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ABSTRACT

Telomerase replicates chromosome ends, a function
necessary for maintaining genome integrity. We have
identified the gene that encodes the catalytic reverse
transcriptase (RT) component of this enzyme in the
malaria parasite Plasmodium falciparum (PfTERT) as
well as the orthologous genes from two rodent and
ohe simian malaria species. PfTERT is predicted to
encode a basic protein that contains the major
sequence motifs previously identified in known
telomerase RTs (TERTs). At ~2500 amino acids,
PfTERT is three times larger than other characterized
TERTs. We observed remarkable sequence diversity
between TERT proteins of different Plasmodial spe-
cies, with conserved domains alternating with hyper-
variable regions. Immunofluorescence analysis
revealed that PITERT is expressed in asexual blood
stage parasites that have begun DNA synthesis.
Surprisingly, rather than at telomere clusters,
PfTERT typically localizes into adiscrete nuclear com-
partment. We further demonstrate that this compart-
ment is associated with the nucleolus, hereby defined
for the first time in P.falciparum.

INTRODUCTION

Telomeres are nucleoprotein complexes that protect chromo-
some ends from degradation and fusion. In most eukaryotes,

DDBJ/EMBL/GenBank accession nos*™

telomeric DNA consists of tandem arrays of short G-rich
repeats that are maintained by telomerase, an RNA-
dependent DNA polymerase. Loss of telomerase activity
leads to a gradual shortening of telomere length, resulting
in growth arrest and eventually senescence (1-3). The core
components of telomerase enzyme consist of a catalytic
protein component, called telomerase reverse transcriptase
(TERT), and an RNA molecule that serves as an internal
template from which repeats are copied to the 3’ end of the
telomere G-rich strand. Other proteins have been identified
that associate with telomerase and, some at least, are required
for its action in vivo (4,5).

TERT was first purified from the ciliate Euplotes aediculatus
(1). By sequence homology, other TERTs were subsequently
identified, such as ciliates (6,7) and diplomonads (8), several
yeasts (9—-11), plants (12) and animals, including humans
(10,13) and mouse (14). All TERTs contain telomerase-
specific motifs within the N-terminal half of the protein (GQ/
N, CP, QFP and T) and RT-specific motifs in the C-terminal half
(1,2 and A-E; Figure 1) (1,8,15,16). The RT domain of TERT is
essential for catalytic activity, whereas the N-terminal half is
required for efficient binding of the RNA template, defining the
5" RNA template boundary, multimerization and interactions
with associated proteins [reviewed in (17)].

Telomerase is developmentally regulated in higher euka-
ryotes (18). In a human being, telomerase activity is undetect-
able in most somatic tissues. Interestingly, telomerase activity
is detectable in the germline and in highly proliferative cells of
renewal tissues, such as bone marrow progenitor cells and
intestinal mucosa (19). Telomerase is necessary for the
unlimited proliferation of human somatic cells in vitro (20).
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These observations along with the prevalence of telomerase
expression in human cancers, makes telomerase an attractive
candidate for cancer therapy [reviewed in (21)].

Human malaria is re-emerging as one of the world’s most
lethal infections. In tropical regions of the globe, 300 million
people are infected and of those 1-2 million are killed annually
(WHO, 1998, Malaria, http://www.who.int:inj-fs/en/fact094.
html). It is caused by intracellular protozoa of the genus
Plasmodium, of which Plasmodium falciparum is the most
virulent species. P falciparum is transmitted from one person
to another by the Anopheles mosquito. After a short hepatic
stage, parasites are released into the bloodstream of the host,
where they infect erythrocytes. Massive proliferation of the
blood stage parasites causes the clinical symptoms [reviewed
in (22)]. Although several anti-malarial drugs exist, resistance
is becoming a major problem, and there is an urgent need for
new therapeutics (23).

The haploid nuclear genome of P.falciparum is ~30 Mb in
size and is organized in 14 linear chromosomes [reviewed in
(24)]. The ends of the chromosomes consist of a tandem array
of a degenerate G-rich heptamer, most frequently GGGTT
(T/C)A (25). The mean telomere length is ~1.2 kb and is
maintained at a constant size during blood-stage proliferation
(26). Analysis of nuclear architecture reveals that chromosome
ends form clusters of 4-7 telomeres that localize around the
nuclear periphery (27). This arrangement was proposed to
facilitate gene conversion events between the sub-telomeric
regions of heterologous chromosomes. As a result, there is
a continuous sequence diversification among gene families
coding for surface antigens, which promotes the generation
of new antigenic and adhesive phenotypes.

P falciparum telomeres are partially organized in a non-
nucleosomal structure (26), suggesting that specific proteins
may constitute the telomeric chromatin. In yeast and humans,
numerous proteins have been shown to interact directly or
indirectly with telomeric DNA [for a review see (28)]. In
P falciparum, several putative homologues of known
telomeric-specific proteins have been identified and are cur-
rently being characterized (29). Telomerase activity has been
detected in semi-purified nuclear extracts of P.falciparum
blood stages (30). Furthermore, it was shown that
P falciparum telomerase can be used as a substrate oligo-
nucleotide that mimic not only telomeric sequences, but
also chromosome breaks, suggesting that this enzyme contrib-
utes to telomere maintenance and to the de novo telomere
formation necessary to repair broken chromosomes.

