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Selecting the appropriate muscle pattern to achieve a given goal is
an extremely complex task because of the dimensionality of the
search space and because of the nonlinear and dynamical nature of
the transformation between muscle activity and movement. To
investigate whether the central nervous system uses a modular
architecture to achieve motor coordination we characterized the
motor output over a large set of movements. We recorded elec-
tromyographic activity from 13 muscles of the hind limb of intact
and freely moving frogs during jumping, swimming, and walking
in naturalistic conditions. We used multidimensional factorization
techniques to extract invariant amplitude and timing relationships
among the muscle activations. A decomposition of the instanta-
neous muscle activations as combinations of nonnegative vectors,
synchronous muscle synergies, revealed a spatial organization in
the muscle patterns. A decomposition of the same activations as a
combination of temporal sequences of nonnegative vectors, time-
varying muscle synergies, further uncovered specific characteristics
in the muscle activation waveforms. A mixture of synergies shared
across behaviors and synergies for specific behaviors captured the
invariances across the entire dataset. These results support the
hypothesis that the motor controller has a modular organization.

factorization | frog | motor coordination | muscle pattern

o generate purposeful behavior the central nervous system

(CNS) has to coordinate the many degrees of freedom of the
musculoskeletal system, taking into account the nonlinear charac-
teristics of the muscles and the dynamic interactions among the
articulated segments of the body and between the body and the
environment (1). Moreover, the same motor apparatus is used to
achieve different goals in a variety of natural behaviors. This
complex task of mapping goals to muscle patterns might be
simplified by organizing a modular and hierarchical control archi-
tecture (2-4). In the last few years, a number of studies on the
organization of the spinal cord (5-12) have led to the hypothesis
that the CNS uses a set of muscle synergies, the coherent activation
in space or time of a group of muscles, as output modules.
According to this hypothesis, supraspinal and afferent signals
flexibly combine a few muscle synergies to generate a variety of
muscle patterns.

In this article, we have investigated whether the CNS uses muscle
synergies as output modules by studying different natural motor
behaviors. We have recorded the muscle patterns of intact freely
moving frogs during jumping, swimming, and walking. Rather than
characterizing the average muscle activation waveforms corre-
sponding to particular movements, we have used multidimensional
factorization techniques to identify muscle synergies as the invariant
amplitude and timing relationships among the muscle activations
underlying a variety of different movements. We have considered
two models for the generation of muscle patterns as synergy
combinations: synchronous and time-varying. In our formulation, a
synchronous muscle synergy is a vector of real numbers, each
component of which represents the activation of a particular
muscle. A muscle activation waveform is generated by scaling each
component of this vector by the same time-varying coefficient. A
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muscle pattern is then constructed by summing the muscle activa-
tion waveforms generated by different synergies. Thus a synchro-
nous muscle synergy captures a set of fixed amplitude relationships
among the muscle activations, i.e., an invariant spatial organization
of the muscle patterns. In contrast, a time-varying synergy is a time
sequence of vectors representing a collection of muscle activation
waveforms. A muscle pattern is constructed by scaling different
synergies, each sequence multiplied by a single amplitude coeffi-
cient, shifting the synergy onset in time, each sequence shifted by
a single timing coefficient, and finally summing them muscle by
muscle. If the vectors in the sequence that define a time-varying
synergy are all in the same direction, the time-varying model
essentially reduces to the synchronous model. In general, though,
the sequence of vectors may represent a collection of asynchronous
muscle activation waveforms, and hence a time-varying synergy
captures spatiotemporal invariants in the muscle patterns.

We used a nonnegative matrix factorization algorithm (13) to
identify synchronous synergies and an extension of an optimization
algorithm that we recently developed (14) to identify time-varying
synergies. We found that a small number of synergies could explain
a large fraction of the variation in the muscle patterns and that the
synergies extracted from the same behavior in different frogs were
in most cases similar. When we compared five synergies extracted
from jumping, swimming, and walking data simultaneously from all
frogs, we found that at least three synergies were similar in all pairs
of behaviors, suggesting that some synergies are shared across
behaviors whereas others are behavior-specific. We also found that
the spatial structure revealed by the synchronous synergies matched
closely the spatial structure of the time-varying synergies, but
the latter also unveiled a specific temporal organization within the
muscle patterns. These results support the hypothesis that the
motor output has a modular organization and indicate that some,
but not all, output modules are shared across behaviors.

