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Abstract

An increasingly important data source for the development of clinical risk prediction models are 

Electronic health records (EHRs). One of their key advantages is that they contain data on many 

individuals collected over time. This allows one to incorporate more clinical information into a 

risk model. However, traditional methods for developing risk models are not well suited to these 

irregularly collected clinical covariates. In this paper, we compare a range of approaches for using 

longitudinal predictors in a clinical risk model. Using data from an EHR for patients undergoing 

hemodialysis, we incorporate five different clinical predictors to a risk model for patient mortality. 

We consider different approaches for treating the repeated measurements including use of 

summary statistics, machine learning methods, functional data analysis and joint models. We 

follow-up our empirical findings with a simulation study. Overall, our results suggest that simple 

approaches perform just as well, if not better, than more complex analytic approaches. These 

results have important implication for development of risk prediction models with EHRs.
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1. Introduction

Electronic health records (EHRs) data constitute a new and exciting resource for clinical 

research. They present the opportunity to observe dense and diverse information on many 

patients. However, because EHR data are not collected for research purposes, there are also 

many challenges in their analysis. One of the key opportunities as well as challenges with 

EHR data is the longitudinal nature of the data. Unlike well designed clinical studies, the 

longitudinal data in EHRs are collected irregularly. Some measurements may be very dense 

over time (e.g. blood pressure measurements from the intensive care unit) while others may 

be more sparsely collected (e.g. glucose measurements for diabetic patients).
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One of the key ways that EHRs have been used is for the development of risk prediction 

models. Using EHRs to develop risk models are appealing for a multitude of reasons: large 

sample sizes allow one to model rarer events; many predictors are available; and the risk 

score is directly applicable to the clinical population used to derive the model. However, a 

key analytic question is how best to handle repeated predictor measurements.

A recent review of EHR based prediction studies by our group found that out of 107 studies 

only 36 (33%) used longitudinal predictors [1]. Among these studies, most aggregated the 

repeated measures into summary statistics such as mean/median or extreme values and only 

9 (25%) incorporated disaggregated time varying data. It is possible that such summarization 

is a missed analytic opportunity. However, there has been some recent work that has 

suggested that simpler summarization based approaches are just as effective as more 

sophisticated techniques [2].

The purpose of this paper is to describe and assess the performance for different methods for 

using repeated measures in a risk model. Since we do not believe that any approach is 

universally “best”, our goal is to present a resource for other investigators to refer to in their 

own work and to understand some of the conditions under which different approaches work 

better. We ground our work in the analysis of EHRs and use five different predictor variables 

from the same data set to illustrate some differences. We describe the data in Section 2. In 

Section 3 we present the different analytic approaches. In Section 4 we evaluate the different 

methods. To provide additional insights we present results from a simulation analysis in 

Section 5. We finish with some concluding thoughts.

2. Motivating Data

We focus our work on the analysis of EHR data. Some motivating situations we have 

encountered in our collaborative work include the use of glucose measurements for diabetic 

patients collected sporadically over the previous year to assess risk of cardiovascular events, 

vital signs collected densely over a hospital stay to assess risk of decompensation and 

patterns of service utilization to assess risk of hospital readmission. In all of these scenarios 

a series of measurements are observable over time where both the value and temporality are 

potentially useful for developing a risk model.

In the present study, we consider EHR data from dialysis clinics where some clinical 

measurements are collected densely over time (e.g. blood pressure) and others are collected 

more sporadically (e.g. lab values), with the goal of predicting near-term mortality. Our data 

are derived from the EHR of a national chain of hemodialysis clinics. Patients with end stage 

renal disease (ESRD) require hemodialysis until they receive a kidney transplant or die. 

They have high morbidity and mortality with a median survival of approximately 5 years, 

with 20% dying within the first year of diagnosis [3]. Owing to this high mortality rate, there 

is great interest in developing risk models for patient mortality.