Plasmodial telomerase is likely to be necessary to maintain
telomeres at a constant length during the highly replicative
stages of the parasite’s life cycle, such as the bloodstream
stages. We hypothesize that drugs that block telomerase
activity would induce telomere shortening, chromosome
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loss and eventually death of the parasite. In the present
work, we report the identification and characterization of a
putative TERT from the human malaria parasite P.falciparum
(PfTERT). We also identified TERT candidate genes from two
murine and one simian Plasmodial species. Using immuno-
localization techniques, PfTERT and telomeres were shown to
localize in different regions of the nucleus. After identifying
the nucleolus as a sub-nuclear compartment in P.falciparum
for the first time, we were able to show that PfTERT generally
localizes within the nucleolar region. The implications of such
spatial segregation are discussed.

MATERIALS AND METHODS
Plasmodium falciparum cultures

Plasmodium falciparum blood stage parasites from the FCR3
strain were cultured as described previously (31). Synchron-
ization of cultures for time-course immunofluorescence (IF)
analysis consisted of two consecutive Plasmagel treatments,
at a 48 h interval, followed by Sorbitol treatment. Parasites
were collected at the beginning of the next cycle (~40 h later).
We estimated that the parasites were synchronized within a
window of ~6 h.

Genome searches and sequence analysis

Genes coding for putative TERTS in Plasmodium species were
obtained using TBLASTN from both NCBI Custom Blast in
Malaria Genetics & Genomics (http://www.ncbi.nlm.nih.
gov/Malaria/Plasmodiumblcus.html) and PlasmoDB (www.
plasmodb.org). To identify the first Plasmodial TERT gene
(PfTERT), motif T and other RT motifs were used as queries.
The PfTERT putative gene has been annotated with the
accession no. chrl3_400065.gen2 in PlasmoDB database
and as GenBank accession no. AX112155. TERT genes from
Plasmodium yoelii (GenBank accession no. AABL01000132)
and Plasmodium knowlesi (PlasmoDB accession no.
Pk_812g03qlc) were found by blasting the entire PfTERT
gene against the relevant database. For Plasmodium berghei,
the best hit was an expressed sequence tag clone (GenBank
accession no. AZ525829). Using oligonucleotides that match
PfTERT, we amplified a larger fragment containing the
putative PhTERT gene. The 3942 bp fragment was cloned
and sequenced. Although it lacks the 3’ end of the open reading
frame (ORF), it spans motifs GQ/N, QFP, T, 1 and 2.

The number of significant large tandem repeats in a gene
was computed with the mreps software [(32), http://www.
loria.fr/mreps/]. This program identifies all maximal repeats
in a given DNA sequence, compares them with the repeats
obtained in simulations of DNA sequences of the same length

Figure 1. Plasmodium TERT proteins contain telomerase conserved motifs. (A) In-scale diagram showing the difference in size of PfTERT and the S.cerevisiae
homologue, Est2p. Grey boxes represent telomerase-specific motifs: GQ/N, CP, QFP and T. Black boxes represent RT motifs. (B) Multiple sequence alignment of the
conserved motifs of all TERT proteins described to date and the four Plasmodium TERT proteins identified in this work: PbTERT (P.berghei), PfITERT
(P falciparum), PKTERT (P.knowlesi) and PyTERT (P.yoelii). For a given position within the alignment, identical or similar amino acids to the consensus sequence
are shaded in black or grey, respectively. Note: The putative C.elegans TERT gene was excluded because it lacks all TERT-specific motifs. Squares mark telomerase-
specific amino acids that are not present in viral RTs; circles indicate amino acids essential for RT activity. The numbers accompanying each protein aligned in
(B) represent the number of amino acids that exist between two motifs, or between a terminal motif and the protein end. When an N- or C-terminus is unknown, the
amino acid distance is shown as ‘xxx’. Motifs CP and T have not been found in G./lamblia and accordingly are absent from these alignments. At, Arabidopsis thaliana;
Ca, Candida albicans; Ea, Euplotes aediculatus; Gl, Giardia lamblia; Hs, Homo sapiens; Mm, Mus musculus; Ot, Oxytricha trifallax; Sc, Saccharomyces cerevisiae;
Sp, Schizosaccharomyces pombe; Tt, Tetrahymena thermophila; X1, Xaenopus laevis; Pb, P.berghei; Pf, P falciparum; PK, P.knowlesi; and Py, P.yoelii.
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and composition and eventually outputs the ones that are stat-
istically relevant.

Construction of motif alignment and phylogenetic tree

Known alignments of the motifs in other characterized species
were used to identify the motifs in the Plasmodium species by
independently using Clustal W and HMMer (33,34). Both
analyses provided similar results. Once identified and aligned,
motifs were manually checked, in order to remove the posi-
tions showing a very large variability (Figure 1).

For each species (except Giardia lamblia and Caenorhab-
ditis elegans), the amino acid sequences of all motifs were
concatenated in order to produce a single continuous sequence.
In P falciparum, for example, this resulted in a concatenated
sequence with 343 amino acids. Phylogenetic trees were con-
structed using PROML from the PHYLIP package (35), using
the JTT model and the Gamma correction with eight discrete
classes. The 1000 bootstraps values were computed using
SEQBOOT and CONSENSE, also from the PHYLIP package
(Figure 3).

To compute the average similarity of P.falciparum TERT
with the other Plasmodium TERTSs, a multiple alignment was
constructed using the entire sequences of the four Plasmodium
species. We then used a 20 amino acid sliding window along the
multiple alignments to score for alignment quality (Figure 2).

