique used to solve these 

sub-problems.

(ii). Eq. (9-1) and Eq. (9-2) can also be treated as an optimization problem with ten 

inequality constraints. Note that the formed optimization problem is not globally 

convex and has many local extrema. Various optimization algorithms have been 

introduced to solve these problems [Fletcher and Reeves, 1964; Soltanian-Zadeh et 

al., 1994; Shanno, 1985; Nocedal and Wright, 2006; Luenberger and Ye, 1984]. In 

section 2.2.2, we describe techniques used to find the global solution by either 

incorporating constraints into the objective function (Augmented Lagrangian method 

[Hestenes, 1969]) or partitioning the original variables into dependent and 

independent groups according to active constraints (Reduced Gradient method 

[Lasdon et al., 1978]).

2.2.1 Sub-space problems—Since the feasible solution of the model must include the 

center voxel (α1 > 0), we consider each of the 29−1 subspaces J where J ⊆ {2, … 9}, and 

denote Jc as its complement. For instance, if J = {2, 4, 7}, then Jc = {3, 5, 6, 8, 9}. We 

replace by α1 ≥ 0, … ,α9 ≥ 0 by ∀j ∈ J, αj > 0 and ∀j ∈ Jc, αj = 0. In this way, the original 

cCCA problem Eq. (9) is replaced by 256 sub-problems:
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(10)

cCCA can hence be solved by considering 256 configurations in each neighborhood 

containing the center voxel. If αj = 0, we can treat this case by deleting the jth row of SYX 

and similarly the jth row and column in SYY. In this way, the problem to solve is:

(11)

This problem can be further reduced to two cases whether the constraint 

holds strictly or not:

(12-1)

and

(12-2)

In practice we solve Eq. (12-1) and Eq. (12-2) by the following method:
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2.2.1.1 cCCA, strict case: The α that maximizes ρ from the solutions of ∇ρ = 0 (see 

Appendix A. 3) and satisfies ∀j ∈ J, αj > 0 and  forms the strict case solution 

for ρ;

2.2.1.2 cCCA, equal case: (i). A solution when p = 1. Cordes et al [2012b] gives an efficient 

solution when p = 1, ψ = 1, which can be generalized to every ψ > 0 with p = 1. In this case, 

let matrix be M ∈ ℝm×m be defined with diagonal elements Mii = 1 for every i, and off-

diagonal elements M1j = ψ for every j > 1, and 0 everywhere else. In Appendix A.4 we show 

that Eq. (12-2) is equivalent to the following optimization problem:

(13)

Since the covariance matrix satisfies the property TSUVR = STU RV for random vectors U, V 
and linear transformations T, R (see Appendix A. 5), it henceforth follows that the solution 

of Eq. (13) can be obtained by first replacing the data Y by , and then solving 

the optimization problem:

(14)

In other words, for p = 1, cCCA can be reduced to solving cCCA with non-negative 

constraints as in Eq. (14), which in turn can be reduced to solving 256 unconstrained 

ordinary CCA problems [Das and Sen., 1994]. Since CCA is equivalent to an eigenvalue 

problem, the case p = 1 and arbitrary ψ reduces to solving 256 eigenvalue problems that can 

be handled efficiently.

(ii) Solutions when p ≠ 1. We use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) with 

self-scaling [Shanno, 1985, Nocedal and Wright, 2006] method, which is an iterative 

gradient descent method, to solve Eq. (12-2) given a suitable starting point of α. The search 

direction in each step is facilitated with the backtracking line search algorithm [Nocedal and 

Yuan, 1998]. To avoid the trivial solution of α = 0 in our objective function, we arbitrarily 

set the weight of the first neighboring voxel (α2) to be 1. In each optimization step, α1 is 

replaced by  due to the cCCA constraint. The non-negative constraint is 

satisfied by substituting , i.e. spatial weights of all 

other neighboring voxels are represented by .

A self-scaling factor γk is applied to the Hessian matrix in each optimization step for faster 

convergence. With this self-scaling factor, the BFGS algorithm possesses favorable 

eigenvalue structure at each step, i.e. all the eigenvalues of the Hessian matrix at iteration k 
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(Hk) are spread below or above unity [Nocedal and Wright, 2006]. Therefore, rapid progress 

can be made at every stage. For example, in optimizing a 2D Rosenbrock function 

[Rosenbrock, 1960] starting at (1000, 1000), regular BFGS takes approximately 3000 

iterations to converge whereas BFGS with γk reduces the number of steps towards optimum 

solution to around 900.

Finally, the optimal solution (maximum ρ) is obtained from the possible solutions of 2.2.1.1 

and 2.2.1.2. To illustrate all steps in solving the cCCA problem by considering 256 separate 

configurations, a comprehensive flow chart is presented in Fig. 1.

Figure 1: flow chart in solving the cCCA problem with 256 separate configurations.

2.2.2. Other algorithms to solve the cCCA problem

2.2.2.1. Augmented Lagrangian: The Augmented Lagrangian algorithm incorporates 

constraints into the objective function in terms of additional quadratic penalty terms and 

explicit Lagrangian multiplier estimates [Nocedal and Wright, 2006]. Based on a proximal 

point approach [Rockafellar, 1976], we obtain the unconstrained form of the augmented 

Lagrangian sub-problems for constrained problems. The formed augmented Lagrangian 

function is then minimized (or maximized) with BFGS techniques. A detailed formulation of 

the augmented Lagrangian for cCCA is shown in Appendix A.6.

2.2.2.2. Reduced Gradient: From a computational viewpoint, the reduced gradient method 

is related to the simplex method in that the optimized variables are partitioned into 

dependent and independent sets [Luenberger and Ye, 1984]. In the reduced gradient method, 

inequality constraints are converted to equality constraints by adding non-negative slack 

variables [Lasdon et al, 1978]. We modified Eq. (9) for the reduced gradient as follows:

(15)

where ν is the slack variable added so that the inequality constraint is transformed into 

equality constraint. The optimized variable set becomes [α1, …, α9, ν]. We keep [α2, …, 

α9, ν] to be the independent variables and α1 to be the dependent one. The reduced gradient 

(rGD) at each step is calculated as in Abadie and Carpentier [1969]. Iteration updates are 

taken by changing independent variables in the direction of negative rGD with those 

independent variables on their boundary held fixed if the movement would violate bounds. 

To continuously satisfy the equality constraints, dependent variables first move straightly 
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along the tangent plane of the surface and return to the constraint surface later through a 

correction step.

2.3 Selection of a suitable algorithm

In the above section (section 2.2), we have described three different techniques in solving 

the cCCA problem. We use the following algorithms to solve Eq. (9-1) and Eq. (9-2).

(a) BFGS with 1 starting point for entire 3×3 region;

(b) BFGS with 1 starting point for each 256 sub-problems;

(c) Augmented Lagrangian with 1 starting point for entire 3×3 region;

(d) Reduced Gradient with 1 starting point for entire 3×3 region;

(e) educed Gradient with 9 starting points for entire 3×3 region.

To select a suitable algorithm out of the listed algorithms, we evaluate both accuracy and 

efficiency of each algorithm.

2.3.1 Accuracy—For each 3×3 neighborhood, we define the largest correlation output 

across all the algorithms to be the benchmark correlation ρbenchmark. Then the accuracy for 

that neighborhood is defined to be the probability of the output correlation from one specific 

algorithm, ρalgorithm, that is within the tolerance of ρbenchmark. In other words, given a small 

number ϵ>0 as tolerance, we define accuracy of a specific algorithm for one 3×3 

neighborhood as:

(16)

The average accuracy of all neighborhoods is then defined as the accuracy of that specific 

algorithm.

2.3.2 Efficiency—We time each algorithm in solving one 3×3 neighborhood, that is, 

determine the activation status for one center voxel. The computation time for each 

algorithm averaging over all 3×3 neighborhoods is then defined as the efficiency for that 

specific algorithm. We list the efficiency and accuracy of all five algorithms for a fixed (p, 
ψ) = (2,1) averaging over 700 3×3 neighborhoods in Table.1.

Table. 1: Efficiency and accuracy for each method solving cCCA problem with (p, ψ) = 

(2,1).

2.3.3 Trade-off between accuracy and efficiency—As shown in Table.1, given ϵ = 

0.001, algorithm (b) BFGS with 1 starting point for each 256 sub-problems achieves an 

accuracy of 100%. However, it needs several seconds to determine the activation status of 

one voxel. If we relax our tolerance by 10% (ϵ =0.01), method (e) Reduced Gradient with 9 

starting points for entire 3×3 region reaches a 100% accuracy while bringing the calculation 

time down to less than one second. Therefore, method (b) is the optimum algorithm if 

highest accuracy is of concern whereas method (e) is optimal with the highest efficiency.
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2.4 Statistical analysis

After the optimum α is obtained, we compute Wilk’s Λ statistic [Mardia et al., 1979; Friman 

et al., 2001; Jin et al., 2012b] to classify voxels to be active for a specific contrast of interest 

c using:

(17)

Here, the error is labeled E, the contrast vector c, and the hypothesis H. We further compute 

a monotonically increasing statistic , where νE and νH denote the 

degree of freedom of E and H, respectively [Cordes et al., 2012b], so that the probability of 

activation increases with the magnitude of F.

2.4.1 Calculation of the null distribution—To obtain the null distribution, all of the 

above analysis is repeated on wavelet-resampled resting-state time courses [Bullmore et al., 

2001, Breakspear et al., 2004] until a stable maximum statistic is obtained. Breakspear et al. 

[2004] have demonstrated that constrained resampling of the resting-state data in the wavelet 

domain allows construction of bootstrapped data with the following essential properties: (1) 

spatial and temporal correlations are preserved; (2) the irregular geometry of the intracranial 

images is maintained; (3) there is adequate type I error control; and (4) expected experiment-

induced correlations are included. Therefore, the spatiotemporal resampled data in wavelet 

domain can be further used in testing the null hypothesis. We use the distribution of the 

maximum statistic to correct for multiple comparisons and obtain the family-wise-error-rate 

(FWE) [Nandy and Cordes, 2007].

2.5 Validating the family-cCCA model.

To verify that the performance of the family-cCCA model on real fMRI data is consistent 

with the performance on simulated data when the same parameter set is applied, we propose 

a novel validation method. This method inspects the relationship and consistency between 

the areas under the ROC curves (AUC) from simulated data and from real fMRI data when 

using the family-cCCA model to detect activation. Here we consider 42 representative 

family-cCCA models with parameters p ∈ {0.5,1,2,4,8,16,32} in combination with ψ ∈ 
{1,2,4,8,16,32}.

2.5.1 AUCs for simulated data—ROC curves are straight-forward to compute when 

applying the family-cCCA model to simulated data since the activation truth is well defined. 

The 42 cCCA models yield 42 ROC curves. AUCs for a FPR in the interval [0, 0.1] are then 

computed, which we denote as μi=1,…,42. Then, the parameter combination (p, ψ) that gives 

the largest μi is selected as the optimum parameter combination of the family-cCCA model.
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2.5.2 AUCs for real fMRI data: Generate apparent ROC curves—Computing ROC 

curves when applying the family-cCCA model to detect activation in real fMRI data is 

difficult due to the unknown activation status. Here, we propose the following method to 

generate “apparent ROC curves”. Each of the cCCA methods are applied to real fMRI data. 

