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ABSTRACT: Numerous chemical data sets have become
available for quantitative structure−activity relationship
(QSAR) modeling studies. However, the quality of different
data sources may be different based on the nature of
experimental protocols. Therefore, potential experimental
errors in the modeling sets may lead to the development of
poor QSAR models and further affect the predictions of new
compounds. In this study, we explored the relationship
between the ratio of questionable data in the modeling sets,
which was obtained by simulating experimental errors, and the
QSAR modeling performance. To this end, we used eight data
sets (four continuous endpoints and four categorical
endpoints) that have been extensively curated both in-house
and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling
sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the
modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when
the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds,
which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively
large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after
removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of
new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can
identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not
a reasonable means to improve model predictivity due to overfitting.

■ INTRODUCTION

Quantitative structure−activity relationship (QSAR) models
are statistical models, which build correlations between the
chemical structure information (represented by a set of
molecular descriptors) of compounds and their target biological
activities.1 The data sets for QSAR modeling, which contain the
structure information and activities of compounds, are
generated by experimental scientists and available in various
data sources. Along with the large chemical library and high-
throughput screening technologies being developed, numerous
data sets have become available for modelers.2 Popular data
sources include general data deposit portals, such as PubChem
(http://pubchem.ncbi.nlm.nih.gov), and databases for specific
research interests, such as Toxicity ForeCaster (ToxCast)
(https://www.epa.gov/chemical-research/toxicity-forecaster-
toxcasttm-data) and ACuteTox (http://www.acutetox.eu/).
However, the quality of data may be different based on the
nature of experimental protocols. The usefulness of public data
sources is questionable due to lack of the necessary quality
control.3 General concerns have been raised regarding

irreproducible experimental data,4−6 which is relatively
common in complex biological testing (e.g., animal models).
The major issues existing in the public data sources include

(1) the incorrect representation of chemical structures (i.e.,
structural errors) and (2) inaccurate activity information (i.e.,
experimental errors). There have been many relevant works
showing that noncurated chemical structures will result in
models of poor accuracy and the curation of chemical structures
will improve modeling predictivity.7,8 The recent review9 by
Fourches et al. indicates a standardized workflow can be used to
greatly decrease the structural errors in the public data sets.
However, besides the chemical structure information, the
quality of QSAR models also strongly depends on the target
biological data. Because of the inevitable experimental errors, it
is hard to know which compounds in the modeling set contain
incorrect experimental data. Reliable biological data in data sets
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are usually obtained by taking the average of multiple
measurements (assuming that there is no systematic error in
each measurement)10 and/or testing the compounds under
multiple concentrations.10,11 Experimental errors normally
occur when testing compounds just a single time and/or
under a single concentration. Modeling data sets defined by a
single measurement containing experimental errors will
decrease the predictivity of the resulting QSAR models,
according to a previous study.12 Recently, Cortes-Ciriano et
al.13 simulated the experimental errors in QSAR modeling sets,
and then compared the influence of different QSAR approaches
on predictive accuracy. This study provides a practical reference
for making a better decision about which modeling approach
should be chosen depending on the quality of modeling sets.
Roy et al.14 have studied the relationship between systematic
errors in the predictions and the applicability domain (AD) of
QSAR modeling. They also exposed the flaw of using normal
correlation coefficients to describe model predictivities.15 These
previous studies mainly focus on the relationship between the
predictivity of QSAR models and the quality of modeling sets
or the selection of modeling approaches. However, there is no
systematic study on how to obtain a reliable QSAR model from
an error-ridden modeling set (either a continuous set or a
categorical set). Two relevant questions that have not been
answered are (1) whether we can identify large experimental
errors in the data sets, and (2) what can we do to improve
models based on data sets with such errors.
The goal of this study is to address the above two challenges

by designing a practical workflow, which can be used to identify

potential experimental errors in QSAR modeling sets, providing
a guide to improve the predictivities of the models from low-
quality modeling sets. In this study, eight in-house data sets,
which consisted of various numbers of compounds, were
modified by introducing different levels of simulated exper-
imental errors. Four types of QSAR models were generated
with the original/modified modeling sets and the model
performances were evaluated by a fivefold cross-validation
process. Finally, all of the models were also evaluated by
predicting one external set, which was set aside at the beginning
of the modeling procedure.