Antibodies

Two different sera were produced against distinct regions of
the PfTERT protein. A rabbit serum was obtained by immun-
izing rabbits with C-PfTERT peptide: a 15 amino acid
peptide from the PfTERT C-terminus coupled with keyhole
limpet hemocyanin (KLH) carrier protein (Sigma—Aldrich),
N-CKIKKRLINKYKIGH-C. This peptide corresponds to a

QFP T

region of PfTERT unique to Plasmodium species. A mouse
serum was prepared from the immunization of C129 mice with
a glutathione S-transferase (GST)-fusion protein correspond-
ing to the 220 amino acids that span motifs 1 and 2.

Human autoimmune serum (S63) directed against fibrillarin
(Nopl is the Saccharomyces cerevisiae orthologue) was iden-
tified in the extracts of fibrillarin—green fluorescent protein
human cell line using western-blot analysis. These sera
were found to cross-react with fibrillarin in many species,
including yeast Nopl (36). A rabbit anti-PfNopl serum was
obtained by immunizing rabbits with two synthetic peptides
coupled with KLH, such as N-GRGNKDRKSFKKDNK-C
and N-DLTNMSKKRSNIVPI-C.

Immunofluorescence microscopy

Parasitized erythrocytes from a fresh culture of 8-12% para-
sitemia were centrifuged and washed once in RPMI 1640
(Gibco-BRL) and once in phosphate-buffered saline (PBS)
(0.15 M NaCl and 10 mM sodium phosphate, pH 7.2). Cell
pellets were re-suspended in 5 vol of PBS and a monolayer was
set onto microscope slides as described previously (37). Cells
were air-dried for 30 min and fixed for 10 min at room tem-
perature in freshly prepared 2% paraformaldehyde in PBS.
Slides were blocked for 10 min in PBS 0.1% BSA. Rabbit
anti-PfTERT and human anti-Nop1 sera were diluted 1:200 in
PBS 0.1% BSA and incubated with cells for 1 h. After washing
in PBS 0.1% BSA, cells were incubated for 45 min in a 1:200
dilution of anti-rabbit or anti-human IgG-, fluorescein iso-
thiocyanate- or rhodamine-conjugated antibodies (Sigma).
Slides were washed thoroughly in PBS and mounted in
VECTASHIELD anti-fading with DAPI (4,6-diamidino-2-
phenylindole) (Vector Labs). Images were captured using a
Nikon E800 optical microscope.
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Figure 2. Plasmodium TERTS are highly divergent outside telomerase and RT motifs. Average similarity of PfTERT to PKTERT (blue), Py TERT (green) and
PbTERT (red). Similarity was computed in sliding windows of 20 amino acids over the multiple alignment. A score of 1 means that the 20 amino acids of the window
are identical, whereas O indicates that the sequences do not share a single identical amino acid for a given position within the alignment (either because of substitutions
or insertions/deletions). Above the graphics, the diagram indicates the in-scale position of all motifs in PFTERT protein. The asterisk points to an example of a region
of PfTERT that is highly conserved among Plasmodium TERTS, but where no motif has yet been assigned. The lower panel shows the contribution of each
Plasmodium TERT to the multiple alignments. Note that PyTERT and PbTERT sequences are not complete.



Peptide competition assays were performed to test the spe-
cificity of the anti-PfTERT antibodies. Increasing concentra-
tions of a specific (C-PfTERT) and an unspecific peptide were
added to the serum diluted 1:3 in PBS. The mixture was
incubated overnight in a rotating wheel at 4°C. The following
day, antibody/peptide complexes were diluted 1:70 in PBS, in
order to obtain a final dilution of the serum of around 1:200. IF
assay was carried out as described above. Images were cap-
tured with constant acquisition parameters.

Immunofluorescence combined with in situ
hybridization

Cells were prepared as for standard IF except following fixa-
tion cells were permeabilized in 0.1% NP-40 in PBS for 5 min.
After incubation with primary and secondary antibodies, cells
were post-fixed in 2% paraformaldehyde in PBS for 5-10 min.
Fluorescence in situ hybridization (FISH) was performed as
described previously (37). Hybridization was performed over-
night with 0.5-1 ng/ul of probe in 50% formamide (Roche-
Boehringer), 10% dextran sulfate (Quantum), 2x SSPE and
250 pg/ml herring sperm DNA. The probe used to visualize the
sub-telomeric Rep20 repetitive DNA consists of a 1.4 kb frag-
ment containing ~70 Rep20 units, in which biotin was incor-
porated using the Biotin High-Prime kit (Roche). To detect
biotinylated probes (Rep20), slides were incubated for 30 min
at room temperature with 50 ng/ml of Rhodamine-conjugated
Avidin (Roche).

Ultrastructure analysis

Cells were fixed using 0.1 M glutaraldehyde in phosphate
buffer containing 0.05 M sucrose for 1 h at 4°C. After cent-
rifugation at 8000 g, cells were washed for 10 min in phos-
phate buffer and twice for 10 min in 0.1 M cacodylate buffer.
Post-fixation was performed in 1% osmium tetroxide in caco-
dylate buffer for 1 h, followed by a 30 min washing step in
cacodylate buffer. Cells were washed in 30% methanol for
10 min and stained in 2% uranyl acetate in 30% methanol for
1 h at room temperature. After rinsing in 30% methanol, cells
were dehydrated in a series of increasing concentrations of
methanol (30-100%). Dehydrated cells were washed twice in
propyl oxide and embedded in Epon 812 (Polysciences). Ultra-
thin sections were cut with a Leica UltraCut UCT. Cuts were
post-stained with uranyl acetate and Reynold’s lead citrate.
Observations were made on a Jeol 1200 EX II at 80 kV accel-
erating voltage electron microscope.

