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ABSTRACT Periodontitis is a microbial infection that destroys the structures that sup-
port the teeth. Although it is typically a chronic condition, rapidly progressing, aggres-
sive forms are associated with the oral pathogen Aggregatibacter actinomycetemcomi-
tans. One of this bacterium’s key virulence traits is its ability to attach to surfaces and
form robust biofilms that resist killing by the host and antibiotics. Though much has
been learned about A. actinomycetemcomitans since its initial discovery, we lack insight
into a fundamental aspect of its basic biology, as we do not know the full set of genes
that it requires for viability (the essential genome). Furthermore, research on A. actino-
mycetemcomitans is hampered by the field’s lack of a mutant collection. To address
these gaps, we used rapid transposon mutant sequencing (Tn-seq) to define the essen-
tial genomes of two strains of A. actinomycetemcomitans, revealing a core set of 319
genes. We then generated an arrayed mutant library comprising �1,500 unique inser-
tions and used a sequencing-based approach to define each mutant’s position (well and
plate) in the library. To demonstrate its utility, we screened the library for mutants with
weakened resistance to subinhibitory erythromycin, revealing the multidrug efflux pump
AcrAB as a critical resistance factor. During the screen, we discovered that erythromycin
induces A. actinomycetemcomitans to form biofilms. We therefore devised a novel Tn-
seq-based screen to identify specific factors that mediate this phenotype and in
follow-up experiments confirmed 4 mutants. Together, these studies present new in-
sights and resources for investigating the basic biology and disease mechanisms of a
human pathogen.

IMPORTANCE Millions suffer from gum disease, which often is caused by Aggregati-
bacter actinomycetemcomitans, a bacterium that forms antibiotic-resistant biofilms.
To fully understand any organism, we should be able to answer: what genes does it
require for life? Here, we address this question for A. actinomycetemcomitans by de-
termining the genes in its genome that cannot be mutated. As for the genes that
can be mutated, we archived these mutants into a library, which we used to find
genes that contribute to antibiotic resistance, leading us to discover that antibiotics
cause A. actinomycetemcomitans to form biofilms. We then devised an approach to
find genes that mediate this process and confirmed 4 genes. These results illuminate
new fundamental traits of a human pathogen.
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One of the longest-studied human microbiomes is the “animalcules” (bacteria), first
observed by van Leeuwenhoek (1), that inhabit the oral cavity. Oral bacteria

readily attach to tooth surfaces and develop into spatially organized, multispecies
biofilms (2). These communities also persist beneath the gum line in the subgingival
pocket, where they are kept in check by host immune cells (3). Though normally
benign, subgingival communities can accumulate opportunistic oral pathogens that
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hyperactivate the immune response (3). Over time, this inflamed state, known as
periodontitis, slowly destroys the gums and tooth socket, deepening the subgingival
pocket and ultimately leading to tooth loss (3). As �400 bacterial species can colonize
the subgingival pocket (4), the cause of periodontitis long eluded microbiologists, but
now, specific pathogens and microbial consortia (5) are firmly linked to the disease.
Although periodontitis can often be alleviated by eradicating these pathogens, it is
estimated to affect 11% of the global population (743 million people in 2010) (6).

Periodontitis is generally a chronic disease that manifests only in adults; however,
aggressive periodontitis (AgP) can progress 3 to 4 times faster (7) and afflict adoles-
cents. Although AgP is rare, occurring at �1% on a population-wide level, it targets
subpopulations of African descent (8, 9). For example, 8% of adolescents have AgP in
Morocco (8), and 15 times more black (2.05%) than white (0.14%) adolescents have AgP
in the United States (9). AgP is distinct clinically because it attacks only the incisors and
first molars and features only a sparse biofilm that does not correspond with the
observed tissue damage (10). The putative cause of AgP is Aggregatibacter actinomy-
cetemcomitans, a Gram-negative, facultatively anaerobic, nonmotile, rod-shaped bac-
terium (11). A. actinomycetemcomitans colonizes �20% of healthy children but is
harbored by �90% of juvenile AgP patients (12, 13). In addition to periodontitis, A.
actinomycetemcomitans can spread from the oral cavity and establish infections
throughout the body, including endocarditis (14), rheumatoid arthritis (15), and brain
abscesses (16). In fact, A. actinomycetemcomitans was first described in 1912 after it was
isolated from mixed-species lesions with Actinomyces (11). In its many infections, A.
actinomycetemcomitans uses an arsenal of virulence factors to colonize (17), proliferate
(18), and resist the host immune system (19). Most notably, these include a potent
leukotoxin that can lyse white and red blood cells (20) and that is overexpressed in a
highly virulent strain endemic to northern Africa (21).

A less well recognized A. actinomycetemcomitans virulence factor is antibiotic resis-
tance. Many A. actinomycetemcomitans infections are refractory (22) and can be cured
only by coupling periodontal surgery with antibiotic therapy since neither procedure
alone can fully treat the infection (23). One of the most commonly used antibiotics to
treat periodontal infections is macrolides (24), such as erythromycin (25). These anti-
biotics inhibit protein synthesis by targeting the 50S subunit of the ribosome (26).
However, many strains of A. actinomycetemcomitans are intrinsically resistant to eryth-
romycin (27), questioning its viability as a treatment option. Despite the urgency of this
problem, we are only beginning to understand how A. actinomycetemcomitans resists
antibiotics. These mechanisms include modifying the antibiotic’s target (28) and, as
seen in many other bacteria (29), finding shelter in highly resistant biofilms (30, 31).

Recently, our overall knowledge of A. actinomycetemcomitans has improved through
genomic approaches such as transcriptome sequencing (RNA-seq) (32), transposon
mutant sequencing (Tn-seq) (33), proteomics (34), and whole-genome sequencing (WGS).
WGS, for instance, unveiled that strains of A. actinomycetemcomitans are genetically
diverse. In addition to 2,034 core genes, the A. actinomycetemcomitans pan-genome
features 1,267 flexible genes (35), often on horizontally acquired genomic islands (36),
which are present in some but not all strains. Phylogenetically, strains of A. actinomy-
cetemcomitans cluster by serotype (36). Among the 7 serotypes currently recognized
(37), serotypes a, b, and c are the most common (38, 39), and reflecting their phylogeny,
these serotypes differ in key phenotypes, such as toxin production (21) and natural
competence (40).

One fundamental gap in our knowledge of A. actinomycetemcomitans is its essential
genome, or the set of genes that it requires for life. Essential genomes have been
defined for many model pathogens (41, 42) and can provide new avenues for discov-
ering drug targets (43, 44). Furthermore, our knowledge of A. actinomycetemcomitans
would benefit from an arrayed mutant collection for conducting screens and quickly
obtaining mutants of interest. Here, we used transposon mutant sequencing (Tn-seq)
(45) to define the essential genome in two strains of A. actinomycetemcomitans, and
Cartesian pooling-coordinate sequencing (CP-CSeq) (46) to construct an ordered trans-
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poson mutant library. While screening the library for genes that mediate antibiotic
resistance, we discovered that subinhibitory erythromycin induces A. actinomycetem-
comitans to form biofilms, leading us to devise a novel Tn-seq-based screen to identify
and confirm 4 genes that are involved in this bacterial defense behavior.

