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Abstract Mulberry (Morus spp.), being an economically

important tree, is cultivated in China, India, Thailand,

Brazil, Uzbekistan and other Countries across the globe,

for its leaves to feed monophagous mulberry silkworm

(Bombyx mori). The sustainability of silk industry is

directly correlated with the production and continuous

supply of high-quality mulberry leaves. In India, it is cul-

tivated on large scale in tropical, sub-tropical and tem-

perate regions under irrigated conditions for silkworm

rearing. Drought, low temperature, high salinity and alka-

linity, being experienced in widespread areas, are the major

abiotic stresses, causing reduction in its potential foliage

yield and quality. Further, climate change effects may

worsen the productivity of mulberry in near future, not only

in India but also across the globe. Although traditional

breeding methods contributed immensely towards the

development of abiotic stress-tolerant mulberry varieties,

still there is lot of scope for implementation of modern

genomic and molecular biology tools for accelerating

mulberry genetic improvement programmes. This review

discusses omics approaches, molecular breeding, plant

tissue culture and genetic engineering techniques exploited

for mulberry genetic improvement for abiotic stress toler-

ance. However, high-throughput biotechnological tools

such as RNA interference, virus-induced gene silencing,

epigenomics and genome editing tools need to be utilized

in mulberry to accelerate the progress of functional geno-

mics. The application of genomic tools such as genetic

engineering, marker-assisted selection and genomic selec-

tion in breeding programmes can hasten the development

of climate resilient and productive mulberry varieties

leading to the vertical and horizontal expansion for quality

silk production.
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RAPD Random amplified polymorphic DNA

DAMD Directed amplification of minisatellite DNA

AFLP Amplified fragment length polymorphisms

ISSR Inter-simple sequence repeat (ISSR)

SRAP Sequence-related amplified polymorphism

SSR Simple sequence repeat

NCBI National Center for Biotechnology Information

Introduction

Mulberry (Morus spp.; Family: Moraceae) is a fast-grow-

ing, cross-pollinated, perennial, dioecious and hardy tree

(2n = 28–308). Globally, it occurs in warm and moist

climates between latitudes of 50�N and 10�S which include

Southeastern Asia, Europe, North and South America.

Although, mulberry leaves are the sole source of food for

the mulberry silkworm (Bombyx mori), its leaf is also used

as fodder for life stock. Its fruit, due to ample nutritive

values, is used for human consummation. In addition,
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mulberry tree produces valuable products like timber and

pharmaceutically important chemicals which make its

widespread occurrence across the World. As mulberry tree

is highly heterozygous and characterized by long juvenile

period, it is propagated by vegetative means such as stem

cuttings and bud grafting for commercial cultivation.

Globally, 68 mulberry species have been reported and the

majority of the species occur in Asia. China and Japan

house 24 and 19 species, respectively, while four mulberry

species (M. indica, M. alba, M. laevigata, and M. serrata)

are reported from India. Mulberry occurs in nature with

greater variation at ploidy level and is cultivated under

irrigation system in India. Approximately, 1200 mulberry

accessions including indigenous and exotic accessions are

being conserved at Central Sericultural Germplasm

Resources Centre, India. China stands first in mulberry raw

silk production. India is the second largest producer of

mulberry raw silk and stands first for raw silk consumption.

Mulberry is cultivated in 2.20 lakhs ha in India (Central

Silk Board 2015) and the sustainability of Indian silk

industry is directly correlated with the production and

supply of quality mulberry leaves. However, there is bur-

geoning demand for quality silk at domestic and interna-

tional markets, which cannot be met by horizontal

expansion of mulberry cultivation in traditional agricultural

land, due to competition with other food and cash crops.

Hence, it is imperative to utilize marginal, problematic

soils and non-traditional areas affected by various abiotic

stresses such as alkalinity, salinity and moisture deficit for

mulberry cultivation. Abiotic stress tolerance in plant

system is a polygenic trait and involves interaction among

several genes through signal transduction pathways (Sarkar

et al. 2014; Liu et al. 2015). However, drought or soil

moisture deficit stress is the detrimental abiotic factor and

causes fall of mulberry foliage production immensely. It is

projected that about 20% of land surface is under drought

across the globe at a given point of time (Sarkar et al.

2016). To combat drought stress, a range of drought

adaptation traits such as efficient water conservation, wider

and deeper root system, improved photosynthetic yield,

water use efficiency (WUE) and cellular tolerance need to

be introgressed in mulberry. Other abiotic stresses such as

salinity, alkalinity and frost are also detrimental to pro-

ductivity in various parts of India. In India, salinity-af-

fected area is estimated at 7.61 million ha (Sarkar et al.