In the US, patients typically receive hemodialysis three times a week. At each treatment 

session, different clinical measurements are collected. In this analysis we consider three 

clinical factors collected at the beginning of every session: systolic blood pressure, diastolic 

Goldstein et al. Page 2

Stat Med. Author manuscript; available in PMC 2018 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blood pressure and weight. In addition to these densely collected factors we consider two 

laboratory tests collected more sporadically: serum albumin (which is collected monthly) 

and serum hemoglobin concentration (which is collected bi-weekly). In addition to the 

above mentioned clinical factors, we abstracted information on patient age, sex and race and 

used these as baseline predictors. All covariates were available for all patients. We 

acknowledge that additional information on comorbidities, service utilization, medications 

and demographics also could have been extracted and incorporated into the risk model.

Our study sample consists of newly incident patients at the dialysis facilities in 2010. 

Patients had to initiate dialysis at the facility within 30 days of diagnosis of ESRD. We 

followed patients until their 90th day after diagnosis, which we will refer to as the 

“landmark day.” In analyses of ESRD patients it is typical to assess patients after Day 90 

because this is when patients are eligible for Medicare coverage and therefore linkable with 

administrative data. We linked patients with United States Renal Dialysis System (USRDS), 

an administrative database, to determine dates of ESRD diagnosis and mortality. Our 

database had follow-up through 2011, providing a minimum of one-year of potential follow-

up for all patients.

There were 18,846 patients available for analysis. Within the sample 2,655 (14%) died 

within one year of incidence (Figure 1). We note that nobody dies during the first 90 of 

ESRD, prior to the landmark time. Table 1 shows descriptive data on the considered 

longitudinal predictors. Over the 60-day period, patients had on average 24 vitals 

measurements which are collected at every session. They had fewer laboratory 

measurements. Figure 2 shows individual measurements for 5 random people over time. One 

thing we note is the relative diversity in the patterns over time. The blood pressure 

measurements are quite variable while the weight measurements are much more stable. We 

note that weight is prone to greater variability in this population than the general population.

3. Methodology

Our analytic task is to derive a prediction model for a time to event outcome that best takes 

advantage of repeated measurements. While there are many methods for developing risk 

models, few are well adapted to exploit the dependency within the repeated measurements in 

some of the predictors. In our present case, the predictor variables consist of two distinct sets 

of covariates: baseline or time invariant covariates, and longitudinal covariates. For each 

patient i, we observe the set of time invariant covariates: [Wik: i ∈ 1, …, n and k ∈ 1, …, K], 

where n is the number of patients and K is the number of time invariant covariates, as well as 

the set of longitudinal covariates as [Xilj, silj: i ∈ 1, …, n and l ∈ 1, …, L and j ∈ 1, …, mil], 

where L is the number of longitudinal covariates and mil is the number of longitudinal 

observations measured on covariate l for patient i and , a bounded, closed interval. 

Here, mil is the number of times the covariate is observed and silj are the time points at 

which the covariate is observed. This allows each of the l longitudinal covariate to be 

observed at different time points for each person. We refer to the collection of observed 

covariates for each patient as Zi = {Wik, Xilj}. For simplicity we drop the subscripts, k and l 
moving forward.
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In our data, this time domain is measured in days, but this can represent any domain relevant 

to the way the data are collected. While the length of  is potentially large, each 

individual’s set of observed values may be sparse or dense relative to . Finally, the time 

period  is prior to the landmark time, i.e. all measurements are observed before one begins 

risk assessment. This use of historical information differs from a dynamic risk model where 

one wants to update risk assessment based on newly observed data. While we do not 

specifically consider dynamic models, all of the discussed approaches can be adopted within 

a dynamic context.

To analyze the data, we consider variations of the Cox proportional hazards model. Using 

the typical Cox model framework [4], we define Ti as the survival time for person i, and Ci 

the corresponding censoring time. We observe Yi = min(Ti, Ci) and let δi = I(Ti ≤ Ci). The 

Cox proportional hazards model is given as

(1)

where hi(t; γ) is the hazard at t time given a set of covariates Zi with parameter vector γ and 

baseline hazard h0(t).

To do risk prediction with this model we predict the probability of being alive at any given 

time t. This predicted probability is generated based on the baseline hazard and the 

individual’s observed covariates and compared against whether the person is actually alive at 

the given time point. Different methods for evaluating risk predictions in the presence of 

censoring have been studied elsewhere (see for example [5]).