We set a certain threshold to define the ‘apparent ground truth’ and label active (A) and 

inactive (I) neighborhoods using the following schema: A 3×3 neighborhood is labeled A if 

the center voxel is labeled as active with current cCCA method for threshold T. Similarly, a 

3×3 neighborhood is labeled I if the center voxel is labeled as inactive with current cCCA 

method for threshold T. Next, we use a sequence of thresholds t1…tr in an ascending order 

within the range of the image statistics. We choose n pairs of 3×3 neighborhoods (R, R′) 

randomly from set A, and for each pair of (R, R′) we create a synthetic 3×3 neighborhood R
′′ with the center voxel from R and the neighborhood from R′ (without center voxel). The 

assumption here is that if center voxels in R and R′ are truly active or inactive, then ′′ 
should be declared active or inactive, respectively. We then apply the same cCCA method to 

R′′. For each of the n pairs of neighborhoods (R, R′) from A, true positive (TP) or false 

negative (FN) declaration can occur if the current cCCA method labels the center voxel of R
′′ as active or inactive, respectively. Similarly, the same cCCA method is applied to R′′ for 

each of the n pairs of neighborhoods (R, R′) from I. A false positive (FP) or true negative 

(TN) label is assigned if current cCCA method labels the center voxel of R′′ as active or 

inactive, respectively. A ROC curve is then constructed using these active or inactive 

declarations with respect to each threshold tj. The area underneath the ROC curve, 

integrating over the same false positive range as in simulated data, is calculated and denoted 

as νi=1,…,42. The process of generating apparent ROC curves is illustrated in Fig. 2.

Figure 2. Generate apparent ROC curves for real fMRI data.

2.5.3 Model validation—The family-cCCA model is finally validated using the Pearson 

correlation and Bland Altman plot [Bland JM and Altman DG., 1986] between the 

sequences μi=1,…,42 from simulated data and νi=1,…,42 from real fMRI data. A strictly 

monotonic relationship between μi=1,…,42 and νi=1,…,42 is expected.

The correlation between two set of variables shows the extent to which changes in the value 

of one variable are correlated to the changes in the value of the other [Udovičić et al., 2007]. 

A larger positive correlation demonstrates a higher linear dependency between the cCCA 

model performance on real fMRI data and our simulation. Therefore, the optimum 

parameters selected from the simulation can be considered also optimal in analyzing real 

fMRI data.

If there is a strictly monotonic relationship between μi=1,…,42 and νi=1,…,42, a perfect 

agreement should be observed after each variable is normalized by its mean value. The 

Bland Altman plot quantifies the agreement between these two set of variables by studying 

the mean difference and constructing limits of agreement [Giavarina D., 2015]. We plot the 

differences between the normalized two set of variables against the average between them. 

95% limits of agreement for each comparison (mean ± 1.96 standard deviation of the 

difference) are also plotted, which tells us how far apart measurement by two methods are 
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acceptable. We consider the two set of variables consistent if the mean difference is 0 and all 

the differences are within this 95% limit.

3. MATERIAL AND METHODS

3.1 Imaging

FMRI data of 14 subjects (7 subjects diagnosed with amnestic mild cognitive impairment 

(aMCI) and 7 normal controls (NC)), were collected with Institutional Review Board 

approval using a 3.0 T GE scanner. Diagnosis of aMCI was made by trained professionals 

based on Petersen Criteria [Peterson et al., 2001]. Subjects in two groups (aMCI and NC) 

were matched in age, education and right-handedness.

The EPI protocol had the following specifications: TR 2000 ms, TE 30 ms, parallel imaging 

factor of 2, 25 slices (coronal oblique, perpendicular to the long axis of hippocampus), slice 

thickness/gap=4.0 mm/1.0 mm, 288 time frames, in-plane resolution 96×96 interpolated to 

128×128, yielding a voxel size of 1.72×1.72×5 mm3. High resolution structural images were 

also acquired including a T1-weighted image (0.43×0.43×1 mm3) and a coplanar T2-

weighted image (0.43×0.43×2.5 mm3).

For each subject, task activation episodic memory data and resting-state data (same EPI 

parameters, subject had eyes closed) were used in the analysis. Specifically, the memory task 

involved encoding and recognition activity using stimuli of human faces paired with 

occupations. The task consisted of six periods of encoding, distraction (control), recognition 

activity, and short instructions where words on the screen reminded subjects of the task 

component ahead. Four regressors (instruction, encoding, distraction, recognition) were 

specified in our design matrix by convolving the timing of each condition with the canonical 

hemodynamic response function (HRF). The encoding task consisted of seven novel visual 

stimuli, and the recognition task consisted of fourteen stimuli, half novel (“new stimuli”) and 

half identical (in random order) to the items seen in the previous encoding task (“old 

stimuli”). An active control task (button press responding to the letter “Y” or “N”) was used 

as a distraction task between each pair of encoding and recognition activity because simple 

fixation or rest is known to induce activations in the default mode, which could potentially 

induce activations in the medial temporal lobe (MTL) [Raichle and Snyder, 2007].

Figure 3: Experimental design.

3.2 Preprocessing

First 10 seconds of the EPI data acquisition (5 volumes) were removed to avoid incomplete 

steady-state magnetization. All other time frames were slice-timing corrected and realigned 

to the mean EPI image in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). The data were high-

pass filtered with a cut-off frequency of 1/120 Hz to remove temporal drift [Holmes et al., 

1997]. For the cCCA analysis, no spatial smoothing was applied. For comparison with mass-

univariate analysis, Gaussian in-plane spatial smoothing with full-width-at-half-maximum 

(FWHM) of 2.24 voxels (3.8 mm) was used for both task-related and resting-state data. This 

FWHM was used to compare cCCA results applied to a 3×3 pixel area. A justification for 

this choice is provided in Appendix A.7.
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3.3 Simulation

To compute ROC curves to evaluate and compare the different models indexed by (p, ψ), we 

simulated groups of 3×3 voxels with active or inactive center voxel to mimic real fMRI data 

sets. Three key points to carry out the simulation are: (1) how many of the 8 neighbors are 

assumed to be active, (2) how time courses of each voxel are simulated so that both spatial 

and temporal correlations are kept, and (3) how a suitable SNR is obtained.

3.3.1 Determine number of active neighbors—To establish how many of the 8 

neighboring voxels should be simulated as active, we looked at real data. Single voxel 

analysis was applied to real fMRI data and voxels with top 5% significance were labeled as 

active. For every active or inactive voxel, we counted how many of the neighboring voxels 

were also active to obtain the empirical distribution of the number of active neighbors given 

an active or inactive center voxel separately. Simulated spatial activation patterns were then 

generated on a 39×39 grid following this empirical distribution. Scenarios of 3×3 

neighborhoods without any activation voxels were also included in the simulation as in real 

fMRI data.

3.3.2. Simulate time courses of each voxel—We constructed the simulated time 

courses by adding pure noise ynull to pure activation time courses yactive with a noise fraction 

f that is close to real fMRI data [Cordes et al., 2012b]:

(18)

Note that both yactive and ynull were variance normalized.

Both yactive and ynull were acquired from the real fMRI time series to have realistic temporal 

autocorrelations in the simulated data. The vector yactive was the time course from the most 

significant voxel in single voxel analysis. The vectors ynull were obtained from wavelet-

resampled resting-state data [Bullmore et al., 2001, Breakspear et al., 2004]. To ensure the 

same spatial correlation as in real fMRI data, a Gaussian Point Spread Function (PSF) was 

first estimated from the wavelet-resampled resting-state time series and then applied to the 

simulated time series.

3.3.3. Determine SNR—To compute the SNR, we use the same definition as in Cordes et 

al [2012b]:

(19)

where λi and ςi were the eigenvalues of the covariance matrix of yactive and ynull. Since both 

yactive and ynull were variance normalized in our simulation, SNR only depended on the 

noise fraction f. To achieve the noise fraction f as in real fMRI data, we applied single voxel 

analysis to simulated data for f from 0 to 1 with a step size of 0.05. The average correlation 
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value with a significance level of p<0.05 (uncorrected), was compared with the average 

correlation value of the same significance level acquired from real fMRI time series. The 

noise fraction, f, at which the mean correlation value from simulation matches the real data 

was chosen as the noise fraction for our simulation, yielding a corresponding . 

To compare the performance of each method under low SNR case, another simulation with a 

higher noise fraction was also generated.

3.4 Smoothing artifact

Using simulated data, the smoothing artifact of the family-cCCA model was evaluated as a 

function of noise levels and analysis methods. We generated 7×7 neighborhoods with the 

true activation only occurring within the 3×3 pixel regions. The centermost voxel was 

always kept active and the number of active neighbors in the 3×3 regions ranged from 1 to 8. 

Time series were simulated as described in section 3.3.2 with noise fraction f ranging from 

5% to 95% in steps of 10%. For each combination of (s, f), 100 7×7 neighborhoods were 

generated and then analyzed with the following methods: (1) unconstrained CCA, (2) non-

negative-cCCA (covered by (p, ψ) = (1, 0) in the family-cCCA model), (3) sum-cCCA 

(covered by (p, ψ) = (1, 1) in the family-cCCA model), (4) family-cCCA with (p, ψ) = 

(1,2), (5) family-cCCA with (p, ψ) = (1,4), (6) family-cCCA with (p, ψ) = (1,6), (7) family-

cCCA with (p, ψ) = (1,8), (8) single voxel analysis (covered by (p, ψ) = (1, ∞) in the 

family-cCCA model).

We limited our analysis to the center 5×5 region in each simulated 7×7 neighborhood so that 

every voxel when analyzed with CCA-related methods all had 8 neighbors. We defined the 

active ratio (AR) for each method in analyzing a specific neighborhood as:

(20)

To determine the smoothing artifact for different analysis method under various noise levels, 

an average AR  was calculated over 100 simulated neighborhoods for each 

combination of (s, f). Therefore, for each analysis method at a specific noise level, there are 

9  values corresponding to 9 cases of number of active neighbors in the center 3×3 

neighborhood (s = {0,1,…,8}).  was further averaged over these 9 cases based on the 

probability of each case showing up in all 29−1 configurations in a 3×3 neighborhood as:

(21)
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The acquired  was used to represent the smoothing artifact for each analysis method at 

different noise levels.

3.5 Data analysis

The following benchmark models were defined and applied to both simulated data and real 

fMRI data: (1) Mass-univariate analysis, i.e. Single Voxel + Gaussian Smoothing (SV+GS), 

(2) unconstrained CCA (unc-CCA), (3) non-negative-cCCA ((p, ψ) = (1, 0)), (4) sum-cCCA 

((p, ψ) = (1, 1)).

3.5.1 Simulated data—Forty-two cCCA models given by parameters: ψ = 1, 2, 4, 8, 16, 

32 and p = 0.5, 1, 2, 4, 8, 16, 32 and the above 4 benchmark methods, were used in 

analyzing the simulated data. Note that sum-cCCA was covered by model (p, ψ) = (1, 1) 

resulting in 45 models in total.

