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Back to the Future: Multiparent Populations Provide the Key
to Unlocking the Genetic Basis of Complex Traits

In the past decade, the ability to generate whole-genome
sequences has provided geneticists with a view of the as-

tonishing breadth of genetic variation. This, in theory, means
we should be able to identify the specific differences in DNA
sequence that lead to an inherited phenotype, including dis-
ease states. But this wealth of new information has revealed
perhaps the most fundamental challenge for geneticists since
Mendel.While we understand that phenotypes are influenced
by genetic variation, we do not yet know how to interpret
individual genome sequences, and, therefore, we cannot
predict which genetic variants are linked to which pheno-
types. Indeed, the term “missing heritability” was coined
to highlight the fact that in natural populations the genes
or genetic elements associated with complex traits explain
only a small proportion of the phenotypic variation in these
traits.

In starkcontrast, controlled crossesofmodelorganismshave
generated a wealth of information about the genetic basis
of phenotypes. From broad associations of genomic regions
with traits, to individual polymorphisms that act by well
understood mechanisms, geneticists have been remarkably
successful in revealing the impact of genetic variation on
phenotype. Applications as diverse as targeted drug therapy
and dramatic improvements in agricultural output have been
enabled by our understanding of genetics. But it remains
a significant challenge to transfer this understanding to natural
populations.

To bridge the gap between natural populations and experi-
mental systems, experimental systems need to incorporatemore
of the complexity of natural populations. This has given rise to
aburstofcreativity inthedesignofgeneticreferencepopulations.
The basic idea is simple: combine the strength of the experimen-
tal system,where thegenetic compositioncanbereplicated,with
thegeneticdiversityof the targetpopulation.Rather thanchoose

two inbred lines or two phenotypically divergent individuals
as founders of a genetic reference panel (recombinant
inbreds), choose eight, or 25.Usingmultiple lines as founders
of a set of inbred lineswhose haplotypes can be replicated has
been referred to as Interconnected populationsmulti-parent,
advanced-generation inter-cross design, Complex Cross, and
multi-parental RIL. We are choosing to refer to this broad set
of genetic reference panels as multi-parent populations
(MPP).

Fifteen years ago, themouse genetics community embraced
the challenge of creating strains that would represent the di-
versityofnatural variation inmice, thereby improving theutility
of the organism for exploring complex human disease. Eight
foundermouse strainswere selected, andoffspringpopulations
with all eight haplotypes were developed in a funnel mating
scheme (Figure 1, Collaborative Cross Consortium 2012). The
first set of papers describing these strains was published
in GENETICS and G3 in 2012 (http://www.g3journal.org/
content/mpp_mouse#cc). Systematic monitoring of progress
with the mouse collaborative cross has provided a window
into the impact of drift on the genomes (Srivastava et al.
2017), a startling insight into the genetic basis of male steril-
ity (Odet et al. 2015; Shorter et al. 2017), the impact of struc-
tural variation (Morgan et al. 2017), and a new method for
estimating haplotypes and preserving uncertainty (Oreper
et al. 2017). The resources developed for mouse enable de-
tection of many types of loci, from those associatedwith SARS
(Gralinski et al. 2017) andWest Nile (Green et al. 2017) virus
infections to those associated with fertility (Shorter et al. 2017)
allergens Kelada (2016).Morgan et al. (2016) andDumont et al.
(2017) also provide insights into genome structure.

This large effort in mouse is matched by ambitious projects
on a plethora of organisms. MPPs have been created in plants
[Arabidopsis (Kover et al. 2009), Maize (Yu et al. 2008),
wheat (Mackay et al. 2014), sunflower (Bowers et al.
2012), and other crops (Brenton et al. 2016; Nice et al.
2016)], in animals [Drosophila (Mackay et al. 2012; King
et al. 2012)], and in yeast (Cubillos et al. 2013). In 2014,
we highlighted the diversity of MPPs in GENETICS and G3
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with articles onmaize, sorghum,wheat, triticale, Arabidopsis,
Drosophila, and mouse (http://www.genetics.org/content/
multiparental_populations). These issues of GENETICS and
G3 feature MPPs of sorghum (Bouchet et al. 2017), strawberry
(Mangandi et al. 2017), rice (Raghavan et al. 2017), oil palm
(Tisné et al. 2017), yeast (Cubillos et al. 2017), Drosophila
(King and Long 2017; Najarro et al. 2017; Stanley et al.
2017) and mouse (Gralinski et al. 2017; Green et al. 2017;
Morgan et al. 2017; Oreper et al. 2017; Shorter et al. 2017;
Srivastava et al. 2017; Tyler et al. 2017).

GENETICS and G3 are committed to fostering discussion
about the genetic inferences made from MPPs, as well as the
best ways to analyze the data, and to extending inferences to
natural populations. Projects that rely on a common set of
germplasm (or set of strains) rely on data sharing. One of the
benefits to working with a reference panel is the ability to
leverage data collected in different ways, for different pur-
poses. Our journals have long had policies for reagent and
data sharing that reflect the values of our community, and
this is evident in these articles on MPPs. Each MPP paper in
these issues has the Data availability section that is standard
for all GSA publications, as well as a one-page guide to the
data that makes it easier to browse the data behind the
papers.

In recognition of the ongoing importance of MPPs for un-
derstanding fundamental questions in genetics, G3 and
GENETICS have designed a special web resource for MPPs.
Papers are organized in a special collections page, with
subheaders that help navigate the growing literature.
Our journals have long partnered with model organism
databases FlyBase, SGD, WormBase, and others, and we
now incorporate news, blogs, tips, and protocols directly
on our webpage to help geneticists interested in MPPs get a
handleon this topic. Tweet your insights to#MPP#GSAjournals,
and use MPP as a keyword of your MPP papers to enable text
search engines to collate this literature. The GSA journals are
committed to creating a community platform that spans species
and disciplines, yet remains focused on common research ques-
tions. We thank the authors, referees and editors for making this
resource a reality!
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