Immuno-electron microscopy

Cells were fixed for 1 h at 4°C in 4% paraformaldehyde in
phosphate buffer. After washing in phosphate buffer twice for
5 min, cells were incubated for 30 min at room temperature in
0.25% NH,CI in phosphate buffer in order to inactivate resid-
ual aldehyde groups. Cells were washed twice in phosphate
buffer and finally embedded in 10% gelatin buffer on ice.
Specimens were next infused in 1.7 M sucrose + 15%
polyvinylpirrolidone for at least 4 h at 4°C. Small blocks
(1 mm®) were cryofixed by immersion in liquid nitrogen at
—196°C and by adding substitution medium in an automate
freeze substitution (Leica). Substitution was performed for
16 h at —90°C in anhydrous methanol containing 0.5% uranyl
acetate, followed by temperature increments of 5°C/h, until
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4°C were reached. After incubation in LR White resin at 20°C,
samples were cut into ultra-thin sections for immunolabelling.
They were then incubated with anti-PfTERT rabbit serum at
two different dilutions: 1:50 or 1:25 in TBG (0.1% gelatin and
0.1% BSA in 0.1 M Tris buffer) for 1 h at room temperature.
After six 5 min washes in PBG, sections were incubated
for 1 h at room temperature with protein A conjugated with
10 nm colloidal gold (Auroprobe TM/EM protein A.G10
RPN438; Batch 158170) diluted 1:20 in PBG. Controls
with either no primary antibody or with pre-immune serum
were performed. Ultra-thin sections were washed six times for
5 min in TBG and TBS. After fixation to grids with 1% glut-
araldehyde, thin sections were washed in distilled water and
post-stained for 10 min in uranyl acetate and 3 min in diluted
lead citrate (1:2). Observations were made as described for
ultrastructure analysis.

RESULTS
Identification of P.falciparum TERT gene

With the perspective of using telomerase as a target for anti-
malarials, we have characterized the protein component of
telomerase in P.falciparum. Two previous observations indic-
ated the existence of such an enzyme in P falciparum. First,
telomeric DNA is composed of canonical G-rich repeats (25),
suggesting that telomeres are maintained by telomerase.
Second, telomerase enzymatic activity has previously been
detected in semi-purified nuclear extracts (30). Attempts to
PCR amplify a Pf/TERT gene based on consensus motifs gen-
erated from other genomes were not successful, and only after
advances in the sequencing project of malaria genomes we
were able to identify a candidate TERT gene. The P falciparum
genome database was searched with the conserved motifs
described previously: the T motif and the seven RT motifs
(10). Two overlapping contigs displayed a high score. Their
alignment resulted in a sequence of ~10 kb, containing a large
ORF of 7554 bp, which was predicted to encode a protein of
2518 amino acids. We have named this gene PfTERT and its
corresponding protein PfTERT.

Features of P.falciparum TERT protein

PfTERT contains all of the canonical motifs of RTs (motifs 1,
2 and A-E; Figure 1A), as well as those conserved amino acids
known to be critical for the RT activity (1,38) (marked with
circles in Figure 1B). In the N-terminal half of PfTERT, we
found three previously described motifs specific to TERTS:
GQ/N, QFP and T (16), but we failed to identify the CP motif.
Amino acids known to be specific for telomerases were found
in PFTERT (marked with squares in Figure 1B): Arg in motif 1,
an aromatic residue (Phe or Tyr) following the two critical Asp
residues in motif C and a motif similar to the Trp-X-Gly-X-
Ser/Leu in motif E.

The PfTERT predicted molecular weight is ~280 kDa,
which is almost three times the size of other TERTSs described
previously (e.g. S.cerevisiae Est2p is 103 kDa). Among most
of the TERTS, slight differences in length are chiefly due to
size variations in the N-terminal half of the protein and
between motifs A and B’ (6). In contrast, the difference in
size of the Plasmodial TERT results from increased distance
between nearly all motifs. The in-scale diagram of Figure 1A
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Table 1. Comparative analysis of the DNA coding sequence of some polymerases in P.falciparum and S.cerevisiae

Gene Function Length of Pf/Yeast % (A+T) of No. of tandem repeats in
Pf gene (nt) ratio Pf gene Pf gene (no. single nt repeats)

PFE0465¢ RNA pol I (LSU) 8745 1.75 76.6 20 (2)

PF11_0264 DNA-directed RNA pol, mitochondrial 4596 1.13 76.3 16 (7)

PF13_0150 DNA-directed RNA pol 3 (LSU) 7071 1.61 76.4 27 (4)

PFD0590c DNA pol o 5739 1.30 71.7 19 (4)

PFC0805w DNA-directed RNA pol II 7374 1.42 72.3 22 (0)

PFC0340w DNA pol & (SSU) 1497 1.02 76.3 10 (1)

PF10_0165 DNA pol & 3285 1.00 74.8 2 (0)

PfTERT TERT 7554 2.85 80.8 28 (11)

Pf/Yeastratio is the length of the P falciparum gene divided by the length of the yeast orthologue (as defined in PlasmoDB). The far right column indicates the number
of tandem repeats in each Pf gene (‘mreps’ software). The number of nucleotide repeats is shown in parentheses.