■ RESULTS AND DISCUSSION

Overview. In this study, eight data sets with various
bioactivities were used for modeling purposes. Some of them
(e.g., AMES) have been extensively used in previous QSAR
studies.16−19 For this reason, the QSAR models developed in
this study with the original modeling sets (without introducing
simulated experimental errors or removing any compounds)
have similar performances compared to those of previous
studies. Furthermore, according to our previous studies, the
consensus predictions (i.e., averaging predictions of all
individual models) showed significant advantages compared
to those of individual models, especially for external
predictions.20−23 Similarly, the consensus predictions obtained
the highest accuracy for almost all models in this study (Tables
S1 and S2). To avoid the complexity of comparing hundreds of
different individual models, we only compared the consensus
model performances for each data set in the following

Figure 1. ROC AUC and ROC enrichment plots for each data sets.

ACS Omega Article

DOI: 10.1021/acsomega.7b00274
ACS Omega 2017, 2, 2805−2812

2806

http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00274/suppl_file/ao7b00274_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00274/suppl_file/ao7b00274_si_001.xlsx
http://dx.doi.org/10.1021/acsomega.7b00274


discussions. External prediction results of all consensus models
are reported in Tables S3 and S4.
Three methods (one for categorical data sets and two for

continuous data sets) were used to simulate experimental errors
in the modeling sets (see Materials and Methods section for
details). Several new modeling sets were generated with
different levels of experimental noise added. For each
categorical data set, there are six new modeling sets generated.
For each continuous data set, there are six and four new
modeling sets generated, using the two methods for
introducing experimental errors. After the simulated exper-
imental errors were introduced into the modeling sets, the
model performance in the fivefold cross-validation for all data
sets deteriorated (data not shown).
Can QSAR Modeling Identify Potential Experimental

Errors in Modeling Sets? The major goal of this study is to
identify experimental errors in a modeling set using QSAR
approaches. To this end, we performed a fivefold cross-
validation for each model and consensus predictions were made
based on the results of the fivefold cross-validation of all
individual models. The compounds in each data set can be then
sorted in decreasing order by their apparent prediction errors.
The topmost compounds with the largest prediction errors can
then be checked for the amount of introduced experimental
noise. Plots on the left in Figure 1 shows the area under the
receiver operating characteristic curve (ROC AUC) plot for
each data set when prioritizing compounds with simulated
experimental errors by their cross-validation prediction errors
between experimental data and consensus predictions (ROC
plots can be found in Figures S1 and S2). After sorting the
compounds by their prediction errors, it is noticeable from the
ROC enrichment plots on the right in Figure 1 that the
compounds with simulated experimental errors can be
prioritized in most data sets. For example, in categorical data
sets, the top 1% compounds from the MDR1-x5 modeling set
obtained about 12.9 (in folds, compared with that of the
random selection) of ROC enrichment and the top 20%
compounds from MDR1-x5 modeling set obtained about 4.7
(in folds, compared with that of the random selection) of ROC
enrichment. The other two categorical data sets, BSEP and
AMES, have similar results compared to those of MDR1.
However, the ROC enrichment in BCRP data sets is not as
significant as that in the others. The BCRP set is the smallest
data set, which only contains about 300 compounds in the
modeling set. The prediction accuracy of BCRP models is also
worse than that for the other three data sets. It is thus
reasonable to conclude that the impact of experimental errors
on the QSAR modeling is stronger for small data sets than that
for large data sets.
In continuous data sets, due to the nature of the two

methods used to simulate experimental errors, every compound
contains a certain level of simulated error. The ROC AUC plots
for continuous data sets are based on the ratio of prioritized
simulated experimental errors in the whole data set (i.e., the
sum of simulated experimental errors in the prioritized
compounds divided by the total error amount). Not
surprisingly, the prioritization of compounds with simulated
experimental errors is not as efficient as for categorical data sets
because every compound carries some simulated experimental
errors. The largest ROC AUC for continuous data sets is about
0.70, which is lower than that of categorical data sets. But the
ROC enrichment plot of all continuous data sets still shows the
ability of the cross-validation of the modeling sets themselves to