RESULTS
Generating saturating mutant pools in A. actinomycetemcomitans. A. actinomy-

cetemcomitans is a genetically diverse species, with the genome content between any
two strains varying by as much as 16% (�300 genes) (36). Because of this, defining the
essential genome of any single strain may not be representative of the entire species.
Therefore, we set out to make dense transposon mutant pools in two divergent strains
of A. actinomycetemcomitans, VT1169 (47) and 624. VT1169 is a serotype b strain with
a 2.1-Mb genome, whereas 624 is a serotype a strain with a 2.4-Mb genome (Table 1
shows additional strain characteristics). For the two strains, we used the same trans-
poson, mariner, since it has low site specificity, requiring only a TA dinucleotide for
insertion. We also used the same mutagenesis procedure, conjugation with Escherichia
coli on rich, undefined medium (tryptic soy agar supplemented with yeast extract
[TSAYE]). Of note, we performed conjugations under both aerobic and anaerobic
conditions, reasoning that this would increase mutant diversity since many genes in A.
actinomycetemcomitans are required specifically under high or low oxygen levels (33).
After generating the mutant pools, we defined the location and abundance of the
insertions via Tn-seq. We sequenced two aliquots of each mutant pool and found
the replicates to be highly correlated (correlation coefficient, �0.94) (see Fig. S1 in the
supplemental material). In total, we identified 32,344 high-confidence insertions in
VT1169 (coverage of �1 insert per 66 bp) and 26,530 high-confidence insertions in 624
(coverage of �1 insert per 89 bp) (see Table S1 in the supplemental material).

Defining the essential genome in multiple strains of A. actinomycetemcomitans.
We next used a Monte Carlo-based approach (41) to define the essential genomes of
VT1169 and 624 with statistical rigor. In this approach, the actual mariner insertions
identified in the genome (observed data) are compared to “expected” simulated data,
where each gene is assumed to be fitness neutral (equally capable of being disrupted
by a transposon). To generate the expected data, the actual insertions are randomly
reassigned to any of the possible TA sites in the genome. This process is then repeated
numerous times, with the same insertion coverage as the observed data in each
simulation. The advantage of this repeated simulation (Monte Carlo) approach is that,
for any given coverage, it accurately estimates how often each gene should be
disrupted when neutral for fitness. Genes in the observed data that have fewer
insertions can therefore be considered required for fitness and part of the essential
genome.

To apply this approach to A. actinomycetemcomitans, we generated expected data
consisting of 100 simulations per strain. We then compared the expected to the
observed data and observed that the fold changes in mutant abundance per gene
follow typical (41, 48) bimodal distributions (Fig. 1A). The lower mode in these distri-
butions corresponds to genes that cannot sustain insertions. As described previously
(41), we determined a gene as essential if (i) it contained significantly fewer insertions
than expected and (ii) clustered significantly with the lower of the two modes. Using
these criteria, we identified 413 (22% of total) coding genes as essential in VT1169 and
386 (18% of total) coding genes as essential in strain 624 (Fig. 1A). These numbers are

TABLE 1 A. actinomycetemcomitans strains used in this study

Name
Genome
size (bp) Serotype

Natural
competence Passaging

Antibiotic
resistance Fimbriation

VT1169 2,129,092 b Not competent High Nalidixic acid,
rifampin

Smooth

624 2,367,908 a Competent Low Rough
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similar to how many essential genes are found in other bacterial species (for example,
336 in Pseudomonas aeruginosa [41] and 358 in Haemophilus influenzae [42]).

The core A. actinomycetemcomitans essential genome. As our ultimate goal was
to define a core essential genome not specific to either strain, we next directly
compared the essentiality of each gene in VT1169 and 624. To do so, we determined
the set of orthologous genes that are shared between the two strains. In all, we
identified 1,715 orthologs, and of these, 319 (19% of total) orthologs were essential in
both strains and therefore could be assigned to the core essential genome (Fig. 1B).
These orthologs represented most of the total essential genes in both strains, but as we
anticipated, several orthologs were essential in only one of the two strains (see Table
S3 in the supplemental material). This observation justifies our decision to define the
essential genome of more than one strain. For example, we found that threonine
biosynthesis is essential in strain 624 but not VT1169 (Fig. S2). As a result, we success-
fully excluded this metabolic pathway from the core A. actinomycetemcomitans essen-
tial genome. Interestingly, a small number of accessory (nonorthologous) genes were
also essential in each strain. These genes warrant further study since most (15 of 21)
encode hypothetical proteins with unknown function.

Functional capacity of the A. actinomycetemcomitans essential genome. To gain
an overview of its main functions, we next analyzed the A. actinomycetemcomitans
essential genome for enriched Clusters of Orthologous Groups (COG) functional cate-
gories (49). As expected, VT1169 and 624 were enriched for functions known to be vital
for bacterial life (50), such as lipid metabolism and cell wall biogenesis (COGs I and M)
(Fig. S3). In contrast, some functions were depleted, such as carbohydrate (COG G) and
inorganic ion metabolism (COG P) (Fig. S3), likely as a result of functional redundancy
and the complex medium on which the mutant pools were generated. To examine the
essential genome in more detail, we projected it as a KEGG (51)-style metabolic network
to highlight specific essential pathways (Fig. 2). Not surprisingly, many of these path-
ways were functionally related to the same COGs that were enriched, such as fatty acid
and peptidoglycan biosynthesis (related to COGs I and M, respectively). Other essential
pathways were not apparent from our COG analysis, such as the biosynthesis of several

FIG 1 The A. actinomycetemcomitans essential genome. (A) Density plots of the fold change in mutant
abundance compared to expected value in VT1169 (left) and 624 (right). Essential genes (red) have
significantly fewer mutants than expected (gray). (B) Scatter plot of the log2 fold change (FC) in mutant
abundance compared to expected in VT1169 (x axis) versus 624 (y axis). Each point corresponds to an
ortholog. Gray, not essential in either strain; red, essential in both strains; blue, essential in VT1169 only;
purple, essential in 624 only.
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amino acids (e.g., glutamine, glycine, and lysine) and vitamins (e.g., riboflavin, folate,
and heme). As predicted by our ortholog analysis (Fig. 1B), some essential pathways
were strain specific (e.g., lipoate biosynthesis in VT1169 and zinc transport in 624). In
total, we identified over 40 metabolic pathways and functions that are essential in A.
actinomycetemcomitans (Table S4 in the supplemental material).

Conservation of the core A. actinomycetemcomitans essential genome. Next, we
determined whether the essential orthologs shared between VT1169 and 624 are
conserved in the genomes of other strains of A. actinomycetemcomitans. We reasoned
that if these genes do in fact represent the core essential genome, they should be
highly conserved. To perform this analysis, we used a collection of 15 strains, with
representatives from the 7 currently known A. actinomycetemcomitans serotypes (Table
2). As anticipated, each of the 319 genes in the core essential genome contained an
ortholog in at least 12 of the 15 tested strains, with 311 (97.5%) containing an ortholog
in at least 14 strains (Fig. S4A). On average, 99% of the core essential genome was
conserved in each strain (Fig. S4B). These results suggest that the essential genome that
we defined using only 2 strains is a close approximation of the essential genome
among all A. actinomycetemcomitans strains.