Methods

Three adult bullfrogs (Rana catesbeiana) were used in the experi-
ments. All surgical and experimental procedures were approved by
the Committee on Animal Care at the Massachusetts Institute of
Technology.

Electrode Implantation. In each frog, 13 hind-limb muscles were
implanted with bipolar intramuscular electrodes. The animals were
anesthetized by injection of 1 ml of tricaine (5%, MS-222, Sigma)
in the dorsal lymph sac and they were kept on ice during the surgical
procedure. Pairs of multistranded Teflon-coated stainless steel
wires (A-M Systems, Carlsborg, WA), with the insulation removed
for alength of 1.5 mm on each wire, were implanted in the following
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adductor magnus; SM, semimembranosus; VI, vastus internus; VE, vastus externus; PE,
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sartorius; BI, biceps (or iliofibularis); IP, iliopsoas; TA, tibialis anterior.
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muscles: rectus internus major (RI), adductor magnus (AD), semi-
membranosus (SM), vastus internus (VI), vastus externus (VE),
peroneus (PE), gastrocnemius (GA), rectus anterior (RA), ventral
head of semitendinosus (ST), sartorius (SA), biceps (or iliofibularis,
BI), iliopsoas (IP), and tibialis anterior (TA). After insertion, the
wires were led s.c. to the back and, through a skin incision,
connected to a multipin miniature connector.

Data Collection and Preprocessing. During the experimental sessions
a lightweight miniature flat cable was attached to the connector on
the back of the frogs, and electromyographic (EMG) activity was
recorded. During swimming sessions the connector was insulated by
using a removable fast-setting polymer (Permlastic; Kerr, Romulus,
MI). The EMG signals were differentially amplified (gain 5,000),
band-pass filtered (10-1,000 Hz), digitized (1 kHz), and stored on
a computer hard drive. All behavioral episodes were videotaped by
using a video camera (29.97 frames per second, Sony TRV-9)
synchronized with the EMG recordings. Data analysis was per-
formed by using in-house software written in Matlab (Mathworks,
Natick, MA). Using the video, we first segmented the EMG records
into different continuous behavioral episodes (e.g., one jump or a
sequence of swimming cycles). The raw EMG data for each
segment were then digitally rectified and low-pass filtered (20-Hz
cutoff frequency with a finite impulse response filter) and inte-
grated over 25-ms intervals. The resulting samples were then
normalized for each animal and each muscle to the amplitude of the
maximum sample of integrated EMG activity in that muscle over
all episodes of all behaviors.

Synergy Extraction Algorithms. Synchronous synergies. We used a
nonnegative matrix factorization algorithm (13, 15) to extract
synchronous synergies from the data. Briefly, the algorithm starts
with random nonnegative synergies and coefficients and proceeds
to minimize the total reconstruction error by iterating a coefficient
update step and a synergy update step based on multiplicative
update rules (see Supporting Text, which is published as supporting
information on the PNAS web site). We used a convergence
criterion of five consecutive iterations for which the increase of the
reconstruction R?> was <1074 To minimize the probability of
finding local minima we repeated the optimization five times and
selected the solution with the highest R?.

Time-varying synergies. To extract a set of time-varying synergies we
used an optimization algorithm that extends the one we recently
introduced (14) by allowing the reconstruction of each EMG
segment by combinations of an arbitrary number of synergy in-
stances (as in Eq. 3 in Supporting Text). Thus for repetitive,
rhythmical behaviors such as swimming and walking the algorithm
automatically identifies cyclical components in the muscle patterns
as repeated instances of the extracted synergies.