2014). The traditional breeding practices, relying on mor-

phological and physiological based phenotyping, have been

successfully utilized in developing drought, alkalinity,

salinity and frost-tolerant productive mulberry varieties

(Susheelamma et al. 1992; Mogili et al. 2008; Vijayan et al.

2009a; Doss et al. 2012). Wild mulberry species such as M.

serrata, M. laveigata and germplasm resources have vig-

orous growth pattern, wider adaptability to harsh

environments and palatability to silkworm (Saeed et al.

2016a). However, the abiotic stress adaptive traits of wild

species are yet to be introgressed into cultivated mulberry

variety for commercial exploitation. In this background,

the present review discusses omics approach, molecular

breeding, plant tissue culture and genetic engineering

techniques exploited for mulberry genetic improvement,

especially for abiotic stress tolerance.

Marker-assisted breeding in accelerating mulberry
genetic improvement programmes

Molecular markers found its applications in studies on

genetic diversity, molecular characterization of germplasm

and varieties, development of linkage and QTL map,

association mapping, parental selection schemes and mar-

ker-assisted selection (MAS) of mulberry progenies

(Khurana and Checker 2011; Vijayan et al. 2014). RAPD

was the first molecular marker used in mulberry (M. alba)

for molecular systematics (Xiang et al. 1995). Subse-

quently, this marker has been used in various studies for

analyzing the extent of genetic diversity and selection of

parental lines for trait improvement in mulberry (Feng

et al. 1996; Lou et al. 1998; Bhattacharya and Ranade

2001; Naik et al. 2002, 2013, 2015; Zhao and Pan 2002;

Awasthi et al. 2004; Mishra et al. 2013; Banerjee et al.

2016). Dominant markers such as ISSR (Vijayan et al.

2004a, 2006; Zhao et al. 2006, 2007a; Kar et al. 2008),

DAMD (Bhattacharya and Ranade 2001), AFLP (Sharma

et al. 2000; Wang and Yu 2001; Kafkas et al. 2008) were

also used for phylogenetic analysis, germplasm character-

ization, DNA fingerprinting, analysis of genetic fidelity of

in vitro regenerated plants and determining genetic varia-

tions across the mulberry genotypes (Vijayan et al. 2014;

Saha et al. 2016). Important co-dominant markers such as

genic-SSR (Krishnan et al. 2013; Arora et al. 2014; Thu-

milan et al. 2016), genomic-SSR (Aggarwal et al. 2004;

Zhao et al. 2005, 2007a; Pinto et al. 2012; Thumilan et al.

2013; Krishnan et al. 2013), SRAP (Zhao et al. 2009) have

been used not only to analyze the extent of genetic diver-

sity in cultivated and wild mulberry spp., but also to

identify its route of introduction and spreading in India.

Very often, combination of multiple marker types such as

RAPD and ISSR, or dominant and co-dominant markers

have been used in germplasm characterization for better

coverage of mulberry genome as compared to using single

marker type (Vijayan et al. 2004a; Zhao et al. 2007a)

(Table 1). With the advancement of molecular biology and

genomic tools, the genomic- and genic-SSR (microsatel-

lite) markers have been isolated from genomic clones and

EST sequences of mulberry and these markers also showed

transferability to other related species belonging to the
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family Moraceae, such as fig, ficus and jackfruit (Thumilan

et al. 2013, 2016). The dominant (RAPD and ISSR) and co-

dominant (SSR) markers have been exploited for the

development of linkage maps, QTL maps and marker trait

association analysis in mulberry (Mishra and Dandin 2010;

Naik et al. 2014).

Table 1 List of molecular markers used for marker-assisted breeding and clonal propagation in Morus spp. during last 10 years

Sl.

no.

Marker type Purpose Country References

1. RAPD Genetic variability and phylogenetic relationship among 15 white mulberry

genotypes

Turkey Orhan et al. (2007)

2. ISSR Genetic diversity among 66 local varieties belonging to 8 populations China Zhao et al. (2007b)

3. ISSR and

SSR

Genetic diversity among 27 mulberry accessions including 19 cultivated and 8 wild

accessions

China Weiguo et al.