We next explored whether the essential genome of A. actinomycetemcomitans is
conserved among the essential genomes of other bacterial species. To accomplish this,
we used the Database of Essential Genes (DEG) (52). This database comprises �50,000
genes experimentally determined as essential in 38 bacterial strains and species. We
found that nearly all of the core essential genes in both VT1169 (313 of 319) and strain
624 (314 of 319) contain at least one ortholog in DEG. However, a few genes lacked an
ortholog, suggesting that they encode functions that are essential specifically to A.
actinomycetemcomitans (Table S5 in the supplemental material). Many of these genes
were related to metabolism, including transporters for glutamate and thiamine and a

FIG 2 The A. actinomycetemcomitans essential metabolic network. Dots and lines represent compounds and reactions, respectively. Blue,
pathways essential in both strains; green, pathways essential in VT1169 only; red, pathways essential in 624 only. The shaded regions indicate
specific metabolites or metabolic pathways. PRPP, phosphoribosyl pyrophosphate; CoA, coenzyme A.
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regulator of fatty acid metabolism. Next, we examined conservation with individual
strains/species, finding that A. actinomycetemcomitans shares the most (243 of 319)
essential orthologs with Salmonella enterica serovar Typhi and the fewest (74 of 319)
with Bacillus thuringiensis (Fig. S5). We then grouped the species in DEG by phyloge-
netic class and examined each class’s conservation with the A. actinomycetemcomitans
essential genome (Fig. S5). We predicted that the classes would rank by their related-
ness to A. actinomycetemcomitans, and as we predicted, the phylogenetic class to which
A. actinomycetemcomitans belongs, the Gammaproteobacteria, ranked the highest, with
less closely related classes such as the Bacilli ranking lower (Fig. S5). Together, these
results show that though some functions may be required specifically in A. actinomy-
cetemcomitans, most of this bacterium’s required features are shared with other
Gammaproteobacteria.

Constructing an A. actinomycetemcomitans ordered library. Although many tools
for genetic manipulation have been developed for A. actinomycetemcomitans, making
targeted mutations can still be a time-consuming process. As shown above, Tn-seq can
be valuable for defining the essential genome and rapidly conducting other large-scale
screens. However, because the hallmark of Tn-seq is using a pooled mutant mixture,
retrieving mutants of interest to follow up a screen is not possible. For this purpose, the
standard genetic resource is an ordered mutant library in which individual mutants are
arrayed into microtiter (e.g., 96-well) plates. The challenge of ordered libraries, however,
is identifying the mutant in each of the (potentially thousands of) microtiter wells in the
library. Because of this, constructing an ordered library generally represents a herculean
though achievable task.

Previously, a simple method, Cartesian pooling-coordinate sequencing (CP-CSeq)
(46), was developed for efficiently constructing ordered libraries. To understand how
CP-CSeq works, it is best to imagine the ordered library as a stack of 96-well plates. The
goal of CP-CSeq is to find the position (Cartesian coordinate) of each mutant in the
stack. Each mutant’s X and Y coordinates correspond to its row and column, and each
mutant’s Z coordinate corresponds to its plate within the stack. In CP-CSeq, these
coordinates are found by subpooling the mutants from each of the stack’s rows (8
pools), columns (12 pools), and plates (number of pools depends on library). More
specifically, the row and column pools are generated by collapsing the stack into a
single master plate, whereas the plate pools are generated by collecting each plate into
an individual well of a second master plate (Fig. S6). These master plates are then
profiled by Tn-seq, ultimately providing data for finding each mutant’s coordinates. For

TABLE 2 A. actinomycetemcomitans strains used for testing conservation of the essential
genome

Isolation source
and serotype Strain

No. of coding
genes in strain

No. of
orthologsa

Human
a D7S-1 2,041 317

H5P1 1,978 311
b HK1651 2,327 318

I23C 1,894 315
SCC1398 1,847 317

c D11S-1 2,041 317
SCC2302 1,829 315

d I63B 2,010 314
SA508 1,991 314

e SC1083 2,161 315
SCC393 1,998 307

f D18P-1 2,020 318
SC29R 2,166 317

g NUM4039 2,364 318

Rhesus macaque,
serotype b

RhAA1 2,150 318

aNumber of orthologs to the 319 VT1169/624 core essential genes present in the indicated strain.
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example, the mutant in row A4 of plate 39 should be uniquely detected by Tn-seq in
the row A pool, the column 4 pool, and the plate 39 pool (Fig. S6).

We used CP-CSeq to construct an ordered library in A. actinomycetemcomitans
VT1169. We chose VT1169 because it is not as clumpy as clinical isolates like 624 (17)
and therefore is more likely to produce clonal colonies. First, we serially diluted aliquots
of the VT1169 mutant pool that we used to define the essential genome, and then, we
hand-picked individual colonies into 96-well plates. In total, we picked 3,744 colonies
into 39 plates. Using CP-CSeq, this number of plates required 33 total Tn-seq reactions
to deduce the coordinates of each mutant (Table S6 in the supplemental material).
After analyzing the CP-CSeq data, we were pleased to find that most wells in the library
(1,971) contain only 1 to 2 mutants, and overall, we found that the library comprises
1,531 unique mutants. Of these, we found that 990 map internally to 626 total coding
genes, indicating that the library encompasses mutants for 33% of the coding genes in
the VT1169 genome (Table S7 in the supplemental material). To validate the library, we
isolated individual colonies from 25 wells that spanned 11 plates in the library. We then
used Sanger sequencing and/or PCR to confirm that each mutant was the same as
predicted by CP-CSeq. Of the 25 wells, we successfully validated 23 (Fig. 3). Together,
these results show that though the library is not comprehensive, it is a useful tool for
quickly obtaining individual mutants of interest. As the CP-CSeq method is easily
scalable, efforts are under way in our laboratory to expand the library’s coverage.

Screening the ordered library for factors that contribute to antibiotic resis-
tance. As little is known about mechanisms of antibiotic resistance in A. actinomyce-
temcomitans, we next decided to use the ordered library to screen for genes involved
in erythromycin resistance. Macrolides, such as erythromycin, inhibit formation of the
50S ribosomal subunit (26) and represent one of the most commonly used classes of
antibiotics for treating periodontal disease (24). To perform this screen, we first deter-
mined that the MIC of erythromycin for A. actinomycetemcomitans is 2 �g/ml, which
falls within previously reported ranges (27). Next, we revived the ordered library and
grew each well individually with erythromycin at half-MIC (1 �g/ml). We chose half-MIC
erythromycin since it would permit fully resistant strains to grow but inhibit mutants

FIG 3 Validation of the A. actinomycetemcomitans ordered library. P, plate; W, well; Site, transposon
insertion site in the VT1169 genome; Product, gene product nearest the transposon insertion; PTS,
phosphotransferase; Ltx, leukotoxin. Each box under the Sanger and PCR headings indicates a replicate.
Green, positive Sanger/PCR result; red, negative Sanger/PCR result.
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that are more susceptible to erythromycin. We then visually examined each well for lack
of growth and identified two hypersensitive mutants (one of which is pictured in Fig.
S7A). These mutants were disrupted for the genes encoding AcrA and AcrB, subunits of
a multidrug efflux system shown in many bacteria to mediate antibiotic resistance
(53, 54).