The algorithm starts by initializing N synergies with random
nonnegative values, and it proceeds to minimize the total recon-
struction error by iterating three steps (see Supporting Text). First,
for each EMG segment a variable number of synergy instances,
each corresponding to one of the N synergies shifted to some onset
time in the segment, are selected to best match the data by using a
procedure based on the matching pursuits algorithm (16). Second,
for each segment and given the set of N synergies, the scaling
coefficients of the n instances selected in the first step that best
reconstruct the data are determined by back-projection (16). Third,
once the instances and their scaling coefficients have been deter-
mined for all episodes, the synergies are updated by an multiplica-
tive update rule similar to the one used in the nonnegative matrix
factorization algorithm (see Eq. 6 in Supporting Text). These three
steps are repeated until the algorithm converges on a set of
synergies. In this algorithm we used the same convergence criterion
and run selection procedure used for the extraction of synchronous
synergies.

d’Avella and Bizzi

Shared and specific synergies. We extracted a mixture of synergies
common to all behaviors and synergies specific to a subset of
behaviors by modifying the extraction algorithms presented above.
For synchronous synergies, following the procedure proposed by
Cheung and collaborators (V. C. K. Cheung, A.dA., M. C. Tresch,
and E.B., unpublished work), we initialized the amplitude coeffi-
cients for a number of behavior-specific synergies to zero over all
EMG segments not belonging to the selected behaviors. Because of
the multiplicative update rules used in the algorithm, these coef-
ficients are bound to zero throughout the iterations. For the
time-varying synergies, we restricted the matching pursuits proce-
dure for each EMG segment to the instances of the shared synergies
and to the instances of the synergies specific for the behavior to
which the segment belonged.

Significance of Extracted Synergies. We verified that the particular
synergies extracted by our algorithms were not selected as a result
of any bias built into the method by comparing the R? value for the
reconstruction of the real data with the extracted synergies and the
R?value for the reconstruction of structureless simulated data with
synergies extracted from those simulated data. For synchronous
synergies, we generated structureless data by randomly reshuffling
the samples for each muscle independently. In this way the simu-
lated data had the same muscle amplitude distribution as the real
data but each muscle amplitude was uncorrelated with all the
others. For time-varying synergies, after reshuffling the samples for
each muscle over the entire dataset and assigning them to episodes
of the same duration as in the real data, we also low-pass filtered
the reshuffled waveforms (10-Hz cutoff) to maintain a frequency
composition of the simulated data similar to that of the real data.
For each simulated dataset we repeated 100 synergy extraction runs
with the same procedure used for the real data and we computed
the 95th percentile of the R? distribution. In the case of time-varying
synergies, we used a random subset of reshuffled episodes contain-
ing at least 2,000 samples.

Synergy Similarity. The cosine of the angle between two synergies
was used as a measure of their similarity. For the synchronous
synergies we simply computed the scalar product between the two
normalized vectors w; and w, representing the two synergies. For
the time-varying synergies we used the maximum of the normalized
scalar products between the two time-varying synergies shifted by
k1 and k, samples over all possible relative delays (k; — k) (see ref.
14 for more details).

Synergy Set Comparison. We compared two sets of synergies (e.g.,
extracted from different frogs or behaviors) by computing the
similarities between their best matching pairs and by counting the
number of pairs with a similarity above chance. We matched pairs
of synergies starting with the pair with the highest similarity,
removing the synergies of the selected pair from their respective
sets, and then matching the remaining elements. We estimated the
number of pairs with a similarity significantly above chance with a
simulation. For synchronous synergies, we generated random syn-
ergies by sampling the empirical distribution of the activation
amplitudes of each muscle in the dataset from which the synergies
were extracted. We then compared the similarity between the
best-matching pairs among 1,000 sets of random synergies and
computed the 95th percentile of the chance similarity for each pair.
For time-varying synergies, we generated sequences of random data
of the same length as the synergy duration and we then low-pass
filtered the sequences (10-Hz cutoff) to match the smoothness in
the actual synergies.