(2007)

4. ISSR Phylogenetic relationship among 18 germplasm collection and association with

biochemical parameters

India Kar et al. (2008)

5. AFLP Genetic variability among 43 accessions belonging toM. alba,M. nigra and M. rubra Turkey Kafkas et al. (2008)

6. ISSR Genetic diversity among ecotypes China Zhao et al. (2008)

7. RAPD Molecular characterization of inter and intra-specific hybrids India Tikader and

Dandin (2008)

8. AFLP DNA fingerprinting of ten cultivars China Huang et al. (2009)

9. ISSR and

RAPD

Association with sprouting and sex expression traits India Vijayan et al.

(2009b)

10. SRAP Genetic diversity among 23 mulberry germplasm accessions from China Republic of

Korea,

China

Zhao et al. (2009)

11. RAPD Phylogenetic relationship among 47 genotypes Turkey Ozrenk et al.

(2010)

12. ISSR Genetic diversity among 73 local mulberry varieties for development of core

collection

China Lin et al. (2011)

13. RAPD Genetic variability among control and ethyl methane sulphonate (EMS) treated

clones of mulberry genotype RFS135

India Anil Kumar et al.

(2012)

14. RAPD and

ISSR

Genetic diversity and phylogenetic relatedness among 20 mulberry varieties India Chikkaswamy and

Prasad (2012)

15. RAPD and

ISSR

Genetic diversity among 20 mulberry varieties India Chikkaswamy et al.

(2012)

16. RAPD and

ISSR

Genetic diversity among 21 mulberry genotypes collected from 4 geographic regions

of Turkey

Turkey Ipek et al. (2012)

17. RAPD Genetic diversity among 36 genotypes collected from South India India Naik et al. (2013)

18. RAPD, ISSR

and SSR

Standardization of novel and efficient DNA extraction protocol India Anuradha et al.

(2013)

19. SSR Genetic diversity among ten accessions belonging to M. alba and M. indica Kenya Wangari et al.

(2013)

20. SSR Phylogenetic relatedness among 17 mulberry genotypes India Wani et al. (2013)

21. RAPD and

ISSR

Genetic stability of cryo-preserved dormant buds of different Morus species

belonging to indigenous and exotic collection

India Choudhary et al.

(2013)

22. SSR Genetic diversity among 36 mulberry genotypes (‘breeders’ collections) India Krishnan et al.

(2013)

23. RAPD Genetic diversity among nine mulberry genotypes with contrasting traits for water

use efficiency (WUE) and root

India Mishra et al. (2013)

24. RAPD, ISSR

and SSR

Genetic diversity among 850 germplasm accessions collected from 23 countries for

development of core collection of diverse accessions

India Guruprasad et al.

(2014)

25. SSR Genetic diversity among 72 germplasm accessions belonging to two wild species

such as M. laevigata and M. serrata collected from different eco-geographic

regions of India

India Naik et al. (2015)

26. RAPD and

ISSR

Genetic fidelity of in vitro regenerated mulberry plants (cv. S1) India Saha et al. (2016)
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A two-way pseudo-testcross mapping strategy has been

adapted in many tree species for construction of genetic

linkage maps. This strategy is applicable to the highly

heterozygous plant species in which DNA markers segre-

gate in 1:1 ratio in its F1 mapping population, because

many alleles are present in only one copy in one parent

(Thumilan et al. 2016). The first genetic linkage map was

developed in mulberry adapting two-way pseudo-testcross

mapping strategy, with 50 F1 full-sib progenies (mapping

population) of S36 9 V1 cross using RAPD, ISSR and

genomic-SSR markers (Venkateswarlu et al. 2006).

Attempts were made to develop QTL maps that are specific

for important agronomic traits such as WUE, root traits and

yield contributing traits in mulberry, using dominant

markers such as RAPD and ISSR; few markers showed

linkage to the QTLs governing the trait of interest (Naik

et al. 2014; Mishra 2014). However, the genetic linkage

map needs further saturation for identification of tightly

linked markers to the QTLs. Furthermore, introgression

lines with improved WUE and root traits have been

developed from a cross of Dudia White 9 MS3 and these

lines could be used for validating QTLs associated with

drought adaptive traits and as a pre-breeding resource

(Mishra 2014). Recently, 134 genomic- and drought

adaptive trait-specific genic-SSR markers have been used

to develop genetic linkage map using pseudo-testcross

mapping strategy in F1 bi-parental mapping population

(full-sib, 150 progenies) of Dudia White 9 UP105 cross;