Screening the library for factors that contribute to antibiotic-induced attach-
ment. During the erythromycin screen, we were struck by an interesting phenomenon.
We noticed that erythromycin causes A. actinomycetemcomitans to attach more to
surfaces. Biofilm formation is a common stress response in many bacteria (55), and we
hypothesized that a similar response was occurring in A. actinomycetemcomitans when
exposed to erythromycin. A few factors that mediate antibiotic-induced attachment
have been characterized (56, 57). However, to our knowledge such factors have not
been explored systematically. Therefore, we designed a simple Tn-seq-based screen to
identify mutants that fail to attach in response to antibiotic. We reasoned that in the
presence of antibiotic, nondefective mutants would attach to surfaces while attachment-
defective mutants would remain in the liquid phase (Fig. S7B). Therefore, the screen is
conducted by growing the mutant pool in the absence and presence of antibiotic and
then simply comparing the liquid phases of each culture. Mutants identified as enriched
in the antibiotic-treated liquid phase are potentially defective for attachment. With this
screen, we also anticipated identifying mutants that are susceptible to erythromycin,
not only acrA and acrB but (due to Tn-seq’s sensitivity) less severely attenuated
mutants.

To perform the screen, we decided to use the ordered library since it would allow
us to easily retrieve mutants for follow-up experiments. First, we collected the ordered
library into a single pool, and then, we grew it both with and without half-MIC
erythromycin. After comparing the two treatments via Tn-seq, we identified mutants in
9 genes that decreased in abundance in the presence of erythromycin compared to the
control (Table S8 in the supplemental material). As expected, acrA and acrB were
among the mutants that decreased in abundance (Fig. 4), confirming the results from
our original screen. Other mutants that decreased were disrupted for srmB, an RNA
helicase involved in 50S ribosome assembly (58), and rnr, an RNase involved in
degrading ribosome-stalling mRNA (59) (Fig. 4). As these genes both interact with the
ribosome, they likely mediate intrinsic resistance to erythromycin, a ribosome-targeting
antibiotic.

Surprisingly, mutants in 10 times as many (90) genes increased in abundance in the
presence of erythromycin compared to the control (Table S8 in the supplemental
material). As we anticipated, a number of these mutants were disrupted for genes
associated with A. actinomycetemcomitans biofilm formation, including 3 genes in the

FIG 4 A. actinomycetemcomitans processes affected by subinhibitory erythromycin. The horizontal gray
lines represent the outer (top line) and inner (bottom line) membranes. LtxA, leukotoxin; e�, electron;
DMSO, dimethyl sulfoxide; fum, fumarate; Gln, glutamine; Glu, glutamate; poly-GlcNAc, poly-N-
acetylglucosamine. R, B, and D represent RNases.
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tight adherence (tad) locus, involved in assembling Flp pili (17), and 1 gene in the pga
locus, involved in synthesizing the biofilm polysaccharide poly-N-acetylglucosamine
(60) (Fig. 4). However, it was unclear what, if any, role in biofilm formation was played
by the many other genes in which mutants increased in abundance in the presence of
erythromycin. Alternatively, disruption of these genes could somehow enhance fitness
(for example, by increasing growth rates) when erythromycin is present, especially since
many of these genes were metabolic in nature (Fig. 4; also see Discussion).

To explore these possibilities, we measured growth rates and attachment levels for
11 mutants (Fig. 5). We included both mutants that increased and mutants that
decreased in abundance in the presence of erythromycin. As in the screen, we used
subinhibitory (half-MIC) erythromycin and observed that in the presence of antibiotic,
the wild type does not grow significantly slower. In contrast, mutants that decreased in
abundance in the presence of erythromycin did grow slower, and in fact, the acrA
mutant showed no signs of growth. Among the mutants that increased in abundance
in the presence of erythromycin, we observed none that grew faster (Fig. 5A), ruling out
enhanced fitness as an explanation for why these mutants were more abundant in the
presence of erythromycin.

We next used a standard crystal violet assay (61) to examine biofilm formation. In
this assay, attached cells are stained with crystal violet, which is then solubilized and
measured using absorbance. A higher absorbance reading therefore indicates higher
attachment. As we had observed qualitatively, the quantitative crystal violet assay
showed that the wild type attaches at higher levels in response to erythromycin (Fig.
5B; see also Fig. S8). In contrast, the erythromycin-sensitive mutants attached at lower
levels, likely because of growth inhibition. Similarly to the wild type, some nonsensitive

FIG 5 A. actinomycetemcomitans factors that mediate antibiotic-induced attachment. Growth rates (A)
and attachment levels (B) were measured for the wild type (wt) and mutants in half-MIC (�) erythromycin
or none (�). y axis in panel A, doublings per hour; y axis in panel B, absorbance (A620) of crystal violet
bound to biofilm; blue, mutants that decreased in abundance after erythromycin exposure; orange,
mutants that increased in abundance after erythromycin exposure; purple, defective for antibiotic-
induced attachment; ND, not detected. Data labels underneath indicate each mutant’s disrupted gene
product and coordinates in the ordered library. poly-GlcNAc, poly-N-acetylglucosamine; Ltx, leukotoxin.
Error bars represent standard deviations (n � 3 to 4 for growth rate; n � 11 to 16 for attachment). *, P �
0.05; **, P � 0.01; ***, P � 0.001 (two-tailed Student’s t test).
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mutants also increased in attachment. However, we identified 4 mutants that did not
show this response (Fig. 5B), indicating that the corresponding genes mediate
antibiotic-induced attachment. These results confirm that our screen successfully dis-
covered factors that contribute to antibiotic-induced attachment.

DISCUSSION

Severe gum disease, or periodontitis, is one of the most common infectious diseases
worldwide (6). It occurs when opportunistic oral pathogens overrun the attached
biofilm communities (dental plaque) that form on tooth surfaces. Though periodontitis
is treatable by eliminating plaque physically, many cases of periodontitis are highly
refractory and necessitate chemical treatment with antibiotics (22, 23). However, anti-
biotic resistance among periodontal pathogens is widespread (24), motivating a search
for alternative therapies and a better understanding of bacterial resistance mecha-
nisms.

Essential genomes are the full set of genes required for the viability of an organism,
and they can be leveraged to discover novel drug targets (43, 44). Here, we used a
Monte Carlo approach (41) to define the essential genome in two strains of the
periodontal pathogen A. actinomycetemcomitans, VT1169 and 624. To maximize mutant
diversity, we generated the mutant pools in both strains on a rich, undefined medium.
A defined medium would have undoubtedly restricted what genes could be disrupted.
For example, on a medium with a defined carbon source, genes involved in utilizing
that carbon source would not have been disrupted, giving the false impression that
these genes are obligately essential. In total, we discovered 319 genes that are essential
in both strains (Fig. 1); however, 161 genes were essential in only VT1169 or 624 (see
Table S3 in the supplemental material). As VT1169 is undergoing genome reduction
compared to 624 (36, 40), these uniquely essential genes may reflect changes in how
the strains are genetically wired (62).

The primary advantage of using two strains was that it enabled us to establish a core
set of metabolic functions that are widely conserved across strains (Fig. 2; see also Fig.
S4)—information crucial for developing new strain-independent therapies. These con-
served functions included the transport of thiamine and cystine (Table S4), both of
which were previously shown to strongly stimulate the growth of A. actinomycetem-
comitans in culture media (63). Metabolic targets such as these could therefore be
exploited in future drug development, as exemplified by cancer researchers who have
engineered enzymes, such as cyst(e)inases, to degrade amino acids that support
auxotrophic cancers (64). Cystine is only conditionally essential in humans (65), but
thiamine requires dietary uptake, making its depletion potentially toxic. However, as
periodontitis is confined to the oral cavity, toxicity could be avoided by administering
metabolic therapies directly to dental plaque.