Results

Muscle Patterns During Natural Behaviors in Intact Frogs. To examine
the variability in the muscle patterns typical of natural behaviors we
recorded EMGs from frogs that were unrestrained and freely

PNAS | February 22,2005 | vol.102 | no.8 | 3077

NEUROSCIENCE



Lo L

P

1\

=y

Table 1. Summary of data collected from three frogs (F10, F11,
and F17)

No. of episodes No. of samples

Behavior F10 F11 F17 F10 F11 F17

Jumping 218 117 133 11,674 6,188 5,183
Swimming 135 40 35 42,068 15,750 23,234
Walking 166 36 166 12,028 2,474 16,912

jumping or walking in a large cage, or swimming in a tank. A large
number of behavioral episodes were either produced spontaneously
or elicited by gentle cutaneous stimulation (Table 1). We observed
a great variability in the expression of the different forms of
locomotion. Each frog naturally performed jumps in a range of
directions and distances. Swimming occurred with two different
forms of bilateral coordination (in-phase and out-of-phase), at
different speeds, and at different depths in the water. Natural speed
variations were also observed in walking and, in one frog (F17),
walking was also performed over a surface inclined at different
slopes.

Spatial Structure Captured by Synchronous Synergies. We first char-
acterized the invariant relationships among the muscle activation
amplitudes, i.e., their spatial structure, by using nonnegative matrix
factorization (13). We extracted sets of synchronous synergies from
individual behaviors of each frog with the number of synergies in
each set ranging from 2 to 8. The fraction of the total variation in
the data explained by the combination of the synergies in each set
increased with the number of synergies, ranging from an average
0.67 with two synergies to an average of 0.96 with eight synergies
(Table 2). The fact that a large fraction of the total variation could
be explained with a number of synergies much smaller than the
dimensionality of the patterns (13, equal to the number of muscles)
indicated that the model provided an adequate characterization of
the spatial structure of the data.

Only the sets with five synergies were considered for further
analysis. For these sets R? was on average 0.89, thus representing a
compromise between a parsimonious (small N) and accurate (large
R?) characterization of the different datasets. To verify that the
extracted synergies captured real structure and did not result from
a bias in the method, we compared the reconstruction error for the
synergies extracted from the data with the reconstruction error
obtained with synergies extracted from structureless simulated data
(see Methods). This comparison (Fig. 1) showed that for all nine
datasets the R? value for five synergies extracted from the real data
was significantly higher than the R? value for the five synergies
extracted from simulated data. Hence, the synergy extraction
algorithm captures the amplitude relationships among the muscle
activations, i.e., their spatial structure, and not simply the amplitude

Table 2. Fraction of the total data variation explained by
synchronous synergy combinations extracted from each frog
and behavior

Fraction for each no. of synergies

Frog Behavior 2 3 4 5 6 7 8

F10 Jumping 0.75 0.82 0.86 0.90 0.92 0.94 0.95
F11 Jumping 0.71 0.85 0.89 0.91 0.93 0.95 0.96
F17 Jumping 0.71 0.80 0.86 0.90 0.92 0.94 0.96
F10 Swimming 0.78 0.84 0.89 0.91 0.93 0.95 0.96
F11 Swimming 0.68 0.77 0.82 0.88 0.91 0.94 0.95
F17 Swimming 0.59 0.69 0.76 0.81 0.86 0.90 0.94
F10 Walking 0.56 0.72 0.85 0.89 0.92 0.94 0.96
F11 Walking 0.68 0.79 0.89 0.91 0.94 0.95 0.97
F17 Walking 0.55 0.73 0.80 0.87 0.91 0.93 0.95

F10 F11 F17 F10 Fi1 F17 F10 F11 F17
Jump Swim Walk

Fig. 1. Significance of synchronous synergy extraction. The fraction of the
total variation of each dataset explained by the combination of five synergies
(black bars) is compared with the fraction of the total variation of simulated
structureless datasets explained by five synergies extracted from the simu-
lated data with the same procedure used for the real data (gray bars, mean +
SD over 100 runs).

distribution for each individual muscle (which was identical in the
real and simulated data).