Abbreviations: LSU, larger subunit; and SSU, smaller subunit.

shows that the spacing between the motifs is much greater in
PfTERT than in ScEst2p. Only two blocks of motifs show
relatively conserved spacing: motifs 142 and motifs B+
C+D (Figure 1B). As observed in other P.falciparum proteins,
PfTERT contains insertions of basic amino acids that are
absent from its orthologues in other genomes (39). For
example, one of these segments (between motifs T and 1)
consists of a stretch of 30 asparagines, interspaced by a few
lysines, isoleucines and tyrosines.

Since Plasmodium proteins are systematically larger than
their orthologues in yeast or humans (40), we tested whether
that difference is the same for PfTERT and other DNA and
RNA polymerases (Table 1). As expected, most polymerases
genes are larger in P falciparum (Pf/Yeast ratio between 1.00
and 1.75), but surprisingly the difference between TERT
sequences is much bigger (Pf/Yeast ratio = 2.85). To test
whether this is related to the number of stretches of basic
amino acids easily detectable in the PfTERT protein sequence,
we computed the number of significant large tandem repeats in
these genes (Table 1). We observed a larger number of repeats
in PfTERT, 28, than in other Plasmodium polymerases of
similar size. This difference is mainly due to the higher num-
ber of nucleotide repeats, 11, such as tandem A or T nucle-
otides. This is consistent with the higher A+T content of this
gene (80.8%) relative to the others. In conclusion, we assume
that the large size of PfTERT gene is due partially to a general
trend of Plasmodium genes being larger than the yeast ortho-
logues, and also due to the presence of more A/T repeats.

Identification of other Plasmodial TERT
candidate genes

For future tests of anti-telomerase drugs in experimental mal-
aria models (mice and monkeys), it will be useful to know the
TERT sequences of the Plasmodium species that cause malaria
in these animals. To search for TERT homologues in non-
human malaria species, we searched the genome databases
of rodent and simian Plasmodium species with the PfTERT
protein sequence. We found three candidate TERT proteins:
PKTERT, in the simian P.knowlesi species and PyTERT and
PbTERT, in the rodent species P.yoelii and P.berghei, respect-
ively. PKTERT shares 42% amino acid identity with PfTERT
and contains all motifs present in PfTERT. PyTERT also
contains all PfTERT motifs, but it appears to lack a complete
N-terminus, probably as a consequence of the ongoing status

of this genome project. Nevertheless, PyYTERT and PfTERT
share 43% identical amino acids. PbTERT gene, although
incomplete, spans motifs GQ/N, QFP, T, 1 and 2. The amino
acid identity between PfTERT and this truncated PbTERT
candidate is 54%. The two species that infect rodents, PyTERT
and PbTERT are highly homologous (76% identity), suggest-
ing closer ancestry.

The overall percentage of amino acid identity between
PfTERT and the other Plasmodial TERTSs is surprisingly
low for a protein that has a conserved function in eukaryotes
(e.g. hTERT and msTERT share 63% amino acid identity).
We carried out a multiple alignment of the four Plasmodial
TERT proteins and plotted the frequency of identical amino
acids along the alignment (Figure 2). As expected, the regions
containing the telomerase motifs are most highly conserved.
Notably, we can also see regions of high similarity, where
motifs have not yet been described (asterisk in Figure 2).
Nevertheless, large domains share very little similarity
between Plasmodium candidate TERT proteins. These typic-
ally correspond to the regions showing repetitive sequences
and characterized by many small insertions and deletions, as
well as an unusual sequence composition, as discussed above.

Phylogenetic analysis of TERT proteins

To test the extent of conservation of the four Plasmodium
TERTSs among eukaryotes, we undertook a phylogenetic ana-
lysis of all eukaryotic TERTs described to date. By concat-
enating all the conserved motifs within each TERT, we built a
phylogenetic tree using the maximum-likelihood algorithm.
The statistical significance of branches was tested by bootstrap
analysis (35). We eliminated G.lamblia and C.elegans from
the analysis, as both lack several of the motifs present in the
other TERTSs. Besides, the low conservation of the G.lamblia
and C.elegans TERT has been pointed out previously (8), and
evidence has not yet been obtained of telomerase activity in
these species. The final tree (Figure 3), despite displaying a
few branches with low bootstrap values, is compatible with the
phylogeny based on the small subunit ribosomal RNA for
these species. Moreover, it lends support to the hypothesis
that telomerase was present in early eukaryotes.

Sub-nuclear localization of PFTERT in blood stages

Given the role of telomerase in DNA replication, a nuclear
localization is expected for this enzyme. It is known that the
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Figure 3. The phylogenetic tree based on sequences of concatenated
telomerase motifs is fully compatible with the known phylogeny for these
species. The tree was built as described in Materials and Methods. A total
of 1000 bootstraps experiments were performed, and bootstraps >50% are
shown. Abbreviations of the species are as in Figure 1. The unit of branch
length is the expected fraction of changed amino acids.

nuclear localization signals (NLS) are conserved among euka-
ryotes. Based on an algorithm that predicts sorting signals and
localization sites encoded in protein sequences (PSORTII)
(http://psort.ims.u-tokyo.ac.jp/; Kenta Nakai, Human Genome
Center, Tokyo, Japan), we found that PFTERT contains several
NLS-like motifs. In fact, the k-nearest neighbours classifier
(k-NN) algorithm predicts that PfTERT primary sequence
refers to a protein that has 78.3% probability to be nuclear (for
Tetrahymena TERT, for example, the probability is 52.2%).