however, linkage between the markers and trait of interest

is yet to be determined (Thumilan et al. 2016). The details

of molecular maps developed in mulberry are presented in

Table 2. Although molecular markers linked to QTLs

governing phenotypic traits have been mapped using bi-

parental mapping populations, identification of tightly

linked markers for the specific traits is still scanty (Mishra

2014; Naik et al. 2014). The linked markers need to be

validated in the other unrelated mapping populations to

detect accurate association with the particular phenotypic

trait. The QTL map further needs to be saturated with most

abundant co-dominant marker resources (SNPs) for iden-

tification of tightly linked markers to the QTLs responsible

for a phenotypic trait variation, and the tightly linked co-

dominant markers could be used in MAS in mulberry

breeding programmes (Naik et al. 2014). In addition to the

saturated linkage map, physical map also needs to be

developed for understanding the architecture of mulberry

genome, which can open up the avenue for map-based

cloning of candidate genes linked to a phenotypic trait of

interest. Marker-trait association analysis is an important

genomic tool in tree species, which helps in identifying

candidate genes responsible for phenotypic trait variations

in a natural population. Genome-wide association study

(GWAS) or gene scan is an important aspect of association

mapping, which surveys genetic variation in whole-gen-

ome level to locate candidate genes or narrow genomic

regions (QTLs) with significant statistical association with

a particular phenotypic trait. SNPs are the most abundant

polymorphism present in the genome of mulberry, and their

identification and validation help in the analysis of the

traits related to abiotic stress tolerance through GWAS and

QTL mapping strategies (Vijayan 2010; Khurana and

Checker 2011). Genotyping-by-sequencing (GBS)

approach is required to be integrated with mulberry geno-

mic research to generate large number of SNPs to be used

in QTL and linkage disequilibrium (LD) mapping. Com-

bined approaches of linkage and association mapping can

accelerate the progress of QTLs identification and MAS in

mulberry genetic improvement programmes (Fig. 1).

Genetic engineering in mulberry for abiotic stress
tolerance

Plant tissue culture technique has numerous applications

(Vijayan et al. 2011; Khurana and Checker 2011) in

micropropagation (Ohyama and Oka 1976; Kim et al.

Table 2 Molecular maps developed in mulberry

Sl.

no.

Molecular map Pedigree of mapping

population

Markers Hereditary nature of

marker

Agronomic trait

targeted

References

1. Genetic linkage

map

S36 9 V1 RAPD, ISSR, and

SSR

Dominant, co-

dominant

No Venkateswarlu et al.

(2006)

2. QTL map V1 9 Mysore Local RAPD and ISSR Dominant Yield contributing

traits

Naik et al. (2014)

3. QTL map Himachal Local 9 MS3 RAPD and ISSR Dominant Water use

efficiency

Mishra (2014)

4. QTL map Dudia White 9 UP RAPD and ISSR Dominant Root traits Mishra (2014)

5. Genetic linkage

map

Dudia White 9 UP105 SSR Co-dominant No Thumilan et al. (2016)
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1985; Hossain et al. 1992; Bhau and Wakhlu 2003; Chat-

topadhyay et al. 2011; Zaki et al. 2011), organogenesis

through callus phase (Narayan et al. 1989); screening of

genotypes for salinity, alkalinity and drought stress toler-

ance under in vitro condition (Hossain et al. 1991; Tewary

et al. 2000; Vijayan et al. 2003, 2004b; Ahmad et al. 2007).

Plant tissue culture techniques also helped in the devel-

opment of triploid mulberry from endosperm culture

(Thomas et al. 2000), development of gynogenic plant

from ovary (Lakshmi Sita and Ravindran 1991; Thomas

et al. 1999), production of somaclonal variants for stress

tolerance (cv. SV1) and improved yield contributing traits

(Narayan et al. 1989; Susheelamma et al. 1996). Although

initial progress has been achieved in androgenesis through

anther culture (Shoukang et al. 1987; Jain et al. 1996), but

significant success in developing haploid plants has not yet

achieved. Similarly, experiments on protoplast culture and

somatic hybridization were successful (Ohnishi and Tanabe

1989; Ohnishi and Kiyama 1987; Umate et al. 2005; Umate

2010), but practical realization of these techniques is yet to

be achieved.

Mulberry is a highly heterozygous, out-breeding, tree

species; its cellular totipotency or in vitro regeneration

potential is highly genotype dependent (Raghunath et al.

2013). However, irrigated mulberry genotypes such as

Sujanpur5, S13, S799, K2, V1, AR12, DD and S36 were

responsive to regeneration and whole plantlets were

developed using various type of explants (Vijayan et al.