We then compared sets of five synergies extracted from the same
behavior in different frogs. We computed the similarities between
the best-matching pairs of synergies for each pair of datasets and we
compared these values with the similarities expected from randomly
generated synergies. We found that the synergies extracted from the
same behavior in different frogs were in most cases significantly
similar (Table 3). For jumping, all five synergies were similar across
individuals. For swimming and walking, all five pairs of synergies
were similar for two frogs (F10 and F11), whereas there were a few
dissimilar synergy pairs for the third frog (F17). Hence, the spatial
structure captured by the synchronous synergies appeared essen-
tially invariant across individuals. Given this result, we then pooled
the data from different frogs to investigate the similarities across
behaviors. The R? values for the sets of five synergies extracted from
the pooled data (0.87 for jumping, 0.87 for swimming, and 0.84 for
walking) were very close to the R? values for the synergies extracted
from individual animals (see Table 2). Hence a single set of
synergies well characterized the spatial structure characteristic of
each behavior.

Shared and Specific Synchronous Synergies. While it is reasonable
that the CNS organizes specific synergies to cope with the kine-
matics and biomechanical requirements of the movements involved
in individual behaviors, some synergies might be shared across
behaviors. To investigate this possibility, we first compared the sets
of five synergies extracted from each individual behavior. We found
that three pairs of synergies for jumping and swimming, four pairs
for jumping and walking, and three pairs for swimming and walking
had similarities that were significantly higher than the correspond-
ing similarities of pairs of random synergies. To test whether these
similarities across pairs of behaviors derived from the existence of
a common set of shared synergies, we extracted a mixture of

Table 3. Number of pairs of synchronous synergies with
similarity above chance between the sets with five elements
extracted from the same behavior in different frogs

No. of pairs
Behavior F10-F11 F10-F17 F11-F17
Jumping 5 5 5
Swimming 5 2 3
Walking 5 3 3
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Fig. 2.

Behavior-independent and behavior-specific synchronous synergies. The three shared synergies are extracted from the entire dataset of muscle patterns

recorded during jumping, swimming, and walking in three frogs. One synergy (jump-walk) is extracted from only jumping and walking episodes. The other
behavior-specific synergies (jump, swim, and walk) are extracted from only the muscle patterns of individual behaviors. Each synergy is normalized to the

maximum over all muscles.

synergies shared across behaviors and behavior-specific synergies
from the data pooled from all behaviors. Because there were three
pairs of similar synergies in each comparison between behaviors
and one extra pair in the comparison between jumping and walking,
we extracted three synergies shared across all behaviors and one
synergy shared between jumping and walking. We also extracted
one synergy restricted to jumping, two synergies restricted to
swimming, and one synergy restricted to walking so that each
behavior was reconstructed by five synergies. The R? value for the
reconstruction of the entire dataset with this set of shared and
specific synergies was 0.87, whereas the R? values for the recon-
struction of all of the episodes of each individual behavior were 0.86
for jumping, 0.86 for swimming, and 0.81 for walking. Thus a single
set consisting of a mixture of shared and specific synergies could
reconstruct the patterns of individual behaviors with essentially the
same accuracy as the synergies extracted independently from the
individual datasets.

The three synergies shared across jumping, swimming, and
walking, the synergy shared between jumping and walking, and
the remaining four behavior-specific synergies (Fig. 2) all show
specific features in their muscle composition and balance. The
first of the three shared synergies shows a strong recruitment of
all muscles with an extensor action on the hip, knee, and ankle
joints. The second and third shared synergies as well as the
synergy shared between jumping and walking and the first of the
two swim-specific synergies are instead characterized by a re-
cruitment of muscles with mainly a flexor action. Each synergy
has a specific balance in the activation of flexor muscles. The
jump-specific synergy, like the first shared synergy, has a strong
activation of hip (RI and SM) and knee (VI) extensors but, in
contrast to the shared synergy, also comprises a strong activation
of VE (knee extensor with a hip abduction action) and BI (knee
flexor with hip abduction action) and no activation of the hip
adductor AD. The walking-specific synergy shows a strong
activation of VE combined with a strong activation of the knee
flexors BI and SA and the ankle flexor TA, whereas there is
almost no activation of hip extensors. Finally, the second swim-
specific synergy combines a strong activation of VE with slightly
weaker activation of GA and PE.