Evaluation of each method was obtained both qualitatively and quantitatively. Activation 

maps from each method were obtained, thresholded and compared with the simulated 

patterns, forming the qualitative measurements of the model. True positive rate (TPR) 

(sensitivity), true negative rate (TNR, specificity), false positive rate (FPR) and false 

negative rate (FNR) were calculated at each threshold (from minimum to maximum of the 

activation map) and ROC curves were generated. The point at the lowest Total False Rate, 

i.e. (FPR + FNR), was used to threshold the activation map. Sensitivity, specificity, detection 

accuracy and F1 score  [Fawcett, 2006] for that specific threshold formed 

the quantitative measurements of model performance. The AUC was calculated within the 

range of FPR from 0 to 0.1, which is the range that is most important in neuroscience, to 

provide another quantitative measurement of the overall model performance. The (p, ψ) 

cCCA model which gives the largest AUC within the range of FPR ∈ [0,0.1] was selected as 

the optimum-cCCA model and the corresponding p and ψ were defined as the optimum 

parameters.

The family-cCCA model was validated using the method described in section 2.5. A total of 

42 models with different p and ψ were considered and 1521 (39×39) voxels from simulation 

and real fMRI data were used. For each (p, ψ) cCCA model, the initial threshold T used to 

classify real data as active set A and inactive set I was p<0.05 (FWE), acquired from 

wavelet-resample resting-state data; the process to create synthetic neighborhoods was 

repeated 500 times. The correlation between two measurements μi=1,…,42(simulation) and 

νi=1,…,42(real fMRI data) was obtained and the Bland–Altman plot was generated.

3.5.2 Real fMRI data—Four benchmark models and the family-cCCA model with 

optimum parameters p and ψ (optimum-cCCA), acquired and validated through simulation, 

were used in analyzing real fMRI episodic memory data. The non-smoothed fMRI data, 

preprocessed in section 3.2, was input for single voxel analysis, CCA and cCCA analysis 

with window size of 3×3 in a 2D slice. The smoothed data were input into SV+GS analysis. 

Activation maps for contrast Encoding v/s Control for different analyses were obtained and 

thresholded at both different significance levels (p<0.1, 0.01, 1e-3, 1e-4, 1e-5, (uncorrected) 

and 0.05 (FWE)). All thresholds for different methods were acquired non-parametrically as 

Zhuang et al. Page 17

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



described in section 2.4.1. Activation maps were co-registered to the co-planar high-

resolution T2 image for display.

Apparent ROC curves for four benchmark cases and the optimum-cCCA model were 

generated as described in section 2.5.2. Original threshold used to acquire apparent ground 

truth is p<0.05 (FWE) and the process of exchanging neighbors was repeated 500 times for 

each method. Each analysis method was then applied to the exchanged neighborhoods and 

ROC curves were generated. Sensitivity, specificity, F1 score and accuracy for each method 

were also calculated at significance level of p<0.05 (FWE).

3.5.3 Classification and prediction between aMCI subjects and NCs—To further 

demonstrate the better performance of the optimum-cCCA model, a classification and 

prediction of activation patterns between aMCI subjects and NCs were carried out. Features 

generated from each analysis methods at different significance levels were input into 

classification separately. Prediction accuracy was then calculated and used to compare 

different model performance.

3.5.3.1 Feature set: Memory activation F-maps for contrast Encoding v/s Control, detected 

by single voxel analysis, four benchmark models and optimum-cCCA model, were obtained 

at different significance levels (p < 0.1, 1e-2, 1e-3, 1e-4, and 1e-5 (uncorrected)) separately. 

Activation maps were further co-registered to the subject T1 image. High-resolution T1 scan 

for each subject was input into Freesurfer [Fischl., 2012, Iglesias et al., 2015] to acquire 

subject-specific MTL subregion masks, including: CA1 (Cornu Ammonis area 1), 

CA234&DG (combining CA2, CA3, CA4 and Dentate Gyrus), SUB (Subiculum), ERC 

(Entorhinal Cortex), PHC (Parahippocampal Cortex) and FUS (Fusiform Gyrus). Activation 

percentages  for each 

subject in the above MTL subregions at different significance levels were then extracted as 

feature set for classification and prediction. Note that the feature sets were generated 

independently from different analysis methods at various significance levels and prediction 

accuracy was calculated for each feature set. Statistical thresholds for all the significance 

levels were calculated from null data as described in section 2.4.1.

3.5.3.2 Classification method: Previous study has shown that Radial Basis Function 

Network (RBFN) classifier [Brommhead and Lowe, 1988, Haykin, 2008] is more powerful 

in prediction of aMCI using local activation patterns in MTL subregions when using limited 

data samples [Jin et al., 2015]. Therefore, RBFN with leave-2-out cross-validation method 

was applied to determine the predication accuracy. In each leave-2-out validation loop, one 

subject from each group was left out for testing purpose so that the training sample was 

balanced between the two groups. The cross-validation loop was repeated for every 

combination of one subject from each group being left out, i.e. 

 times. To test the statistical significance of the obtained 

prediction accuracy, we used the permutation test to compute the p-value at the 0.05 level 

non-parametrically. The group indices (aMCI subjects or NCs) were randomly permuted. 

Zhuang et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The exact same analysis was ran on every possible random permutation to acquire the null-

distribution of the prediction accuracy. Note that this process was also done for features 

generated from each analysis method separately.

4. RESULTS

4.1 Simulation

Fig. 4(A) (B) shows the empirical distribution of active neighbors with active (Fig. 4(A)) 

and inactive (Fig. 4(B)) center for real data (blue bars) and simulated pseudo-real data 

(orange bars). The active voxels are labeled as described in section 3.3.1. As shown in Fig.4 

(A) and (B), the empirical distribution of active neighbors with an active or inactive center 

from real data and simulated data are approximately matched. The Pearson correlations 

between distributions are 0.9285 (p-value<0.001) for that with active center and 0.9738 (p-

value<0.001) for that with inactive center. In Fig. 4(C), the average correlation value for 

significance level of p<0.05 (uncorrected) is shown by the solid blue line for real data and 

dashed red line for the pseudo-real data against different noise fractions f. The matched 

value for f in simulation is around 0.8, marked by the black arrow. Therefore, we use the 

simulation with noise fraction f = 0.8 (SNR = 0.25) to mimic real fMRI data and the 

simulation with noise fraction f = 0.85 to demonstrate the cCCA model performance for a 

higher noise case.

Figure 4. Simulation method.

The performance of all 45 models (described in section 3.4.1), measured by AUC with FPR 

∈ [0, 0.1], applied to simulated data is listed in Table 2. The optimum parameters for the 

family-cCCA model is achieved at (p, ψ) = (1,8) for simulation with f = 0.8, and (p, ψ) = 

(1,2) for simulation with f = 0.85 (highlighted in orange in Table (2). We also highlighted all 

(p, ψ) combinations that gives an AUC within the range of of the maximum value 

(highlighted in blue in Table (2)).

Table 2. Area under ROC for simulated data using different analysis methods.

The simulation results for the 4 benchmark models and the optimum cCCA model for f = 0.8 

and f = 0.85 cases are shown in Figs. 5 and 6, respectively. As can be seen in Fig. 5(A), 

optimum-cCCA has the best performance in considering both sensitivity and specificity 

(Fig. 5(B) for F1 score and accuracy and Fig. 5(C) for ROC curve). Even in the higher noise 

case, as can be seen in Fig. 6, optimum-cCCA still outperforms all the five benchmark 

models as outlined in Table 3.

Figure 5 and Figure 6. Simulation results for simulation with noise fraction f = 0.8 and f = 

0.85, respectively.

Table 3. Improvement in detection accuracy of optimum-cCCA model relative to benchmark 

models.

Using our validation method as described in section 2.5, we obtain a Pearson correlation of 

0.9874 (p-value<0.001) between sequence μi=1,…,42 from the simulated data and sequence 

Zhuang et al. Page 19

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



νi=1,…,42 from real fMRI data (Fig. 7(A)). This high positive correlation demonstrates the 

linear dependence between the performance of the proposed cCCA model in analyzing real 

fMRI data and simulated pseudo-real data. In addition, as shown in the Bland-Altman plot 

for mean normalized μi=1,…,42 and νi=1,…,42 in Fig. 7(B), almost all of the differences 

between μi=1,…,42 and νi=1,…,42 are within the 95% limits of agreement. Therefore, the 

optimum coefficient selected from the simulation ((p, ψ) = (1,8)) can also be considered as 

optimum parameters of the cCCA model for this fMRI data set.

Figure 7. Correlation plot and Bland-Altman plot for μi=1,…,42 and νi=1,…,42.

4.2 Smoothing artifact

Two representative simulated 7×7 neighborhoods with no active neighbor (s=0) and 8 active 

neighbors (s=8) are shown in Fig. 8(B) and Fig. 8(D) separately. The corresponding  map 

for different analysis methods with various noise levels are shown in Fig. 8(C) and Fig. 8(E), 

respectively. The final weighted average  map  is shown in Fig. 8(F). All activations 

are thresholded at p-value of 0.05 (FWE), using the method described in section 2.4.1. The 

horizontal axis of the  maps labels the noise fraction while vertical axis labels different 

analysis methods applied, ranking from the weakest to the strongest center dominant 

constraint (top to bottom). The yellow color (  = 9) indicates that the smoothing artifact is 

significant whereas dark blue color indicates , i.e. detected activation is less than the 

real activation and therefore, there are false negatives. Light blue color indicates ; that 

is, there is no smoothing artifact and all true activations are being detected. As shown in Fig. 

8(C) (E) and (F), unc-CCA has the most significant smoothing artifact and as the constraint 

of the center voxel increases in the analysis methods, the smoothing artifact decreases. 

Constrained CCA models with strong center dominance constraint show no smoothing 

artifacts for all noise levels.

Figure 8. Smoothing artifact for different analysis methods as a function of noise fraction in 

simulated data.

4.3 Real fMRI data analysis

Fig. 9(A) shows activation maps for a representative subject, produced by single voxel 

analysis, four benchmark models and optimum-cCCA model with contrast Encoding v/s 

Control, thresholded at p<0.001 (uncorrected) and overlaid on the subject T2 image. F-

statistic described in section 2.4 is used to display the activation maps. Table 4 lists the 

statistical thresholds, F statistics for contrast Encoding v/s Control) at p-value of 1e-5, 1e-4, 

1e-3 and 1e-2 (uncorrected), obtained from null data as described in section 2.4.1.

Table 4. Statistical thresholds at p-value of 1e-5, 1e-4, 1e-3 and 1e-2, obtained from wavelet-

resampled resting-state data, F statistics for contrast Encoding v/s Control.

Apparent ROC curves for each analysis method, calculated as described in section 2.5.2, are 

shown in Fig. 9(B). Sensitivity (blue bars), specificity (orange bars), accuracy (grey bars) 

and F1 score (yellow bars), calculated at p<0.05 (FWE) are displayed in Fig. 9(C). 