prioritize compounds with large errors. For example, in the case
of strategy 1 (experimental error simulation strategy 1, details
are in the method part below), the top 1% compounds from the
LD50-b20 modeling set obtained about 4.2 (in folds, compared
with that of the random selection) of ROC enrichment and the
top 20% compounds from LD50-b20 modeling set obtained
about 2.3 (in folds, compared with that of the random
selection) of ROC enrichment. In the case of strategy 2
(experimental error simulation strategy 2, details are in the
method part below), the top 1% compounds from LD50-b20
modeling set obtained about 5.3 (in folds, compared with that
of the random selection) of ROC enrichment and the top 20%
compounds from LD50-b20 modeling set obtained about 2.3
(in folds, compared with that of the random selection) of ROC
enrichment compared with that of the random selection.
For both categorical and continuous data sets, when the level

of simulated experimental errors increases (e.g., the ratio of
compounds with simulated errors rises), the prioritization of
compounds with simulated errors using QSAR modeling
became less efficient (ROC enrichment plots in Figure 1,
ROC enrichment heatmaps in Supporting Information). For
example, in the categorical data sets (Figure 1), the top 1%
compounds from MDR1-x25 modeling set obtained about 3.8
(in folds, compared with that of the random selection) of ROC
enrichment, which is much lower than that from the MDR1-x5
modeling set (12.9). A similar situation was found in the
continuous data sets, the top 1% compounds from the FM-b5
modeling set obtained about 3.11 (in folds, compared with that
of the random selection) of ROC enrichment, which is lower
than that from the FM-b20 modeling set (4.9). And the top 1%
compounds from the FM-k0.5 modeling set obtained about 4.8
(in folds, compared with that of the random selection) of ROC
enrichment, which is lower than that from the FM-k0.1
modeling set (5.6). When modeling sets contain a large amount
of simulated experimental errors (e.g., MDR1-x50, EB-n1, and
EB-k1.0, etc.), the prioritization of compounds with simulated
errors using QSAR modeling is not better than random
selection. Our results indicate that the cross-validation of
modeling sets themselves is capable of prioritizing compounds
with experimental errors when (1) the modeling set is large
enough and well curated; and (2) the level of experimental
noise present in the data set is not too high. These conditions
are essential for obtaining good models, that is, those capable of
capturing true data relationships.

Can We Improve QSAR Models Predictions? Previous
studies showed that applying the AD can improve model
predictivity by removing compounds with unique structures
(i.e., structure outliers17,23,24). There is a recent report
demonstrating the importance of checking model AD before
comparing their predictivities.14 In this study, we also applied
AD, which is defined by calculating the Euclidean distance
between an external compound to its nearest neighbor in the
modeling set, to all of the model predictions. The external
model predictivities have moderate improvements after
applying AD (Tables S3 and S4). However, it is clear that
the implementation of AD could not significantly improve the
predictivity of the models based on modeling sets with
simulated experimental errors. Similar to what has been
shown in the above section, the external predictivities of
these models are still much lower than the models based on the
original modeling sets.
As shown in the above section, most compounds with

simulated experimental errors in the modeling sets can be
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prioritized by the cross-validation procedure. It is noticeable
that most of the compounds with simulated experimental errors
can be excluded by removing the top 10−20% compounds,
ranked by their prediction errors, from modeling sets.
Therefore, different amounts of top-ranked compounds were
removed from the sets, and the resulting new modeling sets
with different, reduced sizes were used to redevelop QSAR
models using the same approaches. For each data set, the top 5,
10, 15, and 20% compounds, which contain the highest cross-
validation errors were removed to form four new modeling sets
and the relevant QSAR models were developed accordingly.
Not surprisingly, the cross-validation results with reduced
modeling sets showed better statistics (e.g., higher correct
classification rate (CCR)) than in those with all simulated
experimental errors (data not shown).
In Figure 2, the external validation results of these new

QSAR models, generated using reduced modeling sets, were
shown and compared with those generated using all
compounds. The predictivity of the same external compounds
can truly reflect the model predictivity power for new (unseen
to the model) compounds. The external prediction results of
these new QSAR models are presented in Tables S3 and S4.
The results of the above section showed that when the fraction
of compounds with simulated experimental errors increased in
the modeling set, the external predictivity deteriorated (the first
column on the left of each heatmap). However, although most
of these experimental errors can be removed by ranking the
modeling set compounds by cross-validation results, the
external predictivity of all of the models showed no
improvement. For example, after removing 15% compounds
from BSEP-x10 modeling sets, the ratio of compounds with
experimental errors drops from about 10 to about 2%. But the
CCR of external predictivity has no significant change (Figure
2). Because R2 is not always suitable to describe model
predictivity, especially for external compounds,15 here we used