In summary, the decomposition of the muscle patterns for
jumping, swimming, and walking as combinations of shared and
specific synergies indicates that the muscle patterns for a large
repertoire of movements can be constructed from a small set of
building blocks and that some, but not all, of these building blocks
are shared across behaviors.

d’Avella and Bizzi

Spatiotemporal Structure Revealed by Time-Varying Synergy Decom-
position. The synchronous synergies presented above capture the
spatial structure of the patterns but they do not characterize their
spatiotemporal structure. We therefore also investigated whether
there were invariant relationships among the muscle activation time
courses across different episodes and conditions, i.e., whether the
patterns could be reconstructed by scaling in amplitude, shifting in
time, and combining a number of time-varying muscle synergies. As
with the synchronous synergies, we extracted sets of time-varying
synergies (20 samples for a total duration of 500 ms) from individual
behaviors of each frog with the number of elements ranging from
2 to 8. The fraction of the total variation in the data explained by
the combination of the synergies in each set increased with the
number of synergies, ranging from an average R? value of 0.65 with
two synergies to an average R? value of (.83 with eight synergies
(Table 4).

We selected the sets composed of five time-varying synergies for
further analysis. In terms of their spatial structure, given by the
synergy activations averaged across time, in most cases the time-
varying synergies closely matched the synchronous synergies. The
R? value for the reconstruction of each data set by combinations of
five synergies was on average 0.80. This value is considerably lower
than the value for the same number of synchronous synergies (0.89);
however, if we consider that the number of parameters in the
synchronous model (one amplitude coefficient for each synergy and
each sample) was on average 19.8 times larger than the number of
parameters in the time-varying model (one amplitude and one
timing coefficient per synergy instance), such a difference is not
surprising. On the contrary, it is remarkable that the time-varying
synergy model can explain 80% of the data variation despite the fact

Table 4. Fraction of the total data variation explained by
time-varying synergy combinations extracted from each frog
and behavior

Fraction for each no. of synergies

Frog Behavior 2 3 4 5 6 7 8

F10 Jumping 0.78 0.81 0.82 0.84 0.85 0.86 0.87
F11 Jumping 0.79 0.82 0.84 0.85 0.87 0.87 0.88
F17 Jumping 0.75 0.79 0.81 0.83 0.84 0.85 0.85
F10 Swimming 0.74 0.80 0.83 0.85 0.86 0.86 0.87
F11 Swimming 0.64 0.71 0.76 0.79 0.81 0.81 0.84
F17 Swimming 0.53 0.60 0.67 0.71 0.74 0.76 0.78
F10 Walking 0.52 0.64 0.71 0.74 0.75 0.78 0.78
F11 Walking 0.59 0.72 0.78 0.81 0.83 0.85 0.86
F17 Walking 0.53 0.65 0.71 0.74 0.75 0.77 0.78
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Fig. 3. Significance of time-varying synergy extraction. A much larger
fraction of the total variation of the data is explained by the combination of
five synergies (black bars) than by five synergies extracted from simulated
structureless data (gray bars, mean = SD over 100 runs).

that, given the sets of synergies, the only temporal parameters used
to explain the muscle waveforms are the synergy onset times.

We verified that the extracted synergies captured real structure
and did not result from a bias in the extraction method by
comparing the reconstruction error for the synergies extracted from
the data with the reconstruction error for synergies extracted from
structureless simulated data (see Methods). For all nine datasets,
the R? value for the real data was significantly higher than that for
the corresponding simulated data (Fig. 3), indicating that the
extraction algorithm recovers the invariant spatiotemporal relation-
ships in the muscle waveforms and does not simply fit the wave-
forms of individual muscles.

We then compared the synergies extracted from the same
behavior in different animals. We found that at least three of the
five synergies extracted for each behavior in different frogs were
significantly similar across frogs (Table 5), indicating that the
spatiotemporal structure of the patterns revealed by the synergies
was to a large extent the same for all individuals. This result allowed
us to then compare different behaviors by using the data pooled
from all of the frogs. We found that the R? values for the sets of five
synergies extracted from the pooled data (0.81 for jumping, 0.80 for
swimming, and 0.70 for walking) were comparable to the R? values
for the synergies extracted from individual animals. Thus a single set
of synergies adequately characterized the spatiotemporal structure
in the patterns of each behavior.