The analytic challenge is how to analyze the observed Xij. While we make no over-arching 

assumptions regarding the distribution or pattern of the Xij each analytic approach will treat 

them differently, with their own embedded assumptions. The following subsections present 

the different methodologies we consider for analyzing repeated measures data.

3.1. Most Recent Observation

The simplest approach is to use the last observed clinical value as a single predictor in a Cox 

model. This basic approach can be thought of as a single landmark analysis, using day 90, 

si,90, or the closest observed date, as the landmark point [6]. Such an analysis makes the 

(reasonable) assumption that the most predictive clinical value is the one recorded at time 

si,90. This approach has been used successfully with EHR data by others [7].

3.2. Aggregated Data

Instead of using only the most recent value as a predictor we could instead aggregate the 

time varying data into different summary statistics. In our review of risk models [1], 25% of 

studies used summary statistics to model time varying predictors. The most common statistic 

used was the extreme value of the time period (max/min; 13% of studies). Other metrics 

included the number of measurements (10%), mean/median values (7%), trend/slope (3%) 

and variability (2%).
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We comment briefly on the number of times a measurement is taken since this is particularly 

unique to EHR data. Since patients do not interact with an EHR system randomly the 

number of measurements may indicate the overall health of the patient, regardless of the 

actual value. In previous work, we have referred to this as ‘informed presence’ [8]. In our 

case, since the data are derived from outpatient clinics and visits should be regular, fewer 

measurements may indicate a sicker individual, suggesting s/he has been hospitalized during 

the 60 day period.

The choice of best summary statistic will depend on how variation in the Xij relate to the 

hazard of death. In our analysis we calculated the mean, min, max, standard deviation and 

count of each of the clinical measurements and incorporate them into a Cox model.

3.3. Ignoring Temporal Dependence: Machine Learning Methods

Another analytic option is to ignore the temporal dependency of the Xij and treat each 

observed data point independently. If each individual had data observed at each time point, 

i.e. blood pressure was measured every day, we would have a well aligned dataset and could 

employ any traditional analytic approach for developing risk models. Since all variables are 

not observed at all time points in , but instead sporadically observed, we need to impute, 

or fill-in, data into those unmeasured time points. Given the longitudinal nature of the data, 

the simplest form of imputation is last-observation-carried-forward, however we also 

consider another more complex approach involving smoothing across the longitudinal 

trajectory.

Since the time domain, , is large and multiple predictors can be used, the dimension of the 

data grows very quickly. In such cases machine learning approaches are useful. In our 

analysis we considered two popular, but different machine learning methods that have been 

adapted for time to event outcomes: LASSO [9] and Random Forests [10].

The LASSO implementation for survival models is a direct extension of the Cox model 

above, where the parameter vector γ is penalized on the  norm to increase model 

stability. Random Forests is a very different analytic approach that uses a collection of 

classification and regression trees to form a non-parametric estimate of survival. We note 

that other machine learning methods could also have been considered.

3.4. Modeling the Repeated Measures

The next two approaches take into account the temporal dependence inherent in this type of 

data: functional data analysis (FDA) and joint models (JM). Both approaches have seen 

extensive development in recent years. While they each approach the underlying 

longitudinal process of the Xij differently, the FDA and JM methodologies employed in this 

paper are able to handle data observed both densely or sparsely over the time domain.

3.4.1. Functional Data Analysis—Functional data models have been well developed 

over the past 15 years (see [11] for review). While the general functional regression model is 

not specific to repeated measures data, it is well adapted to it. Specifically, the model 

assumes that the longitudinal predictor Xij = Xi(sij) and we assume that each Xi(·) is a 
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square-integrable random smooth functions over . Without loss of generality, we can 

assume E[Xi(s)] = 0 and .

These predictor functions can be measured with or without error and can be observed 

densely or sparsely. To account for both sparsity and noise in the observed data, it is 

common to first smooth the Xi using functional principal components [12].