2000; Kapur et al. 2001; Raghunath et al. 2008, 2013; Rao

et al. 2010a; Chitra et al. 2014) (Table 3). The success of

genetic transformation is very much dependent on regen-

eration potential, choice of explant (Sarkar et al. 2016) and

Agrobacterium strains to be used in the experiments

(Bhatnagar and Khurana 2003). Plant regeneration and

genetic transformation have been attempted in mulberry

since long time ago (Kim et al. 1985; Machii 1990; Machii

et al. 1996; Kapur et al. 2001). However, genetic trans-

formation of mulberry with heterologous genes through

Fig. 1 Integrated approaches of plant tissue culture, genomic and molecular biology tools for improving abiotic stress tolerance in mulberry
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various techniques such as particle bombardment,

Agrobacterium rhizogenes-mediated, electroporation and

in planta has been reported (Sugimura et al. 1999; Oka and

Tewary 2000; Machii 1990; Machii et al. 1996; Bhatnagar

et al. 2002). Most of these experiments not only failed to

regenerate plantlets, but also did not show transgene

integration in mulberry genome (Bhatnagar and Khurana

2003). Transgenic mulberry expressing glycinin gene

AlaBlb was developed through tissue culture (Jianzhong

et al. 2001). In planta, genetic transformation has been

successfully attempted in mulberry genetic improvement

programme (Ping et al. 2003). Subsequently, an efficient

Table 3 List of mulberry (Morus spp.) plantlets regenerated from explants through organogenesis since last decade

Sl.

no.

Explants Genotype/cultivar Species Country Type of

organogenesis

References

1. Leaf S1 M. alba India Direct

organogenesis

Vijayan et al.

(2000)

2. Leaf, petiole, intermodal segment Chinese White, Kokuso27 M. alba India Through callus

phase

Bhau and Wakhlu

(2001)

3. Leaf, hypocotyl, cotyledon, petiole,

intermodal segment

K2, DD M. indica India Direct

organogenesis

Bhatnagar et al.

(2001)

4. Nodal explant M5, S36, S13, China White M. indica

M. alba

India Direct

organogenesis

Chitra and

Padmaja

(2002)

5. Nodal explant – M. latifolia Taiwan Direct

organogenesis

Lu (2002)

6. Nodal explant, shoot tips China White, Kokuso27, Ichinose

Goshoerami, Rokokuyaso

M alba

M.

multicaulis

India Direct

organogenesis

Bhau and Wakhlu

(2003)

7. Shoot tip, nodal explant – M. alba India Direct

organogenesis

Anis et al. (2003)

8. Cotyledon S36, K2, S1 M. indica

M. alba

India Direct

organogenesis

Thomas (2003)

9. Leaf M5, S13, S36 M. indica India Direct

organogenesis

Chitra and

Padmaja

(2005)

10. Leaf-derived protoplast S36 M. indica India Through callus

phase

Umate et al.

(2005)

11. Apical bud S54 M. indica India Direct

organogenesis

Kavyashree

(2007)

12. Nodal segment – M. alba India Direct

organogenesis

Balakrishnan

et al. (2009)

13. Nodal segment S36, V1 M. indica India Through callus

phase

Rao et al. (2010b)

14. Nodal segment – M. nigra India Direct

organogenesis

Zaki et al. (2011)

15. Nodal segment S1 M. alba India Direct

organogenesis

Chattopadhyay

et al. (2011)

16. Nodal segment V1 M. indica India Direct

organogenesis

Sajeevan et al.

(2011)

17. Nodal segment – M.

macroura

Pakistan Direct

organogenesis

Akram and Aftab

(2012)

18. Nodal segment S1635 M. indica India Direct

organogenesis

Lalitha et al.

(2013)

19. Leaf V1 M. indica India Direct

organogenesis

Raghunath et al.

(2013)

20. Shoot meristem S36 M. indica India Direct

organogenesis

Chitra et al.

(2014)

21. Nodal explant S1 M. alba India Direct

organogenesis

Saha et al. (2016)
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and reproducible protocol with 6% transformation fre-

quency has been used to develop transgenic mulberry cv.

K2 through Agrobacterium tumefaciens-mediated genetic

transformation. Various explants such as hypocotyl, cotyle-

don, leaf and leaf callus have been utilized for the transfor-

mation experiment, but leaf callus was found to be the choice

of explants for regeneration of transgenic plants (Bhatnagar

and Khurana 2003). Recently, various abiotic stresses-asso-

ciated functional genes have been introduced in the mulberry

cv. K2 with an appreciable transformation efficiency

(20–60%) using cotyledon and hypocotyl explants (Table 4).