mean absolute error (MAE) as a criteria to compare the
predictivities of continuous models and a similar situation was
obtained in the continuous data sets. For example, the external
validation deteriorated after removing 10% compounds from
the ER-n10 modeling set (the third row in the ER-n heatmap)
and the ER-k0.2 modeling set (the third row in the ER-k
heatmap). The MAE of external prediction increased from 0.75
to 0.80 for ER-n10 data sets and to 0.79 for ER-k0.2 data sets.
All of the results above indicate that, although most

compounds with simulated experimental errors can be
identified using the prioritization strategy based on the cross-
validation results, simply removing the suspicious compounds
from the modeling sets did not improve the external
predictivity of QSAR models. When the top-ranked compounds
are removed as described above, a certain number of
compounds with the correct experimental values are removed
as well. This step will not only decrease the AD of model,
which normally depends on the size of the modeling set, but
will also result in the overfitting issue, as reported previously.25

What Can We Do to Modeling Sets with Suspicious
Data? Another interesting finding is that the external
predictivity of QSAR models seems unaffected when the ratio
of simulated experimental errors is small in the modeling set
(Figure 2). For example, among categorical data sets, the
external predictivity of BSEP-x5 and BSEP-x10 models (CCR =
0.88 and 0.87, respectively) is similar to that based on the
original BSEP modeling set (CCR = 0.89). Among continuous
data sets, the external predictivities of the FM-n20 and FM-n10
models (R2 = 0.67 and 0.68, MAE = 0.57 and 0.57) is similar to
that based on the original FM modeling set (R2 = 0.66, MAE =
0.57). Similar situations can be found with other models/
modeling sets. We believe that two factors contribute to this
observation. First, the models can tolerate and overcome the
small amount of noise/errors in the data set, if it is sufficiently
large. Second, the inherent amount of noise present in the

Figure 2. Comparison of external prediction results for each model from different modeling sets. In each heatmap, the x axis represents modeling
sets with the top ranked 5, 10, 15, and 20% compounds removed by cross-validations, y axis represents modeling sets with different ratios of
simulated experimental errors.
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original experimental data (this amount depends on the
endpoint) sets the upper limit on the evaluation accuracy of
models, so that models based on controls and noisy data sets
will not be easily distinguishable by performance, if their
accuracy is close to or exceeds that limit.

■ CONCLUSIONS

In this study, we used four continuous and four categorical data
sets, which have been extensively curated in-house and by our
collaborators to address two questions related to experimental
errors in the modeling set: (1) Can we find a way to identify
the experimental errors in the modeling sets? (2) What can we
do to improve the QSAR models, which are generated from
data sets containing a certain ratio of experimental errors?
By applying three experimental error simulation strategies on

each data set, more than 1800 various QSAR models were
generated from all of the modeling sets with different ratios of
simulated errors. We described in detail the strategy for
identification of experimental errors in modeling sets. The
compounds with relatively large prediction errors in the cross-
validation process are likely to be those with simulated
experimental errors. Thus, the cross-validation of modeling
sets is able to prioritize compounds with experimental errors.
This strategy will work efficiently when (1) the modeling set is
large and highly curated for the structure information; and (2)
the experimental error level is not too high (e.g., the ratio of
compounds with errors is lower than 5−15% for a categorical
data set).
After identifying the experimental errors in the modeling sets

by analyzing the cross-validation results, we noticed that most
of the simulated experimental errors can be excluded by
removing a certain percentage of compounds with a high
ranking of prediction error. Therefore, various amounts of top-
ranked compounds were removed from the modeling sets, and
the resultant new modeling sets with different, reduced sizes
were used to redevelop QSAR models. We performed external
validations for these new models to evaluate their predictivities
for new compounds. However, simply removing the suspicious
compounds from the modeling sets did not improve the
external predictivity of QSAR models. When the top-ranked
compounds are removed, a certain number of compounds with
true experimental values are also removed. This will not only
decrease the prediction reliability but also result in the
overfitting issue. Therefore, the suspicious compounds

prioritized by cross-validation may be candidates for retesting
to obtain the correct experimental values. If this is not possible,
these sample points should be kept as they are, to allow model
training to overcome these or at least to signify areas of
chemical space, where prediction errors will be likely.