Shared and Specific Time-Varying Synergies. We compared the
synergies extracted from individual behaviors and we found that
four pairs of synergies were significantly similar between jumping
and swimming, three pairs were significantly similar between
jumping and walking, and three pairs were significantly similar
between swimming and walking. As with the synchronous synergies,
we extracted a mixture of shared and specific synergies and we
found that they explained the data as well as the synergies extracted
from individual behaviors. We extracted three synergies shared
across all behaviors, one synergy restricted to jumping and swim-
ming, one restricted to jumping and walking, one restricted to
swimming, and one restricted to walking. With this set of synergies
every episode of each behavior was reconstructed by five synergies.
The R? value for the reconstruction of the entire dataset set was
0.79, whereas it was 0.81 for the jumping episodes, 0.75 for the
swimming episodes, and 0.66 for the walking episodes.

The shared and specific time-varying synergies extracted from
the entire dataset (Fig. 4) show specific muscle activation balances
and waveforms. Each of the three shared time-varying synergies has
a spatial organization similar to one of the three synchronous
shared synergies (Fig. 2) while, in addition, possessing distinctive
temporal characteristics. In the first synergy, where RI, SM, VI, VE,
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Table 5. Number of pairs of time-varying synergies with
similarity above chance between the sets with five elements
extracted from the same behavior in different frogs

No. of pairs
Behavior F10-F11 F10-F17 F11-F17
Jumping 5 4 4
Swimming 3 3
Walking 5 3 4

GA, PE, and BI are vigorously recruited, the duration of muscle
activation bursts is very short. Moreover, the peak times of the
activation waveforms of different muscles are close but the wave-
forms are not exactly synchronous. The third shared synergy shows
asynchronous activation waveforms for flexor muscles. The synergy
shared between jumping and swimming is similar to the first synergy
shared across all behaviors but has a strong activation of AD, a
stronger activation of GA, and a weaker activation of BI. The
synergy shared between jumping and walking has a strong activa-
tion of IP and a spatial structure matching the synchronous synergy
shared between the same two behaviors. The swim-specific synergy
has a strong and prolonged activation of VE, GA, PE, and BIL
Finally, the walk-specific synergy shows even longer bursts in a set
of muscles (AD, VE, PE, SA, and BI) and its spatial structure is very
close to that of the synchronous walk-specific synergy.

In summary, the time-varying synergy decomposition of the
muscle patterns observed in different behaviors reinforces the
finding obtained with the synchronous synergies that a large rep-
ertoire of movements can be constructed by combining a small
number of building blocks, some shared across behaviors and some
behavior-specific. The extracted time-varying synergies further
provide a characterization of the spatiotemporal structure of these
building blocks.

Discussion

We developed and used an approach to investigate how the CNS
achieves motor coordination. Using multidimensional factoriza-
tion techniques, we exploited the variability of natural motor
behaviors to characterize the invariant spatial and spatiotempo-
ral structure of the muscle patterns underlying a large movement
repertoire. We found that combinations of a small number of
synchronous and time-varying muscle synergies accounted for a
large fraction of the variation in the muscle patterns observed
during jumping, swimming, and walking in intact freely moving
frogs. When we compared the synergies extracted from individ-
ual behaviors, we found a large degree of similarity, indicating
the existence of substantial amount of shared structure in the
control of different tasks. However, there were also some
differences between behaviors, supporting the existence of
behavior-specific synergies.

While there is a growing amount of evidence for a modular
organization of the motor output in the frog (6, 9-11, 14, 17) and
in other vertebrates (8, 12, 18), we know of no other work in which
such evidence arises from the analysis of the muscle patterns
observed in a large set of movements from three different natural
behaviors in the same intact individual. Because our claim for a
modular organization is based on the assumption that the invari-
ances in the output of the system correspond to structural features
of the system, the larger the set of conditions over which the
invariances are observed, the stronger the inference on the orga-
nization of the controller can be.