Optimum-cCCA outperforms other four analysis method with the largest area under the 
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apparent ROC curves (red curve in Fig. 9(C)) and the highest accuracy and F1 score (grey 

and yellow bars in Fig. 9(B)). Average activation percentages for MTL subregions (mean 

and standard deviation, averaging over 14 subjects) are listed in Table 5.

Figure 9. Analysis results on real fMRI data.

Table 5. Percentage of active voxels in MTL subregions for different analysis methods.

Classification and prediction accuracy between aMCI subjects and NCs are shown in Fig. 

10, obtained with RBFN classifier and leave-2-out cross-validation methods. Horizontal axis 

labels the different significance level used to obtain features, i.e. activation percentages in 

the MTL subregions. For each significance level, feature sets generated from single voxel 

analysis (blue bars), SV+GS (orange bars), unc-CCA (grey bars), non-negative-cCCA 

(yellow bars) sum-cCCA (purple bars) and optimum-cCCA (green bars) are input into 

classification to obtain prediction accuracy. The dashed black curve is the 95th percentile of 

the null distribution of prediction accuracy, acquired from permutation tests.

Figure 10. Classification and prediction accuracy between aMCI subjects and normal 

controls based on activation percentages obtained from different analysis methods.

5. DISCUSSION

This study introduces a novel family-cCCA model as a more flexible technique to detect 

fMRI activation. We solve the family-cCCA model with numerical optimization techniques 

that includes a BFGS algorithm with backtracking line search method (Fig.1, section 2.2.1), 

an augmented Lagrangian algorithm (section 2.2.2.1) and a reduced gradient method 

(section 2.2.2.2). The family-cCCA model is validated on both simulation studies (Fig. 5 and 

6) and real episodic memory fMRI data for 7 aMCI subjects and 7 NCs (Fig. 9 and 10). 

Results demonstrate superior performance of the family-cCCA model.

5.1 Performance of family-cCCA model

It is difficult to use real fMRI data to compare performance of different models since the 

location of activation is unknown. Instead, we use simulated data with known ground truth 

to assess the performance of each analysis method.

5.1.1 Simulation method—We simulate pseudo-real data based on Cordes et al [2012b] 

with several improvements. First, we include 3×3 neighborhoods without any activation 

voxel in our simulation and evaluate the activation status for every voxel in the 39×39 grid. 

Therefore, the Euclidean distances between 3×3 neighborhoods with active voxels are 

varying. Further, as shown in Fig. 4(A) and Fig. 4(B), the empirical distributions of active 

neighbors given an active or inactive center in our simulation are highly correlated with 

those in real fMRI data. Second, both temporal and spatial correlation within and between 

time series are kept in our simulation. Time courses for each voxel are combinations of 

yactive and ynull from real fMRI data so that the temporal correlation is preserved. A 

Gaussian PSF estimated from wavelet-resampled resting-state time series is applied to the 

39×39 simulation grid so that the spatial correlation in simulated data is the same as in real 
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fMRI data. Due to above improvements, the selected noise fraction in our simulation that 

mimics real fMRI data is also different from the one in Cordes et al [2012b].

The first simulation is done with an SNR close to real episodic memory data (SNR = 0.25) 

and is used to determine the optimum parameters of the family-cCCA model in analyzing 

real fMRI data. The second simulation is done with a lower SNR (higher noise fraction) and 

is used to compare the family-cCCA model to the various other models in a more noisy 

scenario since the SNR of some regions in fMRI could be lower than the average SNR 

[Glover and Law, 2001]. In assessing our family-cCCA model performance, we calculate the 

AUC over the interval of FPR ∈ [0, 0.1] for 42 different combinations of p and ψ (Table 2). 

The family-cCCA model which gives the largest area (i.e. AUC integrating over FPR ∈ [0, 

0.1]) is selected as the optimum-cCCA model. The optimum parameters are achieved at (p, 
ψ) = (1,8) for simulation with SNR of 0.25 and (p, ψ) = (1,2) for simulation with a lower 

SNR, respectively. These parameters are fMRI data–set-dependent and are discussed later.

5.1.2 Model performance: activation maps thresholded at min (FPR + FNR)—
To compare the optimum-cCCA model to the various existing models [Friston et al., 1994, 

Friman et al., 2003, Cordes et al., 2012b], we threshold the activation map from each 

analysis with the statistic value corresponding to the lowest combined false rate, min (FPR + 

FNR) , which represents the best performance that a specific model can achieve (Fig. 5(A) 

and Fig. 6(A)). With this threshold, CCA with no or weak constraints (unc-CCA and non-

negative-cCCA) produce block-type smoothing artifacts, leading to an increase of false 

positives (2nd and 3rd orange bars in Fig. 5(B)). Conversely, methods with strong dominance 

constraints of the center voxel (for example sum-cCCA) give fewer artifacts and lead to a 

higher specificity (4th orange bars in Fig. 5(B)). Low specificity of standard CCA also 

occurs because CCA allows more variables (8 in our case) to model the signal, which may 

lead to overfitting. Therefore, when evaluating activation of the center voxel in a 

neighborhood, stronger spatial constraints are required to explain the signal with more 

variables while limiting the number of false activations. However, a constraint that is too 

strong may reduce the set of feasible solutions thereby decreasing the sensitivity. As 

represented by the 1st blue bar in Fig. 5(B), mass-univariate analysis produces a lower 

sensitivity, especially as compared to the weak cCCA models (2nd and 3rd blue bars in 5(B)). 

The proposed family-cCCA model is more flexible than the above weak or strong 

constrained CCA models since it covers a larger space of possible center dominance 

constraints and therefore improves sensitivity for a given specificity in fMRI activation 

detection (5th blue and orange bars in Fig. 5(B)).

In considering the trade-off between sensitivity and specificity, we calculate F1 scores 

 as an important quantitative measurement to further evaluate the 

optimum-cCCA model in comparison to the four benchmark models. In both simulations, 

optimum-cCCA outperforms all the other benchmark models and has highest F1 score (5th 

yellow bar in Fig. 5(B) and Fig. 6(B)).

5.1.3 Model performance: ROC curves—To assess the overall model performance, 

rather than comparing statistical numbers at a single threshold, ROC curves for the five 
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methods are shown in Fig. 5(C) and Fig. 6(C) and the AUCs over the interval of FPR from 0 

to 0.1 for all 45 models are calculated for each method and listed in Table 2.

As shown in Fig. 5(C), the ROC curve of SV+GS (grey line) is close to sum-cCCA (green 

line) in the simulation with a higher SNR while in the simulation with a lower SNR, sum-

cCCA has a much larger AUC as compared to SV+GS (Fig. 6(C) and Table. 2(B)). This 

result is consistent with previous conclusions that high correlated noise decreases the 

effectiveness of mass-univariate analysis while multivariate analysis methods take 

advantages of local neighboring information and thus improves activation detection 

performance [Friman et al., 2003, Cordes et al., 2012b]. Using local neighborhood 

information is a key element in multivariate analysis methods to obtain better activation 

maps. Further, CCA with stronger constraints (e.g. max-cCCA, sum-cCCA, and optimum-

cCCA) perform better than unc-CCA or non-negative-cCCA, especially in higher noise case 

(see higher AUCs in Table 2). As previous findings indicate, if the constraint of cCCA does 

not guarantee dominance of the center voxel, artifacts are observed [Cordes et al., 2012b]. 

The proposed family-cCCA model covers all the analysis methods with different parameters 

and determines the optimum parameters based on the noise level in real fMRI data. 

Therefore, the proposed family-cCCA model is more flexible in analysis and less sensitive 

to noise, as represented by the red curves in Fig. 5(C) and Fig. 6(C). For any fMRI data, 

optimum parameters of cCCA model can be roughly selected based on the noise level in 

fMRI. Given high SNR fMRI data, cCCA with a stronger dominance constraint of the center 

voxel should be applied whereas for low SNR fMRI data more local information should be 

incorporated i.e. a weaker constraint should be used in family-cCCA.

We also listed the AUC of mass-univariate analysis without Gaussian Smoothing (SV) in 

both simulations in Table 2. As shown in Table 3, optimum-cCCA still outperforms SV 

analysis with an increase in AUC of 1.42% and 13.30% in both simulations. In general, in 

noiseless data, SV is the best analysis method since it has the highest specificity. As noise 

increases, SV is not as good as multivariate methods since it assumes independent 

neighboring voxels and has a lower sensitivity. This fact is one reason why SV analysis for 

data with lower noise level has a higher AUC than four benchmark models in our simulation 

(see Table 2(A)). Another reason for the superior performance of SV in this case is the way 

simulated data is generated. The active time series in simulation is the combination of the 

most significant voxel obtained from SV analysis in real fMRI data (yactive) and the wavelet 

resampled resting state data (ynull) with a noise fraction f. With a lower noise level, the 

active simulated time series are dominated by yactive obtained from SV analysis. Therefore, 

SV outperforms the other methods which use local neighborhoods information without a 

strong enough constraint. The smoothing artifact here is significant for SV+GS and those 

multivariate cCCA methods without a strong spatial constraint. For this reason a more 

comparable benchmark is SV+GS instead of SV alone. As noise increases, multivariate 

analysis with less strong spatial constraint (e.g. sum-cCCA) starts outperforming the SV 

analysis (see Table 2(B)) since incorporating local information increases the sensitivity. The 

family-cCCA model, in both noise level cases, determines the optimum parameters for the 

constraint based on the data itself. Therefore, more flexible constraint is obtained from fMRI 

data itself and optimum-cCCA still outperforms SV analysis.
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In summary, the optimum-CCA model, incorporating the local spatial activation information 

while keeping the appropriate dominance of the center voxel, more accurately detects 

activations in noisy data.

5.2 Smoothing artifact of different analysis models

As discussed in section 5.1.2, CCA with weak or no constraint will produce significant 

smoothing artifacts. The proposed family-cCCA model covers a larger space of the 

constraints and therefore we conducted another simulation to evaluate the smoothing artifact 

in the family-cCCA model.

We select 8 analysis models listed in section 3.3, ranked from the weakest to the strongest 

center dominance constraint. Other than unc-CCA, the remaining 7 models are covered by 

the family-cCCA model. We calculate , the ratio of detected activated voxels in the 5×5 

blue striped area to the true active voxels in the center 3×3 orange area, to evaluate the 

smoothing artifact. As shown in Fig. 8(C) and (E), when noise fraction is less than 75%, we 

obtain  much greater than 1 for unc-CCA method and family-cCCA model with weak 

constraints (yellow color in Fig. 8(C), light green color in Fig. (E)). This behavior occurs 

because the activation of the center voxels are bleeding into all 8 neighbors, thus produce a 

significant smoothing artifact and create false positives. Conversely, the proposed family-

cCCA model with stronger center dominance constraints ((p, ψ) = (1,4); (p, ψ) = (1,6); (p, 
ψ) = (1,8) and also single voxel analysis) show no smoothing artifact ( , light blue 

color in Fig. 8(C) and (E)). Further, as the noise fraction f increases, the smoothing artifacts 

decreases and for f > 75%, all the analysis methods are conservative since they all produce 

false negatives. Similar performances are also observed in other simulated cases with 

different number of active voxels as well as in the average  map (Fig. 8(F)).