■ MATERIALS AND METHODS

Data Sets. The eight data sets used in this study (Table 1)
were taken from public literature and extensively curated in-
house or obtained from Multicase Inc. (Beachwood, OH
44122). These data sets include four categorical and four
continuous bioactivity endpoints. The sizes of both the two
types of data sets vary from hundreds to thousands. These data
sets represent diverse biological properties useful for drug
design and/or regulatory risk assessment. The BCRP, MDR1,
and BSEP data sets represent inhibition of the respective
membrane transporters. The AMES data set is a large bacterial
mutagenicity collection from public sources. The ER data set
was collected from previous estrogen receptor binding studies
and specifically refers to the chemical binding affinity of ERα.18

The EB data set contains the results of Microtox testing of
environmental bacteria (aerobic heterotrophs, nitrosomonas,
methanogens, and photobacteria) by U.S. EPA.26,27 The
remaining two data sets, FM and LD50, are whole animal
toxicity endpoints, and represent the acute toxicity testing
results against the fathead minnow and rat, respectively.17,28

Experimental Error Simulation. Different levels of
experimental errors were simulated and introduced into each
modeling set in this study. We used three different strategies to
simulate experimental errors based on the data type. For each
categorical data set, we randomly selected x% (x = 5, 10, 15, 20,
25, 50) compounds from the two classes and exchanged their
activity categories and then obtained six new modeling sets.
Each new modeling set was labeled based on their levels of
simulated experimental errors. For example, the AMES-x5
modeling set is the new AMES modeling set, when x% = 5% of
modeling set compounds have simulated experimental errors.
For continuous modeling sets, there are two strategies used in
this study to simulate experimental errors: (1) progressive
scrambling, in which compounds were sorted by their activities,
and were assigned to n bins (n = 1, 2, 4, 5, 10, or 20), thus
forming n subsets based on activities. We randomly shuffled
activity values among compounds within each bin and obtained
six new modeling sets; (2) the standard deviation of the activity

Table 1. Information on Chemical Data Sets Used in This Study

size actives inactives description sources

categorical sets
BCRPb 395 178 217 inhibition of membrane transporters at 10 μM Sedykh et al.16

BSEPb 725 303 422 bile salt efflux pump inhibition at 100 μM Metrabase database34

MDR1b 1585 750 835 inhibition of membrane transporters at 10 μM Sedykh et al.16

AMES 3979 1718 2261 bacterial mutagenicity Ames test CCRIS database35

size [Min; Max] mean ± SD description sources

continuous
setsa

ER 546 [−4.50; 2.81] −0.03 ± 1.57 relative binding affinity to ERα Zhang et al.18

FMb 675 [−5.94; 2.00] −2.12 ± 1.35 LC50, toxicity to fathead minnow at 96 h exposure Klopman et al.28

EBb 899 [−2.18; 6.34] 3.19 ± 1.23 IC50, toxicity to environmental bacteria (U.S. EPA
MICROTOX test)

Pangrekar et al.,26 Klopman et
al.27,28

LD50 7332 [−0.34;10.21] 2.54 ± 0.96 LD50, rat acute toxicity, oral Zhu et al.17

aContinuous activity values were negative log 10 transformed. bDenotes proprietary data sets provided by Multicase Inc. (http://www.multicase.
com/case-ultra-models) as accessed in 2015. For these, the “Source” column provides direct precursor publications.
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was first derived in each data set. Then, the standard deviation
of each data set was multiplied by a parameter k (k = 0.1, 0.2,
0.5, 1.0), and this result was denoted as sigma. We generated
random values from zero-centered normal distributions with
each sigma, added these values as errors to the activity value of
each compound in the original modeling sets and finally got
four new modeling sets. Again, we named the new modeling set
as LD50-n1, when n is 1, and LD50-k0.1, when k is 0.1. The
first approach will generate relatively larger experimental errors
than the second approach. We used both methods to cover
various types of existing continuous data sets (e.g., some data
sets with relatively larger experimental errors). All of the
experimental error simulation work was repeated five times.
(The experimental error simulations for AMES and LD50 can
be found in Supporting Information.) The results presented in
this study were the averages of all of the five trials.
Molecular Descriptors.Molecular Operation Environment