While the idea of shared modules for the control of different
behaviors is a longstanding one (19-21), our approach is dis-
tinctive not only for the extent of the behavioral repertoire that
we have investigated but especially because it is based on a
quantitative analysis of the spatiotemporal characteristics of the
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Fig. 4. Behavior-independent and behavior-specific time-varying synergies. Each synergy represents the activation of the 13 muscles with specific activation
waveforms (20 samples for a total duration of 500 ms; amplitude is color coded) and it is normalized to the maximum over all samples of all muscles. Three shared
synergies are extracted from the entire dataset, whereas the other behavior-specific synergies are extracted from only the muscle patterns from two behaviors
(jump-swim and jump-walk) or a single behavior (swim and walk).

activations of most of the hind-limb muscles. This analysis  synergies in amplitude and shifting them in time, indicating that
allowed us to identify both behavior-independent and behavior-  there are characteristic burst durations in the muscle patterns.
specific modules. Similar observations have recently come from  Similarly, Hart and Giszter (17) found a common burst duration for
the analysis of three types of behaviors of an invertebrate (22),  several independent synchronous premotor drives identified with
suggesting that mixing behavior-independent and behavior-  independent component analysis in decerebrated frogs. In contrast,
specific modules might be a general strategy to flexibly yet  the results of Ivanenko and colleagues (27) do not support the
efficiently construct complex behaviors. Behavior-independent  existence of a single time scale in the muscle activity pattern for
synergies might implement some basic biomechanical functions ~ human locomotion: they instead found that five basic muscle
of the whole limb involved in the control of all behaviors, activation waveforms were preserved at different walking speeds,
whereas behavior-specific synergies might instead meet the indicating that the corresponding burst durations scale with the
unique biomechanical requirements of individual behaviors. cycle period. Their approach,'whwh is based on factor analysis,
The generation of muscle patterns as combinations of muscle focused separately on the spatial structure on the muscle patterns
synergies is compatible with both an open-loop and a feedback (factor loadings, i.e., synchronoug synergies) qnd on thelr activation
control architecture and, more generally, might be a way to  time course (factor scores), but it would be interesting to directly
implement an optimal feedback controller (23, 24). For fast, ballistic ~ identify spatiotemporal invariants in human locomotion EMG
movements such as kicking (14) the CNS might recruit the appro- patterns. .
priate synergy combination by relying mainly on an internal model The approach we pursued allowed us to make inferences about
of the limb and body dynamics. When feedback plays a larger role, the functional organization of the motor controller. However, in the
as in wiping (25), sensory afferents might modulate the centrally frgg, th_ere 15 glready §V1dence of physm}ogmal m(.echamsms. from
organized synergy recruitment to allow for feedback error correc- mlCI'OStlmula..t!OH studlqs (o, .1.1) gnd during reflexive befhav10r .(9’
tion. Although the role of sensory feedback in the activation of 10). In addition, th? 1dent1flcat10nh0f muscle SYNCrgies during
muscle synergies during natural behaviors of the frog still needs to natlllralhlqot'o r dbeha(ll\florshpresqnyed fere.: n}z.iy provide a powe:lfu(;
be fully characterized, one would expect that, if the synergies toolto help in decoding the activity of spinal interneurons recorde
implement whole-limb biomechanical functions, the appropriate mn bjhaymg f?gs as V;;el}ll as the a th}lfy of qeurlons involved in the
. . . i 1! t t .
sensory signal used for their modulation would also encode global procuction of motor behaviors I Other animais
limb parameters. Ipterestmgly, in the dorsal'spmocerebellar tractof . (hank M. Tresch for many helpful discussions and suggestions and
the cat there is evidence of such an encoding scheme (26). V. C. K. Cheung, P. Saltiel, and W. L. Miller for reading versions of the

In the time-varying synergy reconstruction, the observed muscle manuscript. This work was supported by National Institute of Neuro-
activation waveforms are captured simply by scaling fixed-duration  logical Disorder and Stroke Grant NS09343.
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