Heterologous single action genes such as b-carotene

hydroxylase1 (bch1), Hva1 (a group 3 late embryogenesis

abundant protein) and Osmotin have been introduced in

diploid mulberry cv. K2 and the transgenes expression were

regulated by constitutive (Actin1, CaMV 35S) and stress

inducible (rd29A) promoters (Lal et al. 2008; Das et al. 2011;

Checker et al. 2012a; Saeed et al. 2015). Southern blot assay

showed one to two copies (s) of heterologous Hva1 gene

insertion in mulberry genome and its expression was ascer-

tained by northern blot analysis (Lal et al. 2008), Western

blotting and qPCR (Checker et al. 2012a). The Hva1

expression also regulated downstream genes associated with

stress tolerance such as chaperoneMi dna J andMi 2-cysper-

oxidin under stress condition. Barley Hva1 expression in

transgenic mulberry showed tolerance to drought, salinity

and cold stress due to enhanced cellular tolerance, photo-

synthetic yield, efficient water conservation under stress

condition (Lal et al. 2008; Checker et al. 2012a). Bioassay

with silkworm indicated normal growth and development of

larvae and produced cocoons on par with non-transgenic

mulberry after completion of silkworm rearing (Lal et al.

2008). In another study, the expression of tobacco Osmotin

gene, driven by CaMV35S promoter, conferred transgenic

mulberry with tolerance to both abiotic stress and also biotic

challenges (mostly fungal pathogens). Furthermore, when the

expression of Osmotin gene was driven by rd29A promoter,

transgenic mulberry showed drought and salinity tolerance

due to improved membrane stability, osmolytes synthesis

and photosynthetic yield (Das et al. 2011). Heterologous

expression of SHN1 (wax inducer1/SHINE1) in transgenic

mulberry showed dark green shiny appearance of leaf with

increased surface wax content. The SHN1transgenic mul-

berry (cv. M5) showed better leaf moisture retention capacity

as compared to wild type (Sajeevan et al. 2017). Overex-

pression of bch1 gene from M. indica in mulberry cv. K2

showed higher levels of carotenoids and improved oxidative

stress (such as high light, heat and UV irradiation) tolerance

as compared to non-transgenic plant under non-stress and

stress conditions (Saeed et al. 2015) which has paved the

way to cisgenic approach for enhancing climate resilience in

mulberry (Fig. 1).

Genomics and transcriptomics for identification
of novel genes and comprehensive marker
resources

High-quality genomic and transcriptomic data generated

through next generation sequencing (NGS) platforms pro-

vided wealth of information of novel candidate genes and

comprehensive molecular markers, thus enhancing the

scope for trait-specific genetic improvement in mulberry in

terms of productivity, quality and climate resilience. The

whole-genome shotgun sequencing of haploid mulberry

species (M. notabilis) reported a draft genome of 357 Mb

including 128 Mb repetitive sequences with 27,085 high-

confidence protein coding loci in tandem with complete

gene structure (He et al. 2013). At present, a total of

101,850 nucleotides, 38 whole-genome and transcriptome

sequences are available for Morus spp. on the NCBI

website (http://www.ncbi.nlm.nih.gov, accessed on April 8,

2017) (Supplementary Table S1).

Transcriptome resources from the cultivated, wild and

haploid mulberry species could be used in genes and

markers identification. The 21 Gb RNA-seq data from five

tissues (root, bark, winter bud, male flower and leaf) of M.

notabilis depicted 5833 unique ESTs (expressed sequence

tag) for further gene model prediction and validation. Five

mulberry miRNAs are found in hemolymph and silk gland

of silkworm that indicate the plant–herbivore relationship

at molecular level (He et al. 2013). Morus Genome Data-

base (MorusDB), a web-based, open-access database and

also a workbench that is assigned to enable access to large-

scale genomic sequences, transcriptomic data, predicted

genes and unigenes, functional annotation, ESTs, and

transposable elements. This database also sheds light on

horizontal genes transfer between mulberry and silkworm,

orthologous and paralogous genes (Li et al. 2014; Krishnan

et al. 2014). A total of 217, 312 and 961 microsatellite

(SSR) were mined from whole-genome sequence and EST

sequences ofMorus notabilis that could find applications in

molecular breeding programmes (Krishnan et al. 2014).