In order to test this prediction, we performed IF assays on
blood stage parasites. The blood stage cycle takes ~48 h to be
completed. It begins with the invasion of non-infected eryth-
rocytes by merozoites present in the bloodstream. Once inside
the erythrocyte, the parasite will undergo three stages: ring
(~0-18 h), trophozoite (~18-38 h) and schizont (~38—48 h)
stages. S phase begins in the trophozoite stage, ~28-31 h after
merozoite invasion. Nuclear division occurs throughout
schizogony, leading to the production of up to 32 individual
merozoites. At the end of the 48 h cycle, erythrocytes burst
releasing merozoites and the cycle starts anew. Previous stud-
ies have shown that telomerase activity is detectable by TRAP
only in trophozoite and schizont stages (41). To follow the
expression and localization of PfTERT during the blood stage
cycle by IF, we collected infected erythrocytes from a syn-
chronized culture at different time points: 0, 12, 24, 36, 40 and
48 h. Studies using rabbit o-PfTERT-peptide (Figure 4),
revealed no staining in the first 12 h (ring stages). When
the parasite matures into trophozoite stage, however, a clear
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Figure 4. PITERT localizes in a discrete nuclear region in certain blood stream
stages. (A) Diagram indicating the source of two different antibodies used to
characterize PFTERT: a mouse serum raised against a GST-PfTERT fusion
protein and a rabbit serum raised against a 15 amino acid peptide at the PFTERT
C-terminus (C-PfTERT peptide). (B) The 48 h time course in blood stages,
during which parasites develop inside an erythrocyte. PFTERT (green) was
detected by IF using the rabbit anti-peptide antibody; nuclear DNA was stained
with DAPI (blue). (C) Peptide competition assay. The specificity of PFTERT
serum was determined by IF after pre-incubating the antibodies with increasing
concentrations of a specific (C-PfTERT) or an unspecific peptide. Detection of
anti-PfTERT antibodies and staining of DNA was performed as in (B).

pattern was observed: a single dot within a region of the
nucleus. During schizogony, the number of PfTERT foci
increased proportionally to the number of nuclei. When schi-
zonts become fully mature (48 h) and merozoites are released
into the blood stream, PfTERT was no longer detectable.
Two lines of evidence confirm the specificity of the PFTERT
signal. First, when the above IF assay was undertaken in
the presence of competing epitopes, the PfTERT signal
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Figure 5. PfTERT is not detectable at telomeres. Indirect-IF of PfTERT (green)
combined with FISH of Rep20 (red), a sub-telomeric repetitive motif. DNA was
stained with DAPI (blue). Both cells are blood stage trophozoites.

disappeared with increasing concentrations of the C-terminal
PfTERT peptide (C-PfTERT); in contrast, when an unspecifc
peptide was used as competitor, the PfTERT signal intensity
remained unchanged (Figure 4C). Second, the mouse sera
produced against a recombinant PfTERT protein generated
a similar localization pattern (data not shown).

Thus, our results show that PfTERT is expressed at detect-
able levels in trophozoites and schizonts, the same stages that
were previously shown to have telomerase activity and where
DNA replication occurs. Moreover, our studies also revealed
that PfTERT is not detectable throughout the entire nucleo-
plasm, but rather in a discrete sub-nuclear compartment.

PfTERT: localization distinct from telomere clusters

The sub-nuclear localization of PfTERT is surprising consid-
ering that telomeres, the substrate, are organized in 4-7 clus-
ters around the nuclear periphery (27). We hypothesized that
the plasmodial telomerase complex may localize to a single
cluster and then ‘hop’ to another. To test this hypothesis, we
combined IF with FISH, using a probe (Rep20) that recognizes
a sub-telomeric repeat (telomeric DNA and Rep20 FISH sig-
nals co-localize; Scherf et al., unpublished data) and examined
if PfTERT co-localizes with a telomere cluster (Figure 5).
Optimization of the IF/FISH technique allowed to have
>50% of the cells double-labelled. Strikingly, we concluded
that in the majority of the cells, telomeres and PfTERT did not
co-localize. We observed occasional colocalization of
PfTERT with telomere clusters, which may be due to errors
prone to the 2D analysis of the images. We conclude that,
within the detection limits of IF, PfTERT is located in a sub-
nuclear compartment that is distinct from telomeric clusters.

PfTERT: localization in a sub-compartment
of the nucleolus

The largest sub-nuclear compartment of eukaryotic cells is the
nucleolus, the main function of which is the transcription of
rRNA genes and the assembly of ribosomes. Some ribonuc-
leoproteins are also assembled in this compartment. In recent
studies, human and yeast TERTs were shown to be enriched at
the nucleolus [reviewed in (4)]. Given PfTERT’s localization
to a discrete domain of the nucleus away from the telomeres,
we hypothesized that it localizes to the nucleolus.

In P.falciparum, a nucleolus has never been identified and
its presence has even been questioned given the low number of
ribosomal genes in the genome (40). Thus, in order to test if

PfTERT localizes in the nucleolus, we searched for nucleolar
markers. By IF, we tested different sera against highly con-
served nucleolar proteins. Strikingly, human anti-hNopl
serum revealed a hat-like structure polarized towards one
side of the nucleus (Figure 6A), very similar to that described
for S.cerevisiae. Rabbit antibodies raised against a recombin-
ant PfNopl protein showed an identical staining pattern
(Figure 6A). Immuno-electron microscopy (EM) observations
further support that the anti-hNop1 serum is a nucleolar mar-
ker, as it preferentially stains a sub-nuclear region (data not
shown). Taken together, our data provide evidence for the
existence of a nucleolus in P.falciparum.