5.3 Episodic memory activation in fMRI data analysis

Episodic memory is the ability to encode and retrieve personal experiences. Previous studies 

have shown that episodic memory is facilitated by neural pathways in the medial temporal 

lobe (MTL), which includes hippocampus, para-hippocampal areas and other nearby regions 

[Squire 1992; Zeineh et al., 2003; Squire et al., 2004; Dickerson and Eichenbaum, 2010]. In 

particular, using a face-name encoding and retrieval task, Zeineh et al., [2003] have shown 

that more activation can be detected in Cornu Ammonis (CA) areas and Dentate Gyrus (DG) 

during encoding while fusiform is active regardless of encoding and retrieval. Therefore, in 

our face-occupation encoding and retrieval task paradigm, activations in hippocampus, para-

hippocampal areas and other nearby MTL regions are expected.

Activation detection in these regions is often complicated due to the low activation and low 

SNR caused by susceptibility artifacts from the sphenoid sinus [Cordes, et al., 2012b]. Mass-

univariate analysis could possibly miss the activation due to the low sensitivity for data with 

low SNR (because of signal dropout in or near the hippocampus). CCA models on the other 

hand incorporate multiple time series with optimum weight in a local neighborhood and are 

thus more sensitive to detect activations. However, more activation identified by the 

multivariate methods is not always better as artifacts can be introduced and larger fraction of 
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false positives in null data can be observed (See Table. 4). Therefore, multivariate analysis 

methods need to be applied together with proper constraints.

5.3.1 Activation detection—As can be seen from Fig. 9(A), mass univariate analysis, 

with or without Gaussian smoothing, misses most of the activations in hippocampus or para-

hippocampal areas at a significance level of p<0.001 (uncorrected). Unc-CCA and non-

negative-cCCA detect large activations in the entire brain but also produce smoothing 

artifacts in cerebrospinal fluid (CSF) area as well as a higher statistic (FP) on null data. Our 

optimum-cCCA model detects bilateral activations in MTL (Fig. 9(A)) with a much lower 

threshold on null data and no artifacts. The superior performance of the optimum-cCCA 

model is further demonstrated by the apparent ROC curves and related quantitative 

measurements. Mass univariate analysis is specific but conservative at p<0.05 (FWE), 

reflected in a high specificity (1st orange bar in Fig 9(B)) but a low sensitivity (1st blue bar in 

Fig 9(B)). CCA with no or weak constraint has a larger sensitivity than univariate analysis 

(2nd and 3rd blue bars in Fig. 9(B)) but very low specificity (2nd and 3rd orange bars Fig 9 

(B)). Optimum-cCCA model produces the most balanced sensitivity and specificity (5th blue 

and orange bars in Fig 9(B)), and thus shows the highest accuracy (5th grey bar in Fig 9(B)) 

and F1 score (5th yellow bar in Fig 9(B)). Optimum-cCCA model outperforms all other 

benchmark cases with the largest area under apparent ROC curves, as shown by the red 

curve in Fig. 9(C). These observations are also consistent with the simulation results 

discussed in section 5.1.2 and previous findings [Friman et al., 2003, Cordes et al., 2012].

5.3.2 Classification and prediction between aMCI subjects and NCs—
Pathological changes for aMCI subjects occur early in the MTL [Dickerson et al., 2004]. 

Given our episodic memory paradigm, which is targeted at MTL activation, aMCI subjects 

and NCs will reveal different functional changes. A superior fMRI analysis model will 

accurately detect MTL activations for both aMCI subjects and NCs, and thus makes a 

classification and prediction based on MTL activation patterns possible. We carried out this 

classification and prediction based on the activation percentages of MTL subregions 

generated from different analysis methods to further demonstrate the better performance of 

the optimum-cCCA model.

The feature sets input into classification are the activation percentages in the MTL 

subregions, obtained from single voxel analysis, four benchmark methods and optimum-

cCCA model at various significance levels (p<0.1, 1e-2, 1e-3, 1e-4 and 1e-5). As shown in 

Fig 10, the prediction accuracy is a function of significance level used to threshold the 

activation maps. Given a low significance (e.g. p<0.1, uncorrected), every voxel will be 

active and there is no difference between activation patterns of aMCI subjects and NCs (last 

blue, orange, grey, yellow purple and green bars in Fig. 10). Conversely, if the threshold is 

too high, no active voxel is detected for both aMCI subjects and NCs, thus results in failed 

classification. As shown by the 2nd and 3rd green bars in Fig 10, feature sets generated from 

the optimum-cCCA model at the significance level of p<1e-3 and 1e-4 produce the highest 

prediction accuracy. These prediction accuracies are greater than the 95th percentile of null 

distribution (dashed black line in Fig. 10), thus is statistically reliable. Therefore, optimum-

cCCA is superior as its detected activations best discriminate aMCI subjects from NCs.
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5.3.3 Signed statistics—In this study, we are more interested in activation differences 

between conditions Encoding and Control. Therefore, the unsigned F statistics are used. 

However, in some analysis, negative activation is also important, thus a signed statistic is 

useful. The Λ statistics in Eq. (17) and F statistics introduced in section 2.4 can also be 

converted to a signed Λ and F statistics (Λ± and F±) following Calhoun et al. [2004] and 

Cordes et al. [2012b]:

(22)

Of note, non-parametric significance test should be applied since the parametric distributions 

of these signed statistics are unknown.

5.4 Computational consideration

All calculations are performed in MATLAB (The Mathworks, Inc., version R2015b) on a 

Dell-workstation with Intel Xeon E5-2687W architecture running at a clock speed of 

3.4GHz and equipped with 96GB of memory. As listed in Table 1 and discussed in section 

2.3.3, the proposed cCCA model with reduced gradient algorithm takes around 1.5 hours to 

analyze one fMRI data set (approximately 100,000 voxels). If the optimum parameter p 
equals 1, the family-cCCA could be solved within 15 minutes as outlined in section 2.2.1.2 

and Appendix A.4. For the data set with optimum parameter p ≠ 1 but needing a faster 

evaluation, a possible alternative is to approximate the optimum-cCCA model with another 

cCCA model with p equals 1 and a different . As listed in Table 2(A), in simulation with 

SNR of 0.25, (p, ψ) = (2,16) gives AUC of 0.0854, which is close to 0.0870 given by(p, ψ) 

= (1,8). The differences in AUC is 1.87%. Therefore, the proposed cCCA model could be 

solved faster by using an approximate  cCCA model for a quicker evaluation.

5.5 Limitations and Future studies

Data specific optimum model parameters—As shown in Table 3, optimum-cCCA 

outperforms all other models. However, these optimum parameters for the family-cCCA 

model is fMRI data-specific, i.e. specific to the task and contrast. As discussed in section 

5.1, the optimum parameters can be roughly selected based on noise level in the given data 

set. To obtain exact data-and-contrast-specific optimum parameters of the cCCA model, the 

entire process of generating and analyzing a simulation close to the contrast in question 

needs to be repeated.

3D local neighborhood approach—A 3×3×3 3D neighborhood consists of 27 voxels 

and contains more local information than a 2D neighborhood. A family-cCCA model with a 

3D local neighborhood can further increase the sensitivity while maintaining specificity. In 

this study, we use a 2D local neighborhood due to the high in-plane non-isotropic resolution 

of collected fMRI data. For future fMRI data with isotropic resolution a family-cCCA model 

with 3D local neighborhood could be implemented to further improve model performance.
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Modeling hemodynamic response function—In the family-cCCA model proposed in 

this study, we consider constraints only on the spatial weights of each voxel. The 

hemodynamic function (HRF) is assumed to be identical for the entire brain. In a future 

study, another aspect is to simultaneously estimate a voxel-specific HRF and obtain optimal 

weights for the family-cCCA model. In univariate analysis, Pedregosa et al [2013] tried to 

solve this problem by jointly estimating the HRF and the activation patterns. For 

multivariate cases, Dong et al [2015b] proposed a CCA-involved local multimodal serial 

analysis method, where they replaced the design matrix with EEG data with different lags to 

count for the various onset times of HRFs. In future extension of this research project, we 

would like to include estimation of HRFs from fMRI data to obtain a more accurate model 

of cCCA where different voxels or regions may have a different HRF profile for the 

response.

Group Analysis—To the best of our knowledge, there is no analytically derived group 

analysis method for CCA-related models which have spatial constraints. In future studies, 

we would like to test a possible solution to this problem based on Fisher’s data fusion 

[Fisher, 1925] method. The values of the individual test statistics obtained non-

parametrically, either p-value or F-statistics, could be combined from multiple subjects to 

obtain single group statistic at each voxel level.

6. CONCLUSION

In this study, we proposed a new family-constrained CCA model as a more flexible tool for 

fMRI data analysis. Using numerical optimization techniques, we solved the cCCA problem 

accurately and efficiently. Simulations as close to real fMRI data were constructed to 

evaluate the family-cCCA model performance. Results demonstrate that the family-cCCA 

model with optimum parameters could increase the sensitivity for a given specificity in 

activation detection, especially for data sets with low SNR, as compared to the mass-

univariate analysis and conventional CCA-related methods. The selected optimum-cCCA 

parameters were further validated with the proposed novel validation method based on area 

under the ROC curves and demonstrated to be also optimal in analyzing real fMRI data. The 

optimum parameters for the family-cCCA model are specific to our data set and chosen 

contrast.

The family-cCCA model with optimum parameters outperforms mass-univariate analysis in 

detecting small localized activations in noisy fMRI data, such as hippocampal activations in 

episodic memory fMRI data. Optimum-cCCA also has more statistical power as compared 

to the weak constrained CCA methods, since it produces less false positives on null data. 

Furthermore, the family-cCCA model is more flexible and reliable than the strong 

dominance CCA methods since it covers a larger space of possible center dominance 

constraints.
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APPENDIX A

A.1 Technical aspects regarding canonical correlation ρ

A.1.1 The domain

Note that ρ is undefined for those α and β for which Y′α or X′β has zero-variance. 

However, if the centered coordinates of Y and X are linearly independent, then Y′α or X′β 
will have zero-variance only if α or β are zero (respectively). Hence, the domain of ρ is(ℝm 

\ {0}) × (ℝn \ {0}).

A.1.2 Maximum of ρ

Aside from the constraints, the domain of ρ is open, so the existence of the maximum 

requires a justification. Since ρ is invariant by scalar multiplication of its arguments, for 

every non-zero α ∈ ℝm and β ∈ ℝn, it holds , therefore 

maximizing ρ on the whole domain is equivalent to maximizing it restricted to 

 which is a closed and bounded set, therefore the 

continuous function ρ attains its maximum. Moreover, since ρ is differentiable, its maximum 

can be found among the critical points, i.e., solutions of ∇ρ = 0. Further, the objective 

function in unconstrained CCA problem is concave, thus the critical points found can only 

be at global maximum. For constrained CCA problem, the constraints define closed subsets 

in which the existence of the maximum is justified.

A.2. Proof of the equivalence between cCCA and cLS (Eq. (8))

Note that cLS has the extra constraint α′SYYα = 1, that are not in cCCA. Since ρ is invariant 

under scalar multiplication of its arguments, given any α in the domain of ρ one can simply 

divide its coordinates by , which then satisfies the constraints.