(MOE) software version 2015.1029 and Dragon version 6.030

were used in this study for calculating 192 (MOE) and over
1500 (Dragon) 2D chemical descriptors for compounds in each
data set. After that, for each data set, all of the descriptor values
were normalized to the range from 0 to 1, and redundant
descriptors were excluded by deleting descriptors with low
variance (standard deviation <0.01), and/or randomly deleting
one from any pairs of descriptors that have a high correlation
(R2 > 0.95). The remaining 120−140 MOE descriptors and
700−1300 Dragon descriptors (actual numbers are data set
dependent) were used in the following modeling process.
Modeling Approaches. In this study, QSAR models were

developed using two machine-learning algorithms random
forest (RF) and support vector machines (SVMs). In the RF
algorithm, which was developed by Breiman,31 a random forest

is a predictor that consists of many decision trees and makes a
prediction that ensembles outputs from each individual tree. In
this study, RF was implemented in R.2.15.132 using the package
“randomForest”. In the random forest modeling procedure, n
samples were randomly drawn from the original data. These
samples were used to construct n training sets and to build n
trees. For each node of the tree, m descriptors were randomly
chosen from the descriptors set. The best data split was
calculated using these m descriptors for each training set. In this
study, only the default parameter values (n = 500; m is the
square root of the number of descriptors for category models
and one-third of the number of descriptors for continuous
models) were used for model development.
The SVM algorithm was first developed by Cortes and

Vapnik.33 In this study, SVM was implemented in R.2.15.132

using the package “e1071”. Basically, the SVM algorithm
attempted to find the optimal separating hyperplane between
two classes by maximizing the margin. The support vectors are
the points, which fall within this margin. The outlier data points
(i.e., data points on the “wrong” side of the margin) are
weighted down to reduce their influence. In the nonlinear case,
the data points are usually projected into a higher-dimensional
space (to make them linearly separable) using kernel
techniques. There are many types of SVM extensions in the
package “e1071” based on different types of kernels. In this
study, we used the eps-regression SVM approach and its kernel
type is radial basis.

Applying AD. In this study, the AD was calculated from the
distribution of Euclidean distances between each compound
and its nearest neighbor in the modeling set using the relevant
chemical descriptors. The threshold value to define AD for a
QSAR model places its boundary at one-half of the standard

Figure 3. Modeling workflow.
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deviation calculated for the distribution of distances between
each compound in the modeling set and its nearest neighbor in
the same set. If the distance of the external compound from any
of its nearest neighbors in the modeling set exceeds the
threshold, the prediction is considered unreliable and excluded.
Modeling Workflow. The overall modeling workflow is as

shown in Figure 3. Each data set was divided into a modeling
set (83.3% of the overall set) and an external validation set
(16.7% of the overall set). The modeling sets were then
modified by introducing different levels of simulated exper-
imental errors (see the next section for details) and the external
validation sets were set aside and used to test the predictivity of
each model. Multiple QSAR models were first created using the
original modeling sets, and then a consensus model A (shown
in blue in Figure 3) was generated by averaging the results of all
individual QSAR models that were developed using a
combination of a single modeling approach (either RF or
SVM) and a single type of descriptor (either MOE or Dragon).
Then, QSAR models were also developed using modeling sets
with different ratios of simulated errors, and a consensus model
B (shown in orange in Figure 3) was generated as well. The
fivefold cross-validation was carried out to show the perform-
ance of the resulting models (Tables S1 and S2). In the fivefold
cross-validation process, each modeling set was randomly
divided into five equivalent subsets. Each time, four subsets
(80% of the modeling set compounds) were combined and
used to develop QSAR models and the remaining one subset
(20% of the modeling set compounds) was used as a test set for
validating purposes (Figure 3). This procedure was repeated
five times so that each modeling set compound was used for
prediction once.
We tested the performance of the models by applying AD

(Tables S3 and S4). Then, we tested the performance of the
models by removing the modeling set compounds with large
prediction errors in the fivefold cross-validation process. By
removing different ratios (i.e., ratio = 5, 10, 15, and 20%) of the
modeling set compounds based on their prediction errors, the
QSAR models were redeveloped by the reduced size modeling
set. This effort resulted in the consensus model C (shown in
green in Figure 3). Eventually, all QSAR models were
compared to each other using the same excluded validation set.
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