Comparative transcriptomics analysis of M. laevigata

and M. serrata leaves showed 24,049 simple sequence

repeats (SSRs), 1,201,326 single nucleotide polymor-

phisms (SNPs) and 67,875 insertion–deletions (InDels). In

the light of transcriptome data, comparative expression

analysis of stress inducible genes such as Heat Shock

Factor 4, Protein HVA22-Like, Aquaporin PIP1; 2 in M.

laevigata, M. serrata and M. indica showed genotype-

specific differential expression under drought, salinity and

cold stress (Saeed et al. 2016a). Transcriptome data of

drought-tolerant mulberry genotype Dudia White, upon

exposure to drought stress, generated 10,169 EST

sequences. A total of 206 SSR markers were developed
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from these ESTs and validated in 25 mulberry accessions

(Thumilan et al. 2016). Similarly, SSR markers have also

been identified from ESTs of root and leaf transcriptomes

of Morus spp. by in silico approach (Gulyani and Khurana

2011; Checker et al. 2012b; Wang et al. 2014a; Dai et al.

2015). In another study, 222 genomic-SSR and 136 genic-

SSR have been identified and characterized from genomic

clones and ESTs of M. alba genome (Thumilan et al.

2013). At present, 248 genomic-SSR and 490 genic-SSR

(EST-SSR) primers have been designed in mulberry and

could be used in marker-assisted breeding programmes

(Supplementary Table S2).

Transcriptome data and de novo assembly not only

provide large volume of information on protein of known

function (PKF) and proteins for secondary metabolic pro-

cess based on GO (gene ontology) annotation and the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway mapping, but also generate data on PUFs, proteins

of unknown function (Lal et al. 2009; Gulyani and Khurana

2011; Dai et al. 2015). Leaf transcriptome of drought stress

M. alba cv. Dudia White showed large number of PUFs

(Dhanyalakshmi et al. 2016). A sequence and structure-

based computational analysis model that designated as

PUFs Annotation Server (PUFAS) was assigned to function

to the PUFs (http://caps.ncbs.res.in/pufas/) that can be used

to assign function to PUFs from other plant species. The

expression analysis of three annotated PUFs revealed their

potential role in stress acclimation pathways (Dhanyalak-

shmi et al. 2016).

Chloroplast genome analysis helps plant taxonomists in

identification of easy-to-use species-specific DNA barcode

catalog that paves the way for evolutionary studies in

mulberry (Ravi et al. 2008). The complete chloroplast

genome of M. indica cv. K2 was sequenced, and compar-

ative genome analysis showed its phylogetic relatedness to

Cucumis and Lotus spp. (Ravi et al. 2006), while the

chloroplast genome of M. notabilis showed similarity to M.

indica and M. mongolica (Chen et al. 2015).

Generation of ESTs and molecular
characterization of functional genes

Genomic and molecular biology tools generate valuable

information and help in identification of potential ESTs,

candidate genes and molecular markers based on molecular

mechanism of stress tolerance through GO terms and

KEGG pathway mapping. This genomic toolbox is con-

sidered as an entry point for targeted genetic manipulation

by incorporation of heterologous genes and trait-specific

introgression of beneficial QTLs conferring stress tolerance

in mulberry (Fig. 1). The ESTs developed from cDNA

clones and unigenes, derived from transcriptome of Morus

spp., were functionally categorized based on GO annota-

tion and KEGG pathway mapping into protein metabolism,

transport, secondary metabolite synthesis, response to

abiotic stress, energy metabolism, photosynthesis, disease

and pest resistance (Lal et al. 2009; He et al. 2013; Wang

et al. 2014a; Dai et al. 2015). Suppression subtractive

hybridization of drought susceptible mulberry cv. K2 and

tolerant cv. AR12 led to the identification of drought-reg-

ulated genes and generation of large number of ESTs

(Gulyani and Khurana 2011). The sets of genes coding for

abiotic stress-related and wax biosynthesis-associated

proteins were functionally validated by expression studies

through qPCR, Northern Blotting and cDNA macroarray

(Gulyani and Khurana 2011; Das et al. 2013; Wang et al.

2014b; Mamrutha et al. 2017).

Genome-wide scanning of gene super-family helps in

identification and functional annotation of its components

and in establishing evolutionary relationship (Baranwal

et al. 2016). Fifty-four genes with conserved WRKY motifs

and 197 lectin genes have been identified in M. notabilis

and these genes showed their preferential expression in

various tissues (Baranwal et al. 2016; Saeed et al. 2016b).