In the case when the predictor functions are observed on a dense grid of points and without 

noise the scalar-on-function regression model [13] allows one to regress a scalar outcome 

onto a functional process(es) and other scalar covariates. This has been extended for time to 

event outcomes [14] as:

(2)

where Wi are scalar covariates with corresponding parameter vector ω and Xi(s) is the 

functional process with smooth parameter vector β(s). As described by [14], β(s) serves as a 

weight function for Xi(s) in order to obtain the overall contribution towards one’s hazard. 

Since the integral in equation (2) represents an infinite dimensional process, Xi(s) is 

typically approximated using regression splines.

While early work for the functional regression model focused on inference for β(s), recent 

work has centered on techniques for flexibly modeling the covariate process to aid in 

prediction. This has included work in variable selection [15], interactions [16], and non-

linear effects [17]. The functional model can also be adapted for dynamic risk assessment 

using an historical functional linear model [18]. Empirical work has shown that different 

formulations of the functional model perform better in different settings [19]. For simplicity, 

in our present analysis, we focus on the basic functional regression model formulated by 

[13], adapted by [14] for survival data and using functional principal components to pre-

smooth the data.

3.4.2. Joint Models—Like FDA, JMs have been well studied over the past 15 years and 

described elsewhere (see for example [20] and [21]). Where functional data methods treat 

the longitudinal trajectory as a fixed, smooth process, potentially measured with error, JMs 

take a different approach. They consider the longitudinal process as a random process to be 

modeled and then incorporated into a survival model. As such the JM, as the name implies, 

is a combination of two models: a survival model and longitudinal sub-model. While all 

parameters are typically estimated together, they can conceptually be thought of as two 

separate models. First one uses a mixed model to estimate the longitudinal covariate process, 

Xij:

(3)

where Dij are a set of covariates — that include both time, , and baseline factors Wi — 

and Gi are the set of random effects. The longitudinal process over  is modeled flexibly, 
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typically via cubic splines. Allowing mij to represent the longitudinal history estimated 

above, we next incorporate this into a survival model as:

(4)

where  may represent the same or different baseline covariates as above. In the estimation 

process, all of the parameters in equations (3) and (4) are estimated simultaneously either via 

an EM-algorithm or an MCMC approach within a Bayesian formulation. One deviation from 

the typical JM formulation and our formulation is that the event time period, T, and the 

covariate time period, S, overlap, i.e. data are observed while people can fail. This aspect 

makes JMs well suited for dynamic prediction [22].

Just as in the functional model, the JM has a high degree of flexibility in its specification: 

one has a choice as to how to model the longitudinal process, the survival process and then 

how to bring these processes together. One interesting aspect of the JM is that one can allow 

either the observed values or the rate of change (i.e. derivative) of the longitudinal process to 

impact the survival outcome. One challenge of the JM, is that compared to the other 

techniques they are quite computational. This is particularly the case when one has multiple 

longitudinal processes. Therefore, while proposals have been made for incorporating 

multiple longitudinal covariates [23], these methods have not yet been incorporated into 

available software. Therefore we only test the JM in the scenario where one has a single 

longitudinal covariate.

3.5. Combination Approaches

While the above methods have been presented as distinct approaches, it is also possible to 

combine many of these as well. For example, we considered using the summary metrics as a 

covariate in the functional and JMs. Additionally, we assessed using FDA to perform the 

imputation for the machine learning methods. Instead of doing one observation carried 

forward, this estimates each persons curve over  and imputes in. Finally, while not 

considered here, one can take a stacking approach and fit all the methods separately and and 

combine them together [24].

4. Empirical Evaluation

We first consider how the different analytic approaches perform on our dataset. We were 

interested in two primary questions: prediction performance and prediction stability. 

Moreover, we were interested in how these metrics varied based on the size of the training 

data.

4.1. Methods

4.1.1. Training, Validation & Testing Data—Since some of the methods required a fair 

amount of tuning, we divided the data into training, validation and testing sets. Our overall 

sample consisted of 18,846 individuals. We created validation and testing sets of 5,000 

individuals each, leaving 8,846 individuals for training. We used the training data to build 
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the initial models, evaluating tuning parameters and settings on the validation data. All final 

results are reported on the test data.