In this report, we also present an ordered transposon mutant library for strain
VT1169. We constructed the library by applying an efficient genomic method, CP-CSeq
(46), originally developed for Mycobacterium bovis. Validation experiments proved the
library to be highly accurate, with �90% of mutants (23 out of 25 wells) matching the
predicted result (Fig. 3). Though it is not comprehensive, the library comprises �1,500
unique mutants, which are publicly available, and so we hope this resource will
accelerate periodontitis research.

Because macrolide resistance is widespread among periodontal pathogens (24), we
demonstrated the library’s utility by conducting a screen for genes that confer resis-
tance to erythromycin. We discovered that the main defense of A. actinomycetemcomi-
tans against erythromycin is the multidrug efflux pump AcrAB (Fig. S7A). AcrAB can
export not only antibiotics but also host substrates, such as bile and steroids, and so in
many pathogens AcrAB acts as a virulence factor (54). Although AcrAB is not essential
for A. actinomycetemcomitans survival in abscesses (33), it may play an important role
in the oral cavity.

During the screen, we noticed that subinhibitory erythromycin induces A. actino-
mycetemcomitans biofilm formation. This clinically relevant behavior could prime A.
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actinomycetemcomitans for higher, more lethal antibiotic concentrations during infec-
tion. In other bacteria, similar phenomena are mediated by cyclic di-GMP signaling (56)
and extracellular DNA release (57). To discover factors that mediate this process in A.
actinomycetemcomitans, we developed a novel Tn-seq-based screen (Fig. S7B) and
confirmed through biofilm assays that up to 50% of the screen’s hits may mediate
erythromycin-induced attachment (Fig. 5B). The remaining genes identified by the
screen likely have other functions that, when disrupted, enhance fitness in the presence
of erythromycin. Though these mutants did not grow faster (Fig. 5A), we suspect that
their fitness advantage would be more discernible in competition experiments with the
wild type.

While examining these genes further, we found that they are functionally enriched
for inorganic ion transport (e.g., transferrin and ferric iron transporters) and defense
mechanisms (see Table S9 in the supplemental material for summary of COG enrich-
ment analysis). Other prominent cellular functions included multiple RNases, sugar
transport, amino acid (glutamine, lysine, proline, and tryptophan) biosynthesis, and
anaerobic respiration (Fig. 4). To our surprise, the enriched defense mechanisms were
primarily other, non-Acr multidrug efflux systems (Fig. 4). Like the Acr system, the Emr
system nonspecifically effluxes multiple substrates (66), whereas the Mac system
specifically effluxes macrolides (67). All 3 systems, however, require the outer mem-
brane channel TolC to function (66, 67). Since of these systems Acr has the lowest
affinity for TolC (68), we hypothesize that disrupting Emr or Mac enhances Acr’s efflux
potential by increasing its access to TolC. In support of this, other TolC-dependent
systems were also enriched in the presence of erythromycin, including the Rax (69) and
leukotoxin (70) type I secretion systems (Fig. 4).

As expected, 2 of the 4 genes found to mediate antibiotic-induced attachment (Fig.
5B) encoded products known to assist in A. actinomycetemcomitans biofilm formation—
Flp pili (tadZ [17]) and poly-GlcNAc (pgaC [60]) (Fig. 4). The remaining 2 genes, however,
encoded less well recognized biofilm determinants—leukotoxin (ltxB [19]) and the DNA
uptake transcriptional regulator TfoX (71). Leukotoxin is widely regarded as the primary
virulence factor of A. actinomycetemcomitans, as it lyses both white and red blood cells
(20), but recently it was also shown to control adherence. Specifically, disrupting ltxA
diminishes tadA and pgaC expression and, as a result, binding to hydroxyapatite
(calcium-based tooth mineral) (72). Therefore, leukotoxin appears to indirectly mediate
antibiotic-induced biofilm formation.

Perhaps the screen’s most surprising result was TfoX (71), since it is unclear how
natural transformation is connected to biofilm formation. However, previously it was
shown that in biofilms, A. actinomycetemcomitans expresses higher levels of tfoX when
exposed to calcium, resulting in higher transformation frequencies (73). Furthermore,
this calcium-induced transformation is dependent on the pga gene cluster (73). These
findings therefore provide a functional link between natural transformation and biofilm
formation. In another report, transcriptome analysis of a pga mutant revealed substan-
tial differential gene expression compared to the wild type (74). As the pga regulon
does not encompass tfoX (74), this suggests that tfoX may potentially regulate, or at
least act upstream of, pga. Unfortunately, a tfoX consensus binding site is not available
(75), and so we were unable to determine if tfoX binds to the pga promoter.

A final remaining question is how A. actinomycetemcomitans senses and transduces
erythromycin as a signal to ultimately enhance biofilm formation. In Vibrio cholerae,
natural transformation is induced by chitin, which is recognized by a membrane sensor
that activates tfoX (76). We hypothesize that in A. actinomycetemcomitans, a similar
sensor recognizes membrane stress (77, 78) caused by calcium, erythromycin, and
potentially other antibiotics. Experiments are under way in our laboratory to test this
hypothesis.

In summary, we provide in this report the essential genome, an ordered mutant
library, and a new screen for attachment factors in A. actinomycetemcomitans. These
resources should help to advance research on this devastating human pathogen.

Oral Pathogen Genomic Resources Applied and Environmental Microbiology

July 2015 Volume 83 Issue 14 e00797-17 aem.asm.org 11

http://aem.asm.org


MATERIALS AND METHODS
Strains and growth conditions. The A. actinomycetemcomitans strains used were VT1169 (79) and

624. VT1169 is a serotype b laboratory strain; 624 is a serotype a clinical isolate. Additional strain
characteristics are provided in Table 1. A. actinomycetemcomitans was routinely grown in filter-sterilized
(80) tryptic soy broth plus 0.5% (wt/vol) yeast extract (TSBYE medium) with shaking at 250 rpm or on
autoclaved tryptic soy agar plus 0.5% (wt/vol) yeast extract (TSAYE medium). Under oxic conditions, A.
actinomycetemcomitans was incubated in a 5% CO2 atmosphere at 37°C. Under anoxic conditions, A.
actinomycetemcomitans was incubated in a vinyl anaerobic chamber (Coy Laboratory Products) with an
85% N2, 10% CO2, and 5% H2 atmosphere at 37°C.

A. actinomycetemcomitans mutant pools. A. actinomycetemcomitans was mutagenized by conju-
gation largely as described previously (81). The E. coli donor strain was MFDpir (82), a diaminopimelate
(DAP) auxotroph. MFDpir harbored pMR361-K, a mariner minitransposon delivery plasmid. Conjugations
were performed on TSAYE plus 0.3 mM DAP plus 0.1 mM isopropyl-�-D-thiogalactopyranoside (IPTG) for
6 to 8 h and counterselected on TSAYE plus 40 �g/ml kanamycin for 3 to 5 days. Conjugations and
counterselections were done under both oxic and anoxic conditions. Mutants from independent
conjugations were pooled, amplified under oxic and anoxic conditions, and then aliquoted to generate
the final mutant pools. Because of contamination, the VT1169 pool was additionally amplified on TSAYE
plus 40 �g/ml kanamycin, 50 �g/ml nalidixic acid, and 100 �g/ml rifampin. Aliquots of the 624 and
VT1169 mutant pools before and after amplification were used for Tn-seq and treated as replicates for
essential genome analyses.