In order to test whether PfTERT localizes to the nucleolus,
we performed IF in which cells were double-labelled using the
rabbit anti-PfTERT and the human anti-hNopl sera. Strik-
ingly, PfTERT co-localized with the Nopl-defined region,
indicating it localizes to the nucleolus. Remarkably, PfTERT
is not found all over the nucleolus, but is restricted to a sub-
compartment of this organelle (Figure 6B). This contrasts with
the situation in other eukaryotes (42—44), in which ectopically
expressed TERT accumulates uniformly throughout the nuc-
leolus. Taken together, these data strongly suggest that
PfTERT localizes in a sub-compartment of the nucleolus.
This finding is further supported by immuno-EM studies.
The anti-PfTERT serum revealed a single cluster of gold
beads close to the nuclear membrane (Figure 6C).

DISCUSSION

In the present work, we identified and characterized a gene in
P falciparum that has the characteristics of the protein compon-
ent of telomerase, named here PfTERT. It contains structural
features that are common with the telomerases known in other
species: RT motifs, telomerase-specific motifs and pI = 10. We
also identified homologous genes in other Plasmodial species:
the simian P.knowlesi, PKTERT, and two murine species,
P.yoelii and P.berghei (PyTERT and PbTERT genes).

A comparison of PFTERT and other eukaryote TERTSs shows
very different degrees of conservation along the sequence. This
is in agreement with experimental data in S.cerevisiae, where
hypermutable segments separate conserved and vital regions
of the molecule (15). Within the conserved regions, we were
able to identify almost all of the TERT-specific and all of the
RT-specific motifs. The CP motif, which was not found in any
Plasmodia, is the only exception. This motif is also absent from
G.lamblia TERT, and given its very low-sequence conserva-
tion, doubts have been put forward for its significance outside
the ciliates group (6,15). It is thus unclear if this motif has
diverged beyond recognition or if it has appeared after the
separation between Plasmodia and Giardia and the other
eukaryotes analysed.

PfTERT contains several stretches of 10-20 basic amino
acids, such as asparagines, which are encoded by A-rich
codons. Interestingly, among P.falciparum polymerases, the
TERT gene is the one that contains more A+T nucleotides,
more repeats and a higher increase in size relative to the yeast
orthologue (Table 1), suggesting that P/TERT sequence is less
functionally constrained than that of the other polymerases.
These repeats are therefore more likely to reflect the propen-
sity of the P falciparum genome by polymerase slippage
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Figure 6. PITERT localizes in a sub-compartment of the nucleolus. (A) IF with an anti P.falciparum Nop1 serum (red) shows the nucleolus as a hat-like structure in
the nucleus of a trophozoite stage. An anti-human Nop1 serum (green) recognizes exactly the same sub-nuclear region. (B) Double-labelling reveals that PFTERT
(red) co-localizes with part of the nucleolus (green); yellow spot in the merge image. (C) Immuno-EM shows that PFTERT (white arrow head) localizes to a peripheral

region of the nucleus. In (A and B), DNA was stained with DAPI (blue).

events due to the presence of stretches of A and/or T (45,46),
instead of selection process that leads to increased gene length.
If this is so, the extreme A+T richness of Plasmodia genomes
(80% A+T for P.falciparum) may favour the increase in gene
size and led to the accumulation of the repetitive regions in
non-essential gene areas.

Given the common biological role of telomerase in euka-
ryotes, we expected its catalytic component to be much con-
served among species of the same genus. Surprisingly, we
found very little sequence conservation between the TERT
sequences of the different Plasmodium species: PfTERT
shares 42% identical amino acids with PKTERT, 43% with
PyTERT and 54% with PbTERT. The regions between the
conserved motifs show lower amino acid identity (Figure 2).
The existence of such hypervariable regions is indicative of a
continuous process of genome evolution of malaria species, as
it was previously shown by a phylogenetic analysis based on
comparison of the small-subunit ribosomal RNA gene
sequences (47). These differences among Plasmodial TERT
proteins may play a role in the specific mean telomere length
observed for the different species (2.0 kb for P.yoelii, 1.2 kb
for P.falciparum and 6.7 kb for P.vivax) (26).

A phylogenetic tree built from sequences consisting of a
concatenation of the conserved motifs, ignoring the hypervari-
able stretches, respects the known phylogenetic relationships,
both among Plasmodia species and among eukaryotes in gen-
eral. Our results confirm previous analysis made with a smaller
dataset (6), and reinforce the hypothesis that telomerase was
present in early eukaryotes. The phylogenetic analysis is com-
plicated by a few branches lacking robustness (low-bootstrap
values) and by the lack of motifs in the sequences of the
putative TERT of C.elegans and G.lamblia. Addition of
newly sequenced eukaryotic genomes will allow to further
resolve these questions.

It was previously shown that, in P falciparum cell extracts,
telomerase can be efficiently inhibited by RT type of drugs,
such as nucleoside analogues (30). These same drugs are cur-
rently being tested on in vitro cultures and preliminary data
show killing of P falciparum parasites after 3—-5 blood stage
cycles at micromolar concentrations (data not shown). More-
over, we were unable to generate a knock-out of the P/TERT
gene, supporting the idea that telomerase activity is needed for
blood stage parasite proliferation. Thus, a prophylactic therapy
based on plasmodial telomerase inhibitors might be possible.
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In this work, the comparison of the TERT sequences from
human, rodent and simian Plasmodium species provides valu-
able information for the design of specific anti-telomerase
drugs. Obviously, drugs should be targeted to conserved
regions and functional domains, in order to avoid rapid emer-
gence of drug resistance.