One of our interests was the impact of training set size. To test this, we randomly 

subsampled the training data into training sets of size n = 250, 500, 1000, & 5000 people, 

fitting the training data with each method and testing on the validation data. Once optimal 

parameter settings were established we repeated the sampling process and tested on the 

testing data. In order to test the stability of the predictions, we repeated this sampling and 

testing on the test data 10 times.

4.1.2. Analytic Techniques—All analyses were performed in R version 3.3. We tested 

out each of the above mentioned analytic techniques on each of the five clinical predictors 

(Table 2).

We first fit a baseline Cox model using only patient age, sex and race. These covariates were 

included in each subsequent model. The first model consisted of the last observed clinical 

value closest to Day 90. To assess summary statistics, we fit separate models for each of the 

five summary metrics as well as a sixth overall model. To fit the regularized Cox model we 

used the glmnet package. The optimal lambda was chosen via 10-fold cross-validation. To fit 

Random Forests we used the randomForestSRC package using 2,000 trees. We performed 

functional principal components with the refund package and fit the functional Cox model 

using the pcox package available on github through the package’s author. Finally we used 

the JM package to fit the JM. The longitudinal process was estimated via a cubic spline and 

a random intercept.

We considered a number of combination approaches. We incorporated the mean covariate 

value into both functional and JMs. We also used the fits from the functional principal 

components to impute for LASSO and Random Forests. Finally, we applied each of the 

analytic approaches, using all five of the longitudinal covariates at the same time. Since 

there is no publicly available software for the JM with multiple predictors this was not 

explored.

4.1.3. Evaluation—To assess model performance, we calculated the c-statistic, a metric of 

the ability of a model to discriminate between events and non-events, with 1.0 indicating 

perfect separation and 0.5 indicating no-separation. A moderately strong c-statistic for a 

clinical model is at least 0.70. There are multiple ways to compute the c-statistic for time-to-

event models [5], with most requiring the specification of a point of time at which to 

evaluate. We used the cumulative incidence procedure by [25], which counts all events up 

though the specified time point. Using the validation data we tested different time horizons 

ranging from 30 days to 1 year. Sixty-days after the landmark time of 90 days proved to be 

the optimal prediction period (i.e. day 150 after ESRD). However, inference from the results 

did not differ across different evaluation points. Since each person had a minimum of one-

year of follow-up there was no censoring. We present box-plots of the c-statistics across the 

10 runs to observe both the average and variability of the performance.
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4.2. Empirical Results

Figure 3 shows boxplots across the 10 runs for the performance for the different models 

using systolic blood pressure as a predictor. The additional clinical predictors are shown in 

the appendix. Figure 4 shows all variables combined. Using just age, gender and race a 

modestly strong and stable predictor with a median c-statistic ranging from 0.68 (IQR: 

0.67,0.70) to 0.70 (0.70,0.70) depending on training sample size. Among the clinical 

variables, the strongest individual predictor was serum albumin. It is worth noting that serum 

albumin is the most sparsely observed predictor, with each person have a median of two 

observations. Using the last observed value and a training sample size of 5,000, the c-

statistic was 0.81 (0.80,0.81). Not surprisingly using all clinical predictors had the best 

performance 0.84 (0.83, 0.84).

The training sample size was an important aspect in algorithm stability. Table 3 shows the 

standard deviation of each algorithm’s c-statistic averaged over the five clinical predictors. 

Most algorithms became relatively stable at a training sample size of 1,000 with very high 

stability at 5,000. Random Forests was the one exception, still exhibiting a degree of 

variability even at higher training sizes. Another aspect of stability is convergence of the 

algorithm. We had some convergence problems with JMs. Overall, the model failed to 

converge 21% of the time. Lack of convergence was associated with training sample size —

30% vs 14% for training sets of size 250 and 5000 respectively —as well as clinical 

predictor —40% for weight versus 7.5% for Hemoglobin.

