Skip to main content
. 2017 Jun 30;5:e3508. doi: 10.7717/peerj.3508

Table 4. Experiments to assess of prediction accuracy of episodix using linear regression, random forest and support vector machines.

Linear regression Random forest Support vector machine
Precision F1 Sensitivity (Recall) Specificity Precision F1 Sensitivity (Recall) Specificity Precision F1 Sensitivity (Recall) Specificity
Episodix [80%–20%] executions = 5 0.73 0.70 0.68 0.83 0.75 0.50 0.38 0.92 0.29 0.25 0.22 0.55
Episodix [80%–20%] executions = 100 0.42 0.40 0.39 0.57 0.74 0.69 0.65 0.82 0.40 0.41 0.41 0.51
Episodix [100%] 0.58 0.56 0.54 0.44 0.69 0.76 0.85 0.44 0.55 0.50 0.46 0.44
Episodix [best 50%] 0.58 0.56 0.54 0.44 0.69 0.76 0.85 0.44 0.57 0.59 0.62 0.33
Episodix (best %) LR (best %) = 5%–6% RF (best %) = 12.5% 0.92 0.88 0.85 0.89 0.86 0.89 0.92 0.78 0.79 0.81 0.85 0.67
Episodix +CVG [100%] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.83 0.77 0.90
Episodix +CVG [best 50%] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.83 0.81 0.83
Episodix +CVG (best %) LR (best %) = 50% RF (best %) = 10% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.83 0.77 0.90

Notes.

Higher quality, when accuracy values were closer to the unit.

CVG
cognitive video games during break of Episodix (similar to the break of CVLT)