The cell-cycle progression in P.falciparum is not yet com-
pletely understood (48). DNA synthesis begins in the relat-
ively small trophozoites (intra-erythrocytic form), but nuclear
subdivision, which leads to the formation of multinucleate
cells, occurs only during schizogony. Whether or not any
gap phases (G) exist between each round of DNA synthesis
and mitosis is unknown. Eventually, a schizont composed of
8-32 nuclei undergoes segmentation, which culminates with
the formation of individual merozoites that burst from the
erythrocyte into the blood stream. Our observations indicate
that PfTERT is only detectable in trophozoites and schizonts,
the stages where multiple rounds of DNA synthesis occur and
where telomerase activity can be detected (41). Thus, our
data reveal a correlation between the expression of PfTERT
protein and the pattern of telomerase activity in the parasite.
As is known to occur in human cells, we speculate that
the regulation of PfTERT expression may be one of the
mechanisms that P.falciparum uses to control telomerase
activity (49).

Studies in S.cerevisiae and human cells have shown that
ectopically expressed TERTSs are partially enriched in the
nucleolus (42—44). In humans, the telomerase RNA compon-
ent also seems to be enriched at the nucleolus (50,51) or Cajal
bodies (52,53). These observations led to the speculation that
the nucleolus may play a dual role: providing an environment
for the biogenesis of telomerase [reviewed in (4)] and regu-
lating the release of telomerase to its telomeric substrates (54).

In this work, we described the localization of the endogenous
telomerase catalytic component. We observed that PfTERT is
not evenly distributed in the nucleoplasm, but accumulates in
adiscrete peripheral site of the nucleus, which we identified as a
sub-compartment of the nucleolus. In the P falciparum related
apicomplexan parasite Toxoplasma, the nucleolus appears as
a dot in the middle of the nucleus (as detected by anti-human
fibrillarin or a YFP-tagged nucleolar protein) (55). In
P falciparum, we observe a significantly larger structure
with a hat-like pattern mostly at the periphery of the nucleus.
This pattern was observed with human serum against hNop1
and confirmed with antibodies that we raised against
P falciparum Nop1. Thus, our experimental data strongly sug-
gest that the nucleolus of P.falciparum has a more expanded
structure than in Toxoplasma.

It is possible that, as in S.cerevisiae, the sub-nucleolar
PfTERT-containing structure is functionally equivalent to
the mammalian Cajal bodies (56). The RNA component of
P falciparum telomerase has not yet been identified and
thus we cannot test where the assembled telomerase com-
plex localizes. We speculate that the presence of PfTERT
in the nucleolus may be necessary for the assembly of the
telomerase complex, given that in some eukaryotes this
sub-nuclear compartment is involved in the assembly of ribo-
nucleoproteins (57).

Given the role of telomerase at telomeres, one might
predict a release of the telomerase activity from the nucleolus
to the nucleoplasm during the replication of telomeric DNA.

Telomerase

Figure 7. Model for the mechanism of action of telomerase in P falciparum.
We speculate that a sub-compartment of the nucleolus (green) is the location
where telomerase complex (red) is assembled and stored. When telomeres
(yellow) replicate, two scenarios can be envisioned. A, A subfraction (unde-
tectable by IF) of the assembled/active telomerase is released from the sub-
nucleolar compartment and goes to the telomeres, where replication takes place.
B, Telomeres form a bouquet-like structure during mitosis and move to the
proximity of the nucleolus. Telomerase replicates the chromosome ends, while
remaining anchored in the nucleolus.

Surprisingly, a combination of immunolabelling with anti-
PfTERT sera and FISH, did not reveal a co-localization of
PfTERT with the telomeric clusters. The general view
point in the telomerase field is that only a few telomerase
molecules are necessary to lengthen telomeres. This may
explain the perceptible absence of telomerase at telomeres
using immunolocalization assays. By chromatin immuno-
precipitation, however, it was shown that anti-telomerase anti-
bodies were capable of precipitating telomere repeats,
providing evidence that telomerase can be associated with
telomeres in vivo (58).

We propose two models that could explain our observations
(Figure 7). In the first model, we predict that a fraction of the
activated telomerase is released from the nucleolus to the
nucleoplasm, to allow complete telomeric DNA replication,
as observed with ectopically expressed hTERT (54). However,
in P falciparum, levels of telomerase released to the nucleo-
plasm may be insufficient to be detected by IF. After the
addition of telomeric repeats onto the chromosome ends,
telomerase is either degraded or shuttled back to the nucleolus.
The second model speculates that telomerase is not released to
the nucleoplasm. Instead, it remains in a sub-nucleolar com-
partment where telomeres are elongated. In this scenario, chro-
mosome ends would move to the nucleolus (or its proximity)
when telomere replication takes place. In support of this
second model, preliminary studies in our laboratory show a
bouquet-like structure of telomeres proximal to the nucleolus
during DNA replication (data not shown). In both models, the
telomerase sub-nucleolar compartment may fulfil a role in the
assembly of the telomerase complex and/or a role in the regu-
lation of telomerase activity by determining when telomerase
should have access to its substrate. Further studies are required
to test these hypotheses.
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