The best algorithm ultimately depended on the specific clinical predictor (Table 4). The 

simplest approach, using the last observation, often performed quite well. The use of all 

summary statistics was often among the best performing algorithms, however, the best 

individual summary statistics depended on the specific predictor. One noteworthy 

observation, was the relative performance of the number of times a clinical predictor was 

measured. The number of times measured was not predictive for the labs but was for the 

vital measurements. This is likely due to the fact that labs are taken on a scheduled basis, 

while the number of vitals signs (e.g. blood pressure) is an indication of how many treatment 

sessions a patient attended. The use of JMs and FDA, which attempt to model the 

longitudinal trajectory were never the best performing approach, though did show 

comparable performance for albumin and hemoglobin. The two machine learning based 

approaches showed different performance with LASSO performing better than Random 

Forests.

Finally, we explored combining some of the analytic approaches. Adding in summary 

metrics to JMs and FDA led to poorer (i.e. more variable) performance with smaller training 

sizes but better performance with larger training sizes. This lack of stability is likely due to 

over-fitting and less in the smaller training sets. Using FDA to impute in data for LASSO 

and Random Forests, also led to slightly better performance.

5. Simulation

The empirical results suggest that summary metrics perform just as well, if not better, than 

than model based approaches. However, these results may be due to a lack of regularity in 
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the underlying longitudinal process. To test this hypothesis we performed a simulation 

where the longitudinal covariate process was regular and should be well handled by either 

FDA or JM methods.

5.1. Simulation Methods

We followed the simulation strategy performed in [14] and adapted from [13]. Specifically 

we considered the model where the data generating distribution contains one longitudinal 

predictor, Xi(s), observed over a grid of length S = 60. For each subject i ∈ 1, …, N, we 

generate survival times Ti using the model hi = h0(t) exp(ηi), where hi(t) is the hazard of T 

for subject i and h0(t) is the baseline hazard. As in [14], , 

, μi1 ∼ N(0, 25), μi2 ∼ N(0, 

4), and vik1, vik2 ∼ N(0, 1/k2). We generated survival times under a Weibull distribution with 

shape parameter 1.25 following the method of [26]. To mimic our data, we set the median 

survival at 5 years and censored observations after 1 year.

We considered two data generating coefficients for β(s): β1(s) = 2(s/10)2 and 

. As shown in figure 5, β1 places successively more weight on 

observations further along in time, where β2 varies weight across the time domain. While we 

would be inclined to believe that β1 more likely represents the true underlying effect, we 

wanted to consider a more complex function like β2 that would not overly benefit some of 

the simpler analytic approaches.

As in our data application, we were interested in the impact of sparsity of the observed data. 

We considered two degrees of sparsity: where 50% of the data points were observed and 

where 10% of the data points were observed. Finally, for each of the two data generating 

distributions we considered two different training set sample sizes: 500 and 1,000. As in the 

data example, we fixed the test set size at 5,000. This gave us a total of 8 different simulation 

designs: 2 βs, 2 sparsities, 2 sample sizes. We performed each simulation 100 times and 

calculated the c-statistic for the overall model fit [27].

5.2. Simulation Results

Figures 6 – 7 show the results for the two considered β functions. Overall the results are 

very similar showing strong performance for all prediction methods. The one exception is 

the standard deviation which, not surprisingly shows no predictability. The primary 

difference between the two simulations is that the use of the last observed value performs 

slightly better compared to the other methods under β function 1 compared to β function 2. 

This is not surprising given the nature of the underlying function. Finally, it is interesting to 

note, that the degree of sparsity in the observed data had virtually no impact on predictive 

performance. This is not very dissimilar from the empirical results, which had the most 

sparsely observed covariate, albumin, being the most predictive.
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6. Discussion

Both our empirical and simulation results suggest that the use of simple analytic techniques 

are sufficient for robust risk prediction. In real data settings, simpler approaches such as the 

use of the last observed value or simple summary statistics may be preferable as they are less 

sensitive to noisy data. Moreover, when the underlying process is smooth and regular, 

simpler methods still do just as well as more complex approaches. These results have 

important implications for the development of risk prediction models with EHR data. EHR 

data are characterized by having many irregularly measured longitudinal predictors. Most 

recent efforts have used simple approaches to incorporate these predictors [1]. These results 

support the validity of these approaches.