It can be assumed that when cCCA includes the constraint α′SYYα = 1 and condition β = (X
′X)−1X′Yα, both problems have the same feasible solutions. If (α*,β*) is a feasible 

solution, then it is a global maximum of cCCA if and only if it is a global minimum of cLS. 

In the following we are proving this statement.

Let (α, β) be another feasible solution. We want to show that:

(A. 1)

Using the definition of the norm for an arbitrary vector z ∈ ℝ, i.e. ∥ z ∥2 = z′z, we obtain
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(A. 2)

and similarly

(A. 3)

Because of the constraints α′SYYα = 1 and the facts , we obtain α′Y′Yα 
= N − 1 for any α. Substituting β with the least square solution (X′X)−1X′Yα (see section 

2.1.2), α′Y′Yα with N − 1, Eq. (A.1) is reduced to

(A. 4)

Further simplifying , we obtain

(A. 5)

Therefore, relationship in Eq. (A. 4) is reduced to
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(A. 6)

which indeed holds true.

A.3 Critical points of CCA

Without any constraint CCA is defined as:

(A. 7)

where SYX, SYY and SXX are the sample average covariance and variance matrices. Taking 

the derivative of Eq. (A. 7) gives:

(A. 8)

(A. 9)

Setting the derivatives Eq. (A.8) and Eq. (A.9) equal to 0 yields

(A. 10)

(A. 11)

Since SXX and SYY are positive-definite with probability 1, they are invertible. From Eq. (A.

11), we solve for β as

(A. 12)
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Substituting β from Eq. (A. 12) in Eq. (A. 10) yields

(A. 13)

Note ρ is defined as Eq. (A. 7), which also equals to . Therefore, we 

further simplify Eq. (A. 13) to

(A. 14)

Hence, the critical points α are found among the eigenvectors of matrix 

and ρ2 is the corresponding Eigen Value.

A.4 Solution when p = 1

The cCCA p = 1 problem for arbitrary ψ becomes:

(A. 15)

It is possible to linearly transform the cCCA constraint to a simple non-negative constraint 

by defining

(A. 16)

where Φ is the new spatial weights vector and the matrix M for this transform is:

(A. 17)

If Φ satisfies the non-negative constraint then α satisfies the p = 1 constraint. Notice that the 

weight of the center voxel α1 equals to ψ times the summation of all the elements in Φ. 
Therefore, the first element of Φ can also be 0, and α = MΦ still satisfies the p = 1 

constraint. This situation needs to be considered separately.

Zhuang et al. Page 31

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.5 Proof of covariance matrix property

Let V,W be two random vectors and T,R are two transformations. Then, the covariance 

matrix of TU and RV is:

(A. 18)

where E[] denotes the expectation value of the argument. Eq. (A. 18) can be expanded as:

(A. 19)

A.6. Formulating objective function of the augmented Lagrangian method

In general, the cCCA problem (Eq. (8)) is to minimize objective function g(α) with equality 

constraint(s) ci(α) = 0, ∀i ∈ E and inequality constraint(s) cj(α) > 0, ∀j ∈ I. In forming the 

objective function of the augmented Lagrangian method, inequality constraints are converted 

to equality constraints by adding sj ≥ 0 so that cj(α) − sj = 0, ∀j ∈ I. Each equality constraint 

is then added to the original objective function g(α) as a quadratic penalty term:

(A. 

20)

Further, Lagrangian multiplier estimates are incorporated into the objective function to 

reduce the possibility of ill conditioning in the quadratic penalty method. Therefore, the 

objective function in the unconstrained augmented Lagrangian problem is as follows:

(A. 21)

where LA(α, s, λ; μ) is the standard Lagrangian expression of F(α; μ) with constraints ci(α) 

= 0, ∀i ∈ E and cj(α) − sj = 0, ∀j ∈ I. If we consider s as the only unknown in LA(α, s, λ; 
μ), Eq. (A. 21) is a convex quadratic function which reaches the global minimum at 

. Therefore, LA(α, s, λ; μ) can be rewritten as LA(α, 
λ; μ) in term of our cCCA problem (Eq. (8)) as:
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(A. 22)

where the superscript t denotes the tth iteration and the constraints are:

(A. 23)

Eq. (A. 22) is then iteratively solved using unconstrained optimization techniques as 

described in Nocedal and Wright [2006], λ is updated by 

. If  for any inequality constraint, 

 is set to zero automatically.

A.7 Effective Gaussian smoothing filter width

To compare results of cCCA with single voxel and Gaussian smoothing (SV+GS), it is 

necessary to compute the FWHM of a comparable Gaussian smoothing kernel. CCCA is 

applied to local 3×3 neighborhoods involving a center voxel and its 8 neighbors. We solve 

cCCA with 256 sub-problems, where all the possible configurations are treated with equal 

probability. Therefore, we obtain the average configuration size s:

(A. 24)

and the comparable Gaussian filter width is then

(A. 25)

This value is used in the mass-univariate analysis with Gaussian smoothing (SV+GS).

Zhuang et al. Page 33

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Abadie J, Carpentier J. Generalization of the Wolfe reduced gradient method to the case of nonlinear 
constraints. Optimization. 1969; 37:47.

Akaho, S. In Proceedings of the International Meeting of the Psychometric Society (IMPS2001). 
Springer-Verlag; 2006. A Kernel Method for Canonical Correlation Analysis. 

Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical 
measurement. The lancet. 1986; 327(8476):307–310.

Breakspear M, Brammer M, Bullmore E, Das P, Williams L. Spatiotemporal wavelet re-sampling for 
functional neuroimaging data. Hum Brain Mapp. 2004; 23:1–25. [PubMed: 15281138] 

Broomhead DS, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive 
networks (No. RSRE-MEMO-4148). Royal Signals and Radar Establishment Malvern (United 
Kingdom). 1988

Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter T, Brammer M. Colored 
noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling 
methods in time and wavelet domains. Hum Brain Mapp. 2001; 12:61–78. [PubMed: 11169871] 

Calhoun VD, Stevens MC, Pearlson GD, Kiehl KA. fMRI analysis with the general linear model: 
removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. 
NeuroImage. 2004; 22(1):252–257. [PubMed: 15110015] 

Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of 
imaging, genetic, and ERP data. NeuroImage. 2009; 45(1):S163–S172. [PubMed: 19059344] 

Calhoun VD, Sui J. Multimodal fusion of brain imaging data: A key to finding the missing link (s) in 
complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2016; 
1(3):230–244. [PubMed: 27347565] 

Cordes D, Jin M, Curran T, Nandy R. The smoothing artifact of spatially constrained canonical 
correlation analysis in functional MRI. Journal of Biomedical Imaging. 2012a; 2012:3.

Cordes D, Jin M, Curran T, Nandy R. Optimizing the performance of local canonical correlation 
analysis in fMRI using spatial constraints. Hum Brain Mapp. 2012b; 33:2611–2626. [PubMed: 
23074078] 

Das S, Sen PK. Restricted canonical correlations. Linear Algebra and its Applications. 1994; 210:29–
47.

Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, Dale AM, Stern CE, Blacker D, 
Albert MS, Sperling RA. Medial temporal lobe function and structure in mild cognitive 
impairment. Annals of Neurology. 2004; 56(1):27–35. [PubMed: 15236399] 

Dickerson BC, Eichenbaum H. The episodic memory system: Neurocircuitry and disorders. 
Neuropsychopharmacology. 2010; 35(1):86–104. [PubMed: 19776728] 

Dong L, Zhang Y, Zhang R, Zhang X, Gong D, Valdes-Sosa PA, Yao D. Characterizing nonlinear 
relationships in functional imaging data using eigenspace maximal information canonical 
correlation analysis (emiCCA). NeuroImage. 2015a; 109:388–401. [PubMed: 25592998] 

Dong L, Wang P, Bin Y, Deng J, Li Y, Chen L, Luo C, Yao D. Local Multimodal Serial Analysis for 
Fusing EEG-fMRI: A New Method to Study Familial Cortical Myoclonic Tremor and Epilepsy. 
IEEE Transactions on Autonomous Mental Development. 2015b; 7(4):311–319.

Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27(8):861–874.

Fletcher R, Reeves CM. Function minimization by conjugate gradients. The Computer Journal. 1964; 
7(2):149–154.

Fisher, RA. Statistical Methods for Research Workers. Oliver and Boyd; Edinburgh: 1925. 

Friman O, Cedefamn J, Lundburg P, Borga M, Knutsson H. Detection of neural activity in functional 
MRI using canonical correlation analysis. Magn Reson Med. 2001; 45:323–330. [PubMed: 
11180440] 

Friman O, Borga M, Lundberg P, Knutsson H. Adaptive analysis of fMRI data. NeuroImage. 2003; 
19:837–845. [PubMed: 12880812] 

Fischl B. FreeSurfer. NeuroImage. 2012; 62(2):774–781. [PubMed: 22248573] 

Zhuang et al. Page 34

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS. Statistical parametric maps 
in functional imaging: a general linear approach. Hum Brain Mapp. 1994; 2(4):189–210.

Giavarina D. Understanding Bland Altman analysis. Biochemia Medica. 2015; 25(2):141–151. 
[PubMed: 26110027] 

Glover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. 
Magn Reson Med. 2001; 46(3):515–522. [PubMed: 11550244] 

Hardoon DR, Mourao-Miranda J, Brammer M, Shawe-Taylor J. Unsupervised analysis of fMRI data 
using kernel canonical correlation. NeuroImage. 2007; 37:1250–1259. [PubMed: 17686634] 

Haykin, SS. Neural Networks and Learning Machines. Vol. 3. Pearson Education, Inc.; Upper Saddle 
River, NJ, USA: 2009. 

Hestenes MR. Multiplier and gradient methods. Journal of Optimization Theory and Applications. 
1969; 4(5):303–320.

Holmes AP, osephs O, Büchel C, Friston KJ. Statistical modelling of low-frequency confounds in 
fMRI. Proc 3rd Int.Conf. Func. Mapp. Hum. Brain. 1997

Hotelling H. Relations between two sets of variates. Biometrika. 1936; 28:321–377.

Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, Mckee 
AC, Wald LL, Fischl B, Van Leemput K. A computational atlas of the hippocampal formation 
using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. 
NeuroImage. 2015; 115:117–137. [PubMed: 25936807] 

Jin M, Nandy R, Curran T, Cordes D. Extending local canonical correlation analysis to handle general 
linear contrasts for fMRI data. Journal of Biomedical Imaging. 2012a; 2012:4.

Jin M, Curran T, Nandy R, Cordes D. Fast constrained canonical correlation analysis for fMRI. 
Visualization, Image Processing and Computation in Biomedicine,. 2012b DOI: 10.1615 /. 
2012004964. 

Jin, M., Curran, T., Nandy, R., Cordes, D. Organization of Human Brain Mapping (OHBM). United 
States: Jun. 2015 Prediction of aMCI subjects using local fMRI activation patterns. 

Lasdon LS, Waren AD, Jain A, Ratner M. Design and testing of a generalized reduced gradient code 
for nonlinear programming. ACM Transactions on Mathematical Software (TOMS). 1978; 4(1):
34–50.