Tn-seq libraries (essential genome). DNA was extracted from each mutant pool largely as de-
scribed previously (83). An aliquot (1-ml glycerol stock) was resuspended in 1 ml 1� buffer A (84) plus
0.1% SDS and 0.1% sodium deoxycholate, transferred to a Lysing Matrix B 2-ml tube (MP Biomedicals),
homogenized in a Mini-Beadbeater (BioSpec), and digested overnight at 55°C with 1 mg/ml proteinase
K. DNA was then extracted with 1 ml 25:24:1 phenol-chloroform-isoamyl alcohol (pH 8.0), purified from
the aqueous phase by isopropanol precipitation, washed with 75% ethanol, and dissolved in 500 �l
distilled water (diH2O). NaCl was then added to 50 mM, and DNA was treated with 0.1 mg/ml RNase A
for 1 h at 37°C. DNA was then reextracted with 500 �l phenol-chloroform-isoamyl alcohol and purified
by ethanol precipitation.

Tn-seq libraries were prepared as described previously (41) (Table 3 lists primer sequences). Libraries
were sequenced at The University of Texas at Austin Genome Sequencing and Analysis Facility on an
Illumina NextSeq 500 1-by-75 single-end run.

Tn-seq analysis. The location and frequency of transposon insertions were determined largely as
described previously (33, 83). See Tables S1 and S2 for details and a summary of the analysis. Software/
language versions were fqgrep v0.4.3 (https://github.com/indraniel/fqgrep), cutadapt v1.11 (85), python
v2.7.9, bowtie2 v2.2.5 (86), and R v3.3.1.

Essential genome analysis. The essential genome of each strain of A. actinomycetemcomitans was
determined largely as described previously (41, 48) using the following two replicates per strain: (i)
Tn-seq on an aliquot of the mutant pool before amplification and (ii) Tn-seq on an aliquot of the mutant
pool after amplification (see “A. actinomycetemcomitans mutant pools”). After correcting for polymerase
slippage as described previously (33, 87), the countif function in Microsoft Excel was used to filter for
insertions present in both replicates (see Table S1). Local smoothing (LOESS) was then used as described
previously (41, 48) to correct for how multifork replication can inflate the abundance of insertions close
to the origin of replication (see Table S2).

TABLE 3 Primer sequences used in this study

Primer Function

Reaction or
coordinatesb

(plate/well) Sequence (5=–3=)
olj376 Preparing Tn-seq libraries

(essential genome)
PCR-1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGGGGGGGGGGGGGG

olj510_mariner (mariner-1) PCR-1 ACTCACTATAGGAGGGCGGGAATCATTTGAAGGTTGGTAC
BC_a PCR-2 CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTTCAGACGTGTG
olj511_mariner (mariner-2) PCR-2 Biotin-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTNNNNNGTGTCAGACCGGGGACTTATCAG
VT1169_0386-F Validating ordered library 29/H10 GACGCTTCCTGATGAACAAAAGTGC
VT1169_0386-R 29/H10 CCACCATCATCTTCTTGCTCGTAGG
VT1169_1989-F 14/H12 GTAAAGTCTGCGTTAGAATAGCGAGAAATCC
VT1169_1989-R 14/H12 GTCACCCCATACAACGGCAC
VT1169_0152-F 37/B10 GGTCCATAACCCTCAATCTCATCAGC
VT1169_0562-R 34/G5 CGGACATAAACTGCCAAATCCAGC
VT1169_1175-R 34/E2 ACGCAAATTCGTTAGCAACTACTGC
VT1169_1449-R 37/B4 GTTTTGTGCGAATGGCGTTTGC
VT1169_1462-R 18/F3 GACGCTAACGGTGAGCTTTCC
VT1169_1954-F 37/H12 GACCCCGCCTTCAATATCATTTGG
mariner-2-check GTGTCAGACCGGGGACTTATCAG
aThe primer is named after the Illumina barcode that is used (e.g., the x’s in the sequence for BC01 are replaced with Illumina barcode 1).
bCoordinates in the ordered library from which individual colonies were isolated.
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An “expected” data set was then generated using a previously described (41) Monte Carlo method,
where for each simulation the location of each insertion and its associated read counts were randomly
reassigned to any of the possible TA sites in the genome. The locations of TA sites were identified using
the Find Motif tool in the Integrative Genomics Viewer v2.3.80 (88). In total, the expected data set
comprised 100 simulations: 50 simulations used the read counts from the first Tn-seq replicate, and 50
simulations used the read counts from the second Tn-seq replicate.

Next, the counts per coding DNA sequence (CDS) were tallied using the intersectBed function in
BEDTools v2.24.0 (89), the sumif function in Microsoft Excel, and a genome annotation with the 3= 10%
of each gene truncated (to avoid analyzing insertions that may not disrupt gene function). Insertions
intersecting 0 or 2 CDSs were excluded from the tallying step, and tallies were increased by 1 to avoid
later potentially dividing by 0.

DESeq2 v1.12.4 (90) was then used with default parameters (except for turning off Cook’s distance
cutoff for outlier removal) to calculate differential mutant abundance between the observed (n � 2
Tn-seq replicates) and expected (n � 100 simulations) data sets, and mclust v5.2 (91) was used to
categorize each CDS as either reduced or unchanged compared to the expected data set.

Essentiality was determined according to the following parameters: for VT1169, (i) observed versus
expected DESeq2 log2 fold change of �0, (ii) DESeq2 adjusted P value of �0.001, (iii) mclust mode of 1,
and (iv) mclust P value of �0.001; for 624, (i) observed versus expected DESeq2 log2 fold change of �0,
(ii) DESeq2 adjusted P value of �0.01, (iii) mclust mode of 1, and (iv) mclust P value of �0.01. Stricter
cutoffs were used for VT1169 because it underwent an additional passaging step to remove contami-
nation (see “A. actinomycetemcomitans mutant pools”).

Furthermore, to avoid miscategorizing genes with high sequence similarity as essential, the Tn-seq
analysis for each strain was also run for reads with MAPQ (uniqueness) scores below the cutoff (with
MAPQ score of �39), and the low and high MAPQ data sets were directly compared using DESeq2. Genes
were considered “duplicated,” and therefore not capable of being essential, according to the following
parameters: (i) low-MAPQ versus high-MAPQ DESeq2 log2 fold change of �10 and (ii) DESeq2 adjusted
P value of �0.001. See Data Set S1 for full results.

Ortholog analysis. Orthologs between A. actinomycetemcomitans VT1169 and 624 were determined
using InParanoid v4.1 (92) with BLAST v2.2.16 (93). The InParanoid bootstrapping option and the BLAST
substitution matrix BLOSUM45 were used. Input protein sequences for InParanoid were generated as
follows. Coding DNA sequences (CDSs) were extracted from A. actinomycetemcomitans genomes using
the getfasta function in BEDTools v2.24.0 (89), and translated to protein sequences using EMBOSS
Transeq (94). InParanoid paralogs and “duplicated” genes (see “Essential genome analysis”) were ex-
cluded from the final ortholog list.

Density plots. Density plots in Fig. 1A were generated using the general R function density() with
default parameters.