While many complex analytic strategies exist to derive risk models, other authors have 

similarly noted that simpler approaches often work well. In a similar analysis, [2] examined 

modeling a single longitudinal predictor (blood pressure) from a large epidemiological 

cohort. The authors found that simpler methods for incorporating longitudinal data 

performed just as well as more complex methods such as JMs. In another context, [28] 

examined different Bayesian methods for analyzing fMRI data and found that simple 

regularization performed best. Finally, [29] compared different machine learning methods 

for predicted clinical outcomes and noted that logistic regression performed better. Our 

analysis extends these findings to the context of EHR data, which contain diverse sets of 

longitudinal predictors, where it is not always apparent how best to incorporate these 

variables into a risk model.

In developing EHR based prediction models, simpler analytic approaches have appeal for a 

number of reasons. Firstly, due to the irregularly observed data, placing all observations on 

the same time scale can be challenging, requiring either binning or imputation. Moreover, 

depending on the time scale, the dimension of the problem can grow rapidly, making 

summary statistics more parsimonious. Another challenge are the number of potential risk 

predictors. In our data example we only considered five clinical variables but easily could 

have incorporated dozens of labs and other vitals. Finally, while not discussed, simpler 

models make implementation easier. The goal of many EHR based risk models is to 

incorporate them into clinical decision support tools. If the clinical covariates can be 

represented simply, this becomes easier. This is especially the case with JMs which can be 

quite computational for generating new predictions.

One of the interesting findings was that different summary statistics performed better for 

different clinical predictors. For example, the minimum serum albumin concentration was 

the best summary metric while the standard deviation was the best for weight. Clinically 

these findings make sense but highlight that attention needs to be paid even when using 

summary statistics. We also note the predictability of the raw number of clinical 

measurements - regardless of the actual value. It was interesting to observe that the count 

was useful only for the vital signs. Such ‘informative presence’ is a hallmark of EHRs and 

can be exploited for risk prediction purposes. These results highlight the importance of still 

being mindful regarding which summary metrics are used.
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One possible explanation for why the simpler analytic approaches work better is that clinical 

data in general, and EHR data particularly, can be quite noisy. It is noted that the standard 

deviation of the longitudinal measurements was often a strong predictor. Therefore analytic 

approaches that require a degree of regularity or smoothness may be ill suited. However, 

even in our simulation, where regularity was imposed, we did not find that more complex 

methods performed better. Instead, all methods performed equally well. The lack of 

variability in prediction performance, compared with the empirical data, highlights that 

under regular conditions all of these methods obtain the same targets. Therefore it is in 

noisy, real data settings, that the added value of simplicity is realized.

These results do not indicate that more complex approaches such as JMs and FDA are not 

worthwhile. While not explored here, these approaches can be extremely useful for 

understanding the nature of the relationship between the predictor and the outcome; both 

approaches allow one to associate the longitudinal process with an outcome. This can be 

useful both from an inferential perspective as well as helping to refine a risk model. For 

example, estimation and visualization of the parameter vector β(s), can inform which 

summary statistics are likely to be most predictive.

In an effort to focus on the role of the longitudinal predictors, there are some components to 

model building that we have not fully considered. Firstly, EHR data are characterized by 

their diversity of clinical predictors, each with different utility in risk prediction [30]. 

Incorporating data such as comorbidities, service utilization history and additional 

demographics, would raise the dimension of the problem likely making simpler methods 

even more appealing. Another aspect we do not fully explore is the role of imputation. Using 

the machine learning methods require one to align the data and impute unobserved values. 

We considered two imputation methods that exploit the temporality of the data, but more 

complex approaches could have been considered [31]. Thirdly, it is possible that a binary 

modeled focused on 60-day mortality would have performed better. While not discussed 

fully here, all of these methods could be adopted for a binary outcome. In our testing, the 

inference was similar with simpler approaches performing better. Finally, many of the 

modeled effects may have non-linear relationships with the outcomes. For example, both 

high and low blood pressure are risk factors for mortality among those with ESRD. Each of 

these methods could be adopted to incorporate these non-linearities. While machine learning 

methods like random forests naturally handle such non-linearities, splines or quadratic terms 

could be added to the prediction model.