The WRKYs in mulberry species showed genotype-specific

expression in response to various stress treatments.

Molecular cloning and characterization of Helix–Loop–

Helix-144 (bHLH144), Remorin (REM), Early Responsive

to Dehydration15 (ERD15) and Nitrite Reductase (NiR)

genes have assigned their functions in abiotic stress toler-

ance and in vitro regeneration potential (Checker and

Khurana 2013; Wang et al. 2014b; Sajeevan and Nataraja

2016; Saeed and Khurana 2016). Cloning and molecular

characterization (gain-of-function) of Mibch1 gene in

mulberry lead to the development of abiotic stress-tolerant

cisgenic plants (Lal et al. 2009; Saeed et al. 2015).

DREB4A gene that codes for a transcription factor has been

isolated from M. notabilis genome. Heterologous expres-

sion of MnDREB4A in transgenic tobacco conferred tol-

erance to high temperature, cold, drought and salt stresses

(Liu et al. 2015). Hence, novel genes from mulberry could

be used for genetic manipulation in other crops for multiple

stress tolerance and trait improvement (Fig. 1).

Conclusions and future perspectives

Mulberry is an economically important plant due to its role

in the World economy particularly silk industry. Tradi-

tional breeding methods are time-consuming and long-

drawn programmes, however, contributed significantly for

the development of superior mulberry varieties with

improved foliage yield, quality and stress tolerance.

However, abiotic stresses form major constraints for ver-

tical and horizontal expansion of mulberry cultivation not
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only in India but also across the globe. Emerging genomic

and molecular biology tools such as genetic engineering,

functional genomics, and marker-assisted breeding have

been attempted to accelerate the breeding process, but their

full potential is yet to be materialized. Each abiotic stress

tolerance is polygenic in nature and regulated by signal

transduction pathway, so molecular mechanism of targeted

abiotic stress tolerance needs to be dissected utilizing high-

throughput reverse genetic approaches such as RNA

interference (RNAi) and virus-induced gene silencing

(VIGS) (Fig. 1). Recently, genome editing tool such as

clustered regulatory interspaced short palindromic repeats

(CRISPR)/CRISPR-associated nuclease 9 (Cas9) systems

(CRISPER/Cas9) has been used to introduce targeted

mutagenesis in the genome and functional characterization

of candidate genes in various crops (Rani et al. 2016). This

genome editing system can be explored in mulberry to

unravel molecular basis of abiotic stress tolerance.

Although, researches on metabolome and proteome are in

their infancy for mulberry, these omic approaches could be

integrated with transcriptomic and genomic studies to

identity and characterize novel genes involved in abiotic

stress signaling and secondary metabolite biosynthesis

pathways (Khurana and Checker 2011). Furthermore,

epigenomic study in mulberry could shed light on epige-

netic mechanism of gene expression, regulated by DNA

methylation, histone post-translational modifications and

RNAi pathway (small non-coding RNAs). The epigenetic

mechanism involves in various aspects of life in plant

including agronomically important traits and responses to

abiotic stress (Schmitz and Zhang 2011).

Mulberry germplasm collection including wild spp.

shows extensive genotypic and phenotypic variations for

important agronomic traits and could be utilized in crop

breeding programmes, thus forming valuable genetic

resources for trait pyramiding with the help of tightly

linked molecular markers. Transgenic mulberry lines for

various abiotic stress tolerance traits have been developed

and need to be evaluated under real field conditions for

further exploitation, which might be fraught with regula-

tory issues. However, there is a need to simplify the pro-

cess of biosafety regulations for urgent realization of

transgenic crops under field conditions (Mishra et al. 2017).

The physical and genetic linkage maps along with key

QTLs for important agronomic traits need to be analyzed

further.Morus genomic and transcriptomic data, genic- and

genomic-SSRs, SNPs and InDel markers will fuel the

endeavors of mapping of expression QTLs (eQTLs) and

genes to linkage maps and LD maps (Khurana and Checker

2011). The identification of linked markers or candidate

genes will facilitate MAS in breeding programmes for

genetic improvement. Transcriptome analysis deciphers the

role of candidate genes in stress tolerance and could trigger

the impetus for developing improved stress-tolerant variety

by genetic engineering. Integrated approaches utilizing

advanced genomic tools, with more funds in tandem with

conventional breeding methods, could be the necessary

steps towards mulberry genetic improvement programmes

to enhance its productivity and adaptability to climate

change for sustaining silk industry.
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