Functional enrichment analysis. Genes were assigned to Clusters of Orthologous Groups (COGs) as
follows. A. actinomycetemcomitans VT1169 and 624 were first annotated with K numbers as described
previously (33) using the KEGG Automatic Annotation Server (KAAS) (95). K numbers were then
converted to COGs (49) using the binary relationship file provided on the KEGG website (http://www
.genome.jp/kegg/files/ko2cog.xl). Assigned COGs were then grouped into functional single-letter cate-
gories using the table provided on NCBI’s COG website (ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/COG0303/
cogs.csv). Finally, COGs were tallied for each strain’s full and essential genomes using functions in
Microsoft Excel. The significance of each COG’s enrichment (or depletion) was determined as described
previously (32) using a Fisher exact test add-in written for Microsoft Excel (http://www.obertfamily.com/
software/fisherexact.html).

Metabolic network. The metabolic network in Fig. 2 was generated using KEGG (51) as follows. The
KEGG application programming interface (API) first was used to find (i) the list of R numbers associated
with each K number (http://rest.kegg.jp/link/rn/ko) and (ii) the list of C numbers associated with each R
number (http://rest.kegg.jp/link/cpd/rn) in the KEGG database. These lists were then used with the
countif function in Microsoft Excel to find the list of C numbers (via the R numbers) associated with each
K number in the A. actinomycetemcomitans VT1169 and 624 genomes (obtained using KAAS [95]). The
KEGG Mapper Search and Color Pathway tool was then used to generate a metabolic map for the
combined list of A. actinomycetemcomitans K and C numbers, both of which were colored black. This map
was exported as a PNG file and copied into Microsoft PowerPoint, where gray background was removed
by setting the brightness to 20%. Next, the KEGG Mapper Reconstruct Pathway tool was used to generate
a metabolic map for the subset of A. actinomycetemcomitans K numbers that are essential. A. actinomy-
cetemcomitans VT1169 was set to organism 1 to color its K numbers green, and A. actinomycetemcomi-
tans 624 was set to organism 2 to color its K numbers red. K numbers essential in both genomes were
colored blue. This map was also exported as a PNG file, copied into Microsoft PowerPoint, and adjusted
to remove gray background. The transparency of the Reconstruct Pathway map was then set to 40%, and
it was aligned over the Search and Color Pathway map. The final map was made by manually adding
green, red, and blue dots (since compounds cannot be included in the Reconstruct Pathway tool),
whiting out dots not connected to lines, and labeling specific pathways. See Table S4 for a list of
metabolic pathways that are essential in A. actinomycetemcomitans.

Essential gene conservation analysis. Orthologs to the core essential genes in A. actinomycetemcomi-
tans VT1169 were identified in other strains of A. actinomycetemcomitans (Table 2 lists the strains) using
InParanoid v4.1 (92) (as described in “Ortholog analysis”). Protein sequences from the other A. actinomyce-
temcomitans strains were downloaded (in February 2017) from GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/
genbank/bacteria/Aggregatibacter_actinomycetemcomitans/latest_assembly_versions/). See Data Set S1 for
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full results. Orthologs to the core essential genes in A. actinomycetemcomitans VT1169 and 624 were
identified in the essential genomes of other bacterial strains/species using the Database of Essential
Genes (DEG) v14.7 (52) with default blastp parameters. In cases where DEG provided multiple entries for
the same strain, the entry containing the most orthologs was used.

Ordered library. The ordered library for A. actinomycetemcomitans VT1169 was generated as follows.
Aliquots of the A. actinomycetemcomitans VT1169 mutant pool were thawed, diluted into �1 ml TSBYE,
and incubated at 37°C for �5 h. Revived cells were then serially diluted, plated onto TSAYE (either plain
or, to help prevent contamination, with 10 to 50 �g/ml nalidixic acid and/or 10 to 40 �g/ml kanamycin),
and incubated under oxic conditions. Once visible, individual colonies were hand-picked using pipette
tips into 96-well plates filled with TSBYE. Picked 96-well plates were grown overnight under oxic
conditions, mixed 1:1 with 50% glycerol, and stored at �80°C. This procedure was repeated for a total
of 39 plates.

CP-CSeq. The 39 plates were revived by pin replication, first onto TSAYE and then into TSBYE in
96-well plates. We found that first reviving A. actinomycetemcomitans onto TSAYE helped increase the
number of wells per 96-well plate that could be revived. Once revived, the 39 plates were pooled into
2 master plates as described for the Cartesian pooling-coordinate sequencing (CP-CSeq) method (46).
Briefly, an aliquot of each well of each plate was added to the corresponding well in master plate 1,
whereas all 96 wells per plate were first pooled and then each added to a single well in master plate 2
(see Fig. S6). Afterward, each row and column of each master plate were collected into separate pools,
resulting in a total of 33 pools (20 [8 rows � 12 columns] from master plate 1 � 13 [5 rows � 8 columns]
from master plate 2) (see Fig. S6).

Tn-seq libraries (ordered library). Tn-seq libraries were made for each of the 33 ordered library
pools as described above [see “Tn-seq libraries (essential genome”)] with minor modifications. DNA was
extracted from each pool using the DNeasy blood and tissue kit (Qiagen) according to the manufacturer’s
protocol for pretreatment of Gram-negative bacteria. Terminal deoxynucleotidyltransferase reactions
were scaled to 20 �l and used 1 �g sheared DNA as input. DNA was purified using the MinElute reaction
cleanup kit (Qiagen) and eluted into 20 to 50 �l diH2O. Libraries were sequenced at The University of
Texas at Austin Genome Sequencing and Analysis Facility on an Illumina HiSeq 4000 1-by-50 single-end
run. The pool made from row E of master plate 2 was sequenced on an Illumina NextSeq 500 1-by-75
single-end run.

CP-CSeq analysis. The 33 CP-CSeq Tn-seq libraries were analyzed as described above (see “Tn-seq
analysis”) with one major exception. Because the libraries were sequenced on a 1-by-50 run instead of
a 1-by-75 run, the reads were not long enough to be mapped to the A. actinomycetemcomitans genome.
This was because our Tn-seq primers are designed such that reads off a 1-by-50 run extend only 12 bp
past the transposon into the genome. Therefore, we were forced to initially analyze these 12-bp “tags,”
instead of numeric insertion sites, when determining the coordinates of each mutant in the library. (The
Tn-seq library for row E of master plate 2 was sequenced on a 1-by-75 run, so to make it equivalent to
the other libraries, it was trimmed to 1 by 50 using fastx_trimmer [http://hannonlab.cshl.edu/fastx
_toolkit/index.html].)

We found that each of the 33 pools contained �10,000 tags, even after increasing the stringency of
our Tn-seq analysis (see Table S6). Since this was vastly more than expected, we decided to limit our
analysis to only the most abundant tags in each pool. Along these lines, we generated lists of the most
abundant tags in each pool that corresponded to how many tags would be expected if each well in the
library contained a single mutant (see Table S6).

Next, we used the Unix command ‘grep �Fx �f list1 list2= to find the tags that were in common (i)
between each row and column of master plate 1 (providing lists of the tags that are in each well of the
library, e.g., a single list for all tags that are in all wells A1, a single list for all tags that are in all wells A2,
etc.), (ii) between each row and column of master plate 2 (providing lists of the tags that are in each plate
of the library, e.g., a list for all tags in plate 1, a list for all tags in plate 2, etc.), and then (iii) between each
list of well tags and list of plate tags (generated in the previous two steps) to finally identify the tag(s)
that is in each well of each plate in the library.