There are still important questions future work should consider. While our data were 

relatively dense (an average of 24 blood pressure measurements per-person) it is possible to 

extract even denser data. For example, real time blood pressure measurements derived from 

an intensive care unit may be sampled on the order of minutes providing hundreds of 

observations per-person. Similarly, personal tracking and monitor data will be very dense, 

perhaps providing opportunities for FDA or other analytic approaches to shine. Additionally, 

our analysis ignores the question of developing dynamic risk predictions. While our results 

suggest that one can ignore the temporality of the historical data, this does not suggest that 

one should not develop risk models that update over time. Future work should compare 

different approaches for developing such dynamic models.
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In summary, these results suggest that while consideration needs to be taken for the best risk 

model, there is confidence that simpler approaches may be sufficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Time to death for the full sample. The vertical line indicates the landmark time (Day 90) 

from which predictions will be made.
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Figure 2. 
Clinical Measurements for 5 people over time.
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Figure 3. 
Box plots of model performance (C-statistics) for multiple measurements of Systolic Blood 
Pressure. Each panel refers to different training set sizes ranging from 250 – 5,000 people, 

with each analysis run 10 times. Each model was evaluated was evaluated on the same test 

set of 5,000 people. Models are grouped based on whether multiple methods were grouped 

together (red/blue).
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Figure 4. 
Box plots of model performance (C-statistics) when combining all five clinical predictors 

into a single model. Each panel refers to different training set sizes ranging from 250 – 5,000 

people, with each analysis run 10 times. Each model was evaluated was evaluated on the 

same test set of 5,000 people. Since the standard implementation of Joint Models does not 

handle multiple predictors they are not included.
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Figure 5. 
Simulated β coefficient vectors
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Figure 6. 
β1 Results. Boxplots for C-Statistics for 100 simulations across different sample algorithms, 

training sample set sample size and sparsity. Results are relatively consistent with most 

algorithms performing well.
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Figure 7. 
β2 Results. Boxplots for C-Statistics for 100 simulations across different sample algorithms, 

training sample set sample size and sparsity. Results are relatively consistent with most 

algorithms performing well.
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Table 1

Descriptives of clinical predictors. Data cover the 60 day period prior to the landmark time of Day 90 (i.e. 

days 30 – 90). Measures are averaged per-person over this period.

Mean Value Mean Std Deviation Mean Number of Measurements

Systolic BP 147.74 17.94 23.80

Diastolic BP 77.41 10.57 23.80

Weight 83.47 1.91 23.89

Hemoglobin 11.45 0.84 5.78

Albumin 3.61 0.16 2.27
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Table 2

Analyses Performed

Approach Abbreviation R Function

 Baseline Covariates Base coxph

 Last Observation Last coxph

Summary Statistics

 Mean Value Mean coxph

 Maximum Value Max coxph

 Minimum Value Min coxph

 Standard Deviation SD coxph

 Number of Measurements Count coxph

 All Summary Statistics Summary coxph

Machine Learning

 Random Forests RF rfsrc

 Cox-LASSO LASSO glmnet

 Random Forests w/FDA imputation RF.FDA rfsrc

 LASSO w/FDA Imputation LASSO.FDA glmnet

Model Based Approach

 Joint Model JM jointModel

 FDA FDA pcox

 Joint Model with Summary JM.Summary jointModel

 FDA With Summary FDA.Summary pcox
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Table 3

Average standard deviation of the c-statistics

250 500 1000 5000

Base 0.014 0.009 0.003 0.001

Last 0.023 0.010 0.004 0.001

Mean 0.017 0.008 0.004 0.001

Max 0.021 0.007 0.004 0.001

Min 0.017 0.009 0.005 0.001

SD 0.018 0.011 0.006 0.001

Count 0.021 0.013 0.006 0.002

All Summary 0.028 0.014 0.007 0.002

JM 0.032 0.028 0.009 0.002

FDA 0.019 0.012 0.006 0.002

RF 0.048 0.026 0.013 0.008

LASSO 0.042 0.022 0.007 0.002
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