Levin-Schwartz Y, Song Y, Schreier PJ, Calhoun VD, Adalı T. Sample-poor estimation of order and 
common signal subspace with application to fusion of medical imaging data. NeuroImage. 2016; 
134:486–493. [PubMed: 27039696] 

Luenberger, DG., Ye, Y. Linear and nonlinear programming. Vol. 2. Addison-Wesley; Reading, MA: 
1984. 

Mardia KV, Kent JT, Bibby JM. Multivariate analysis. Academic press. 1979

Monteiro, JM., Rao, A., Ashburner, J., Shawe-Taylor, J., Mourão-Miranda, J. Multivariate effect 
ranking via adaptive sparse PLS. In Pattern Recognition in Neuroimaging (PRNI); 2015 
International Workshop, IEEE; Jun 25-28. 2015 

Nandy R, Cordes D. Novel nonparametric approach to canonical correlation analysis with applications 
to low CNR functional MRI data. Magn Reson Med. 2003; 50:354–365. [PubMed: 12876712] 

Nandy R, Cordes D. Improving the spatial specificity of canonical correlation analysis in fMRI. Magn 
Reson Med. 2004; 52:947–952. [PubMed: 15389937] 

Nandy R, Cordes D. A semi-parametric approach to estimate the family-wise error rate in fMRI using 
resting-state data. NeuroImage. 2007; 34:1562–1576. [PubMed: 17196400] 

Nocedal, J., Wright, S. Numerical optimization. Springer Science & Business Media; 2006. 

Nocedal, J., Yuan, YX. Combining trust region and line search techniques. Springer US; 1998. p. 
153-175.

Pedregosa, F., Eickenberg, M., Thirion, B., Gramfort, A. PRNI '13 Proceedings of the 2013 
International Workshop on Pattern Recognition in Neuroimaging; 2013. p. 165-169.

Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, 
Winblad B. Current concepts in mild cognitive impairment. Archives of neurology. 2001; 58(12):
1985–1992. [PubMed: 11735772] 

Zhuang et al. Page 35

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ragnehed M, Engström M, Knutsson H, Söderfeldt B, Lundberg P. Restricted canonical correlation 
analysis in functional MRI—validation and a novel thresholding technique. Journal of Magnetic 
Resonance Imaging,. 2009; 29(1):146–154. [PubMed: 19097096] 

Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. 
NeuroImage. 2007; 37(4):1083–1090. [PubMed: 17719799] 

Rockafellar RT. Monotone operators and the proximal point algorithm. SIAM Journal on Control and 
Optimization. 1976; 14(5):877–898.

Rosenbrock H. An automatic method for finding the greatest or least value of a function. The 
Computer Journal. 1960; 3(3):175–184.

Shanno DF. On Broyden-Fletcher-Goldfarb-Shanno method. Journal of Optimization Theory and 
Applications. 1985; 46:87–94.

Siotani, M., Hayakawa, T., Fujikoshi, Y. Modern Multivariate Statistical Analysis. American Sciences 
Press; Columbus, Ohio: 1985. 

Soltanian-Zadeh H, Saigal R, Windham JP, Yagle AE, Hearshen DO. Optimization of MRI protocols 
and pulse sequence parameters for eigenimage filtering. IEEE Transactions on Medical Imaging. 
1994; 13(1):161–175. [PubMed: 18218494] 

Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. 
Psychol. Rev. 1992; 99:195–231. [PubMed: 1594723] 

Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu. Rev. Neurosci. 2004; 27:279–306. 
[PubMed: 15217334] 

Sui J, Adali T, Pearlson G, Yang H, Sponheim SR, White T, Calhoun VD. A CCA+ ICA based model 
for multi-task brain imaging data fusion and its application to schizophrenia. NeuroImage. 2010; 
51(1):123–134. [PubMed: 20114081] 

Sui, J., Castro, E., He, H., Bridwell, D., Du, Y., Pearlson, GD., Jiang, T., Calhoun, VD. Combination of 
FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature 
selection; In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society; IEEE; 2014. p. 3889-3892.

Thompson, B. Encyclopedia of Statistics in Behavioral Science. John Wiley & Sons, Ltd.; 2005. 
Canonical correlation analysis. 

Udovičić M, Baždarić K, Bilić-Zulle L, Petrovečki M. What we need to know when calculating the 
coefficient of correlation? Biochemia Medica. 2007; 17(1):10–15.

Zeineh MM, Engel SA, Thompson PM, Bookheimer SY. Dynamics of the hippocampus during 
encoding and retrieval of face-name pairs. Science. 2003; 299:577–580. [PubMed: 12543980] 

Zhuang et al. Page 36

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Flow chart of the proposed algorithm in solving the cCCA model considering 256 

configurations. All derivatives ∇gk are calculated numerically. Note that self-scaling is 

implemented by parameter γk.
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Figure 2. 
Steps to generate apparent ROC curves from real fMRI data.
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Figure 3. 
FMRI episodic memory experiment. The task is to memorize novel faces paired with 

occupations. During the encoding period, 7 faces paired with occupations, each lasting 3 

seconds are displayed, followed by an 11 seconds control period (for distraction purpose). 

During the recognition period, 14 stimuli, half novel and half identical, are shown in random 

order, each lasting for 3 seconds. Encoding and recognition periods are repeated 6 times in 

one session. The paradigm starts and ends with a control period.

Zhuang et al. Page 39

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Empirical distribution of active neighbors with an active center in real fMRI data (blue) 

and simulated patterns (orange) at the significance level of p<0.05 (uncorrected) after 

applying single voxel analysis. The Pearson correlation between the two distributions is 

0.9285 (p-value<0.001). (B) Empirical distribution of active neighbors with an inactive 

center in real fMRI data (blue) or simulated patterns (orange). The Pearson correlation 

between the two distributions is 0.9738 (p-value<0.001). (C) Determination of noise fraction 

f in simulated data. The solid blue line represents the average correlation value (ρ) at 

significance level of p<0.05 (uncorrected) after applying single voxel analysis on real fMRI 

data; the dashed curve is the average correlation (ρ) value acquired in the same way on 

simulated data with different noise fraction f from 0 to 1. Black arrow indicates where the 

two median values match.
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Figure 5. 
Results for simulation with noise fraction f = 0.8. (A). Simulated patterns and spatial 

activation maps obtained from 5 methods (4 benchmarks and 1 optimum-cCCA), 

thresholded at the point with lowest total error rate given by (FPR + FNR) . (B). Sensitivity 

(blue), specificity (orange), accuracy (gray) and F1 score (yellow), measured by comparing 

the thresholded activation maps and the simulated pattern. (C). ROC curves for the same 5 

methods.
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Figure 6. 
Results for simulation with noise fraction f = 0.85. (A). Simulated patterns and spatial 

activation maps obtained from 5 methods (4 benchmarks and 1 optimum-cCCA), 

thresholded at the point with lowest total error rate given by min(FPR + FNR) . (B). 
Sensitivity (blue), specificity (orange), accuracy (gray) and F1 score (yellow), measured by 

comparing the thresholded activation maps and the simulated pattern. (C). ROC curves for 

the same 5 methods.
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Figure 7. 
(A). Correlation plot between AUC (area under the ROC curve integrating over FPR ∈ 
[0,0.1]), obtained from simulated data (μi=1,…,42) and real fMRI data (νi=1,…,42) (B). Bland 

Altman plot for the same two sequences after normalization by each mean value.
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Figure 8. 
Smoothing artifact for different analysis methods as a function of noise fraction. (A). 
Simulated 7×7 neighborhoods. True activations are limited to the center 3×3 region (orange 

part) and all analysis are limited to the center 5×5 area (blue striped part). The center voxel 

of the true activation region is always kept active and the number of active neighbors in the 

center 3×3 neighborhoods ranges from 0 to 8. (B). One representative case with no active 

neighbor in the true activation region (s = 0), i.e. only the centermost voxel is active (orange 

area). (C). Active ratio  maps for different analysis methods as a function of noise 

fraction, averaging over 100 simulated 7×7 s = 0 neighborhoods. Horizontal axis labels the 

noise fraction while vertical axis labels analysis methods, ranked from the weakest to the 

strongest center dominance constraint in the analysis (top to bottom). (D). One 

representative case with all 8 neighbors are active in the true activation region (s = 8). (E). 

Active ratio  maps for different analysis methods as a function of noise fraction, 

averaging over 100 simulated 7×7 neighborhoods. (F). Average  map , combining 0 

to 8 active neighbor cases in simulated data, obtained with Eq. (22). All activations are 

thresholded at FWE<0.05. Color bar is from 0 to 9 for (C), (E) and (F).
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Fig.9. 
(A).Activation maps with p<0.001 (uncorrected) of a representative subject for contrast 

Encoding vs Control, obtained from single voxel analysis, four benchmark analysis methods 

and optimum-cCCA method, overlaid on the subject T2 image. Thresholds are computed 

from the null distribution for each method. (B). Sensitivity (blue), specificity (orange), 

accuracy (gray) and F1 score (yellow), measured by comparing the thresholded activation 

maps (p<0.05, FWE) and the apparent ground truth. (C). ROC curves for the same 5 

methods (four benchmark method and optimum-cCCA method).
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Figure 10. 
Classification and prediction accuracy between aMCI subjects and normal controls based on 

activation percentages obtained from different analysis methods (single voxel analysis: blue 

bars; SV+GS: orange bars; unc-CCA: grey bars; non-negative-cCCA: yellow bars; sum-

cCCA: purple bars and optimum-cCCA: green bars) at various significance levels. Dashed 

black line represents 95th percentile of the null distribution of the predication accuracy 

calculated from the permutation test.
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Table1

Computation time and accuracy for each method solving the cCCA problem with (p, ψ) = (2,1), averaging 

over 700 3×3 local neighborhoods.

Computation
Time of one
3×3 region

Accuracy
Prob|ρ − ρbenchmark|

< 0.001

Accuracy
Prob|ρ − ρbenchmark|

< 0.01

(a) BFGS with 1 starting
point for entire 3×3 region; 0.13s 85.59% 91.20%

(b) BFGS with 1 starting
point for each 256 sub-
problems

7.48s 100.00% 100.00%

(c) Augmented Lagrangian
with 1 starting point for
entire 3×3 region

1.81s 95.41% 96.68%

(d) Reduced Gradient with 1
starting point for entire 3×3
region

0.14s 95.41% 96.56%

(e) Reduced Gradient with 9
starting points for entire 3×3
region

0.74s 99.62% 100.00%
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Table 2

Area under ROC (AUC) for simulated data using different analysis methods.