To associate each of these tags with a numeric transposon insertion site in the A. actinomycetem-
comitans genome, we collected the entire ordered library into a single pool, made a Tn-seq library, and
sequenced it on a 1-by-75 run (see “Erythromycin screen” below). We then used the results to make a
binary relationship file for associating each tag with an insertion site. In making this file (from the bowtie2
SAM output file), we were careful to extract the first 12 bases from sequences mapped to the positive
strand and the last 12 bases from sequences mapped to the negative strand.

We then used the binary relationship file along with a custom shell script, mimicking the vlookup
function in Microsoft Excel (see script 1), to associate the tag(s) in each well of the library with an
insertion site. As some tags are associated with multiple insertion sites (i.e., the same 12-bp sequence is
next to different insertion sites in the genome), we associated each tag with the more abundant insertion
site by sorting the binary relationship file in order of lowest to highest insertion site (because of how the
vlookup shell script works). Finally, we used the BEDTools v2.24.0 (89) closestBed function to find the
closest coding gene to each insertion site.

A spreadsheet is provided in Data Set S1 that lists for each mutant (i) its library coordinate, (ii) tag,
(iii) how many unique sites are associated with that tag, (iv) insertion site, (v) locus tag of closest gene,
(vi) start site and (vii) stop site of the closest gene, and (viii) distance from the insertion site to the closest
gene.
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Ordered library validation. Each well chosen to validate the library (Fig. 3) was struck out onto
TSAYE, and isolated colonies were confirmed— either by Sanger sequencing or by colony PCR—as the
mutant predicted by CP-CSeq.

Sanger sequencing. Isolated colonies were cultured in TSBYE and then used to make Tn-seq libraries
as described above [see “Tn-seq libraries (ordered library)”]. Libraries were sequenced using the primer
mariner-2 (Table 3) on an Applied Biosystems 3730 DNA analyzer at The University of Texas at Austin DNA
Sequencing Facility. Sanger sequencing data were aligned to the VT1169 chromosome using bowtie2
(86).

Colony PCR. Isolated colonies were picked into diH2O, incubated at 95°C for 5 min in a thermocycler,
and then added as the template to PCR mixtures using mariner-2-check and the indicated primer (Table
3). Genomic DNA purified from VT1169 was used as a control. PCRs using primers targeting both sides
of the gene were confirmed if the PCR product was larger than the genomic DNA control. PCRs using a
primer targeting the transposon (mariner-2-check) and a primer targeting only one side of the gene were
confirmed if a PCR product was amplified for the mutant but not for the genomic DNA control.

Erythromycin MIC. An overnight TSBYE culture of A. actinomycetemcomitans VT1169 was diluted to
an optical density (OD) of 0.1 into a 2-fold serial dilution of TSBYE plus erythromycin in a 96-well plate.
After the plate was grown overnight (up to 24 h), the MIC was determined as the lowest antibiotic
concentration that did not permit growth. This procedure was repeated twice.

Erythromycin screen. The ordered library was screened for altered erythromycin susceptibility both
as individual mutants and as a pool.

Individual mutant screen. The ordered library was revived by pin replicating batches of 4 to 9 plates
onto TSAYE. After 2 to 3 days, colonies were pin replicated into TSBYE in 96-well plates and grown
overnight. From these plates, 5 �l from each well was diluted into 95 �l of TSBYE plus half-MIC
erythromycin in 96-well plates. After these plates were grown overnight (up to 24 h), individual wells
were examined for lack of growth.

Pooled mutant screen. Per batch of revived plates, 2 to 10 �l of each well was combined and
thoroughly mixed. In the antibiotic treatment, 5 �l of the mixture was diluted into 95 �l of TSBYE plus
half-MIC erythromycin in each of 24 wells of a 96-well plate. In the control treatment, 5 �l of the mixture
was diluted into 95 �l of TSBYE lacking antibiotic in each of 24 wells of the same 96-well plate. The
96-well plate was grown overnight, and the 2 sets of wells were separately collected and stored. After
screening of the full library, the antibiotic and control treatments from each batch were collected into
separate pools. Tn-seq libraries were made from each pool as described above [see “Tn-seq libraries
(ordered library)”]. Libraries were sequenced at The University of Texas at Austin Genome Sequencing
and Analysis Facility on an Illumina NextSeq 1-by-75 single-end run.

Tn-seq analysis (erythromycin screen). The location and frequency of transposon insertions were
determined largely as described previously (33, 83). See Tables S1 and S2 for details and a summary of
the analysis. Software/language versions were fqgrep v0.4.3 (https://github.com/indraniel/fqgrep), cut-
adapt v1.12 (85), python v2.7.9, bowtie2 v2.2.5 (86), and R v3.3.1. Differential mutant abundance was
tested at the site and gene level as described previously (33, 83) with minor modifications. Read counts
for the control and antibiotic treatments were merged by insertion site using the full_join() dplyr function
in R. Read counts for sites present in one sample but not the other were set to 1. When tallying the site
counts per gene, the 3= 10% of genes was excluded to prevent analysis of insertions that may not disrupt
gene function. DESeq2 v1.12.4 (90) was used with default parameters. Sites/genes were considered
differentially abundant according to the following parameters: log2 fold change of �1 and P of �0.05.
See Data Set S1 for full results and Table S8 for a summary.

Growth curves. Overnight cultures were diluted to an OD at 600 nm (OD600) of 0.1 in 5 ml TSBYE with
or without half-MIC erythromycin in test tubes and then grown under oxic conditions for 8 h, during
which OD600 measurements were made at 2-h intervals. Growth curves were performed for the A.
actinomycetemcomitans VT1169 wild type and mutants (Fig. 5) on at least 3 different days. For each
growth curve, the generation time was calculated in Microsoft Excel as the average of every possible
generation time that could be calculated from at least 3 data points with an R2 (square of Pearson
product moment correlation coefficient) of �0.99.

Attachment assays. Overnight cultures were diluted to an OD600 of 0.1 in 100 �l TSBYE with or
without erythromycin (0.001, 0.01, 0.1, 0.5, or 1� MIC) in 96-well plates and then grown overnight (21
to 22 h) under oxic conditions. Afterward, TSBYE and loosely attached cells were removed by pipetting,
and 100 �l 0.1% (wt/vol) crystal violet was added to each well. After incubation of the plates for 10 min,
unbound crystal violet was removed by submerging the plates three to four times in diH2O. The plates
were then placed in a flowing fume hood, and once they were dried, bound crystal violet was solubilized
for 10 min with 200 �l 95% ethanol. Afterward, 100 �l was transferred to a new plate, and the
absorbance (A620) was measured on a Synergy Mx microplate reader (BioTek). Attachment assays were
performed for the A. actinomycetemcomitans VT1169 wild type and mutants (Fig. 5) in at least triplicate
on at least 3 different days.

Computational analyses. Computational analyses were performed both locally and on the Stam-
pede system of the Texas Advanced Computing Center.

Accession number(s). Raw sequencing data were deposited into the National Center for Biotech-
nology Information Sequence Read Archive under the accession number SRP099146. The sequence for
the mariner minitransposon delivery plasmid, pMR361-K, was deposited into GenBank under the
accession number KY767032.
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