(A). Noise fraction f = 0.8

Analysis Method AUC

SV 0.0858

SV+GS 0.0609

unc-CCA 0.0430

non-negative-cCCA 0.0446

pψ 1 2 4 8 16 32

0.5 0.0736 0.0865 0.0869 0.0866 0.0864 0.0863

1 0.0746 0.0832 0.0865 0.0870 0.0869 0.0867

2 0.0705 0.0758 0.0803 0.0835 0.0854 0.0862

4 0.0678 0.0705 0.0731 0.0754 0.0773 0.0791

8 0.0666 0.0679 0.0691 0.0704 0.0716 0.0729

16 0.0660 0.0667 0.0673 0.0679 0.0686 0.0691

32 0.0658 0.0661 0.0664 0.0667 0.0671 0.0673

(B). Noise fraction f = 0.85

Analysis Method AUC

SV 0.0603

SV+GS 0.0564

unc-CCA 0.0449

non-negative-cCCA 0.0470

pψ 1 2 4 8 16 32

0.5 0.0643 0.0666 0.0627 0.0612 0.0609 0.0608

1 0.0649 0.0683 0.0666 0.0644 0.0628 0.0618

2 0.0626 0.0652 0.0672 0.0678 0.0672 0.0664

4 0.0609 0.0621 0.0635 0.0644 0.0656 0.0665

8 0.0602 0.0607 0.0613 0.0618 0.0624 0.0630

16 0.0599 0.0601 0.0603 0.0606 0.0609 0.0611

32 0.0598 0.0599 0.0600 0.0601 0.0602 0.0603

Note: Analysis methods are the SV analysis, 4 benchmark models and 42 cCCA models with combinations of and p = 0.5,1,2,4,8,16,32 and ψ = 
1,2,4,8,16,32. Sum-cCCA is covered by (p, ψ) = (1, 1). Max-CCA is covered by (p, ψ) = (32,1). Optimum parameter combination of cCCA model 
is the one that gives highest area under ROC, highlighted in orange. The area under the ROC curve is integrated over the range of FPR = [0, 0.1]. In 
addition, for cCCA models which give AUCs within 5% less than the optimum-cCCA model, are highlighted in blue.

Neuroimage. Author manuscript; available in PMC 2018 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 49

Table 3

Improvement in detection accuracy of optimum-cCCA model relative to the SV analysis, four benchmark 

models and max-cCCA model.

SV SV+GS unc-cCCA non-negative-
cCCA sum-cCCA max-

cCCA

1.4% 42.9% 102.4% 95.1% 16.7% 32.3%

13.3% 21.1% 52.2% 45.36% 5.4% 14.2%

Note: Improvement is measured by area under ROC curve integrated over the range of FPR = [0, 0.1].
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Table 4

Statistical thresholds at p-value of 1e-5, 1e-4, 1e-3 and 1e-2, obtained from wavelet-resampled resting-state 

data,F statistics for contrast Encoding v/s Control.

1e-5 1e-4 1e-3 1e-2

SV 26.88 19.29 12.95 7.58

SV+GS 27.03 20.18 13.77 8.05

unc-CCA 46.97 37.98 29.51 21.05

non-negative-cCCA 38.22 28.45 20.31 13.15

sum-cCCA 33.64 24.38 16.96 10.52

optimum-cCCA 28.40 20.43 13.86 8.19
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Table 5

Percentage of active voxels in MTL subregions for different analysis methods.

ROI Single
Voxel SV+GS unc-CCA sum-cCCA optimum-

cCCA

CA1_Left 4.26(8.27) 8.13(9.69) 24.74(21.65) 13.02(14.72) 9.21(12.30)

CA234DG_Left 3.78(5.07) 12.32(14.05) 20.86(17.14) 12.51(12.34) 9.15(9.93)

SUB_Left 6.34(7.02) 14.58(16.33) 29.49(22.68) 18.49(15.42) 13.82(12.32)

ERC_Left 6.47(16.54) 5.78(11.05) 22.50(29.49) 14.54(23.82) 11.69(22.31)

PHC_Left 1.86(2.73) 4.13(5.41) 15.18(13.98) 7.11(6.55) 4.47(4.92)

FUS_Left 10.30(5.75) 16.50(8.69) 30.86(14.68) 22.36(10.73) 18.10(9.27)

CA1_Right 3.17(7.74) 4.24(7.50) 15.80(19.61) 8.52(12.86) 6.43(11.55)

CA234DG_Right 2.17(3.96) 3.70(6.18) 15.36(19.56) 7.49(9.69) 5.06(7.16)

SUB_Right 2.27(3.21) 5.55(5.76) 16.80(17.98) 8.53(9.31) 6.02(6.95)

ERC_Right 2.82(5.52) 3.77(6.12) 14.24(17.99) 8.88(14.09) 6.74(11.91)

PHC_Right 0.67(1.05) 1.88(3.62) 8.21(8.48) 3.68(5.03) 2.71(3.82)

FUS_Right 5.38(4.17) 9.79(7.23) 18.75(13.90) 12.39(7.74) 9.82(6.52)

Note: ROIs are obtained from subject specific masks output from Freesurfer. Percentages of active voxels (i.e. number of active voxels divided by 
the total number of voxels in ROI) are calculated at different p-value of 0.5, 0.1, 1e-2, 1e-3, 1e-4, 1e-5, (uncorrected). Only active voxels 
determined for p-value of 0.001 (uncorrected) are listed here as an example. The numbers specify the average over 14 subjects (7 aMCI subjects 
and 7 NCs) and the standard deviation is listed in parenthesis. CA1: Cornu Ammonis area 1, CA234&DG: combining CA2, CA3, CA4 and Dentate 
Gyrus, SUB: Subiculum, ERC: Entorhinal Cortex, PHC: Parahippocampal Cortex and FUS: Fusiform Gyrus.
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	APPENDIX AA.1 Technical aspects regarding canonical correlation ρA.1.1 The domainNote that ρ is undefined for those α and β for which Y′α or X′β has zero-variance. However, if the centered coordinates of Y and X are linearly independent, then Y′α or X′β will have zero-variance only if α or β are zero (respectively). Hence, the domain of ρ is(ℝm \ {0}) × (ℝn \ {0}).A.1.2 Maximum of ρAside from the constraints, the domain of ρ is open, so the existence of the maximum requires a justification. Since ρ is invariant by scalar multiplication of its arguments, for every non-zero α ∈ ℝm and β ∈ ℝn, it holds , therefore maximizing ρ on the whole domain is equivalent to maximizing it restricted to  which is a closed and bounded set, therefore the continuous function ρ attains its maximum. Moreover, since ρ is differentiable, its maximum can be found among the critical points, i.e., solutions of ∇ρ = 0. Further, the objective function in unconstrained CCA problem is concave, thus the critical points found can only be at global maximum. For constrained CCA problem, the constraints define closed subsets in which the existence of the maximum is justified.A.2. Proof of the equivalence between cCCA and cLS (Eq. (8))Note that cLS has the extra constraint α′SYYα = 1, that are not in cCCA. Since ρ is invariant under scalar multiplication of its arguments, given any α in the domain of ρ one can simply divide its coordinates by , which then satisfies the constraints.It can be assumed that when cCCA includes the constraint α′SYYα = 1 and condition β = (X′X)−1X′Yα, both problems have the same feasible solutions. If (α*,β*) is a feasible solution, then it is a global maximum of cCCA if and only if it is a global minimum of cLS. In the following we are proving this statement.Let (α, β) be another feasible solution. We want to show that:(A. 1)Using the definition of the norm for an arbitrary vector z ∈ ℝ, i.e. ∥ z ∥2 = z′z, we obtain(A. 2)and similarly(A. 3)Because of the constraints α′SYYα = 1 and the facts , we obtain α′Y′Yα = N − 1 for any α. Substituting β with the least square solution (X′X)−1X′Yα (see section 2.1.2), α′Y′Yα with N − 1, Eq. (A.1) is reduced to(A. 4)Further simplifying , we obtain(A. 5)Therefore, relationship in Eq. (A. 4) is reduced to(A. 6)which indeed holds true.A.3 Critical points of CCAWithout any constraint CCA is defined as:(A. 7)where SYX, SYY and SXX are the sample average covariance and variance matrices. Taking the derivative of Eq. (A. 7) gives:(A. 8)(A. 9)Setting the derivatives Eq. (A.8) and Eq. (A.9) equal to 0 yields(A. 10)(A. 11)Since SXX and SYY are positive-definite with probability 1, they are invertible. From Eq. (A.11), we solve for β as(A. 12)Substituting β from Eq. (A. 12) in Eq. (A. 10) yields(A. 13)Note ρ is defined as Eq. (A. 7), which also equals to . Therefore, we further simplify Eq. (A. 13) to(A. 14)Hence, the critical points α are found among the eigenvectors of matrix  and ρ2 is the corresponding Eigen Value.A.4 Solution when p = 1The cCCA p = 1 problem for arbitrary ψ becomes:(A. 15)It is possible to linearly transform the cCCA constraint to a simple non-negative constraint by defining(A. 16)where Φ is the new spatial weights vector and the matrix M for this transform is:(A. 17)If Φ satisfies the non-negative constraint then α satisfies the p = 1 constraint. Notice that the weight of the center voxel α1 equals to ψ times the summation of all the elements in Φ. Therefore, the first element of Φ can also be 0, and α = MΦ still satisfies the p = 1 constraint. This situation needs to be considered separately.A.5 Proof of covariance matrix propertyLet V,W be two random vectors and T,R are two transformations. Then, the covariance matrix of TU and RV is:(A. 18)where E[] denotes the expectation value of the argument. Eq. (A. 18) can be expanded as:(A. 19)A.6. Formulating objective function of the augmented Lagrangian methodIn general, the cCCA problem (Eq. (8)) is to minimize objective function g(α) with equality constraint(s) ci(α) = 0, ∀i ∈ E and inequality constraint(s) cj(α) > 0, ∀j ∈ I. In forming the objective function of the augmented Lagrangian method, inequality constraints are converted to equality constraints by adding sj ≥ 0 so that cj(α) − sj = 0, ∀j ∈ I. Each equality constraint is then added to the original objective function g(α) as a quadratic penalty term:(A. 20)Further, Lagrangian multiplier estimates are incorporated into the objective function to reduce the possibility of ill conditioning in the quadratic penalty method. Therefore, the objective function in the unconstrained augmented Lagrangian problem is as follows:(A. 21)where LA(α, s, λ; μ) is the standard Lagrangian expression of F(α; μ) with constraints ci(α) = 0, ∀i ∈ E and cj(α) − sj = 0, ∀j ∈ I. If we consider s as the only unknown in LA(α, s, λ; μ), Eq. (A. 21) is a convex quadratic function which reaches the global minimum at . Therefore, LA(α, s, λ; μ) can be rewritten as LA(α, λ; μ) in term of our cCCA problem (Eq. (8)) as:(A. 22)where the superscript t denotes the tth iteration and the constraints are:(A. 23)Eq. (A. 22) is then iteratively solved using unconstrained optimization techniques as described in Nocedal and Wright [2006], λ is updated by . If  for any inequality constraint,  is set to zero automatically.A.7 Effective Gaussian smoothing filter widthTo compare results of cCCA with single voxel and Gaussian smoothing (SV+GS), it is necessary to compute the FWHM of a comparable Gaussian smoothing kernel. CCCA is applied to local 3×3 neighborhoods involving a center voxel and its 8 neighbors. We solve cCCA with 256 sub-problems, where all the possible configurations are treated with equal probability. Therefore, we obtain the average configuration size s:(A. 24)and the comparable Gaussian filter width is then(A. 25)This value is used in the mass-univariate analysis with Gaussian smoothing (SV+GS).
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