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Abstract

We implement an agent-based model for Clostridium difficile transmission in hospitals that 

accounts for several processes and individual factors including environmental and antibiotic 

heterogeneity in order to evaluate the efficacy of various control measures aimed at reducing 

environmental contamination and mitigating the effects of antibiotic use on transmission. In 

particular, we account for local contamination levels that contribute to the probability of 

colonization and we account for both the number and type of antibiotic treatments given to 

patients. Simulations illustrate the relative efficacy of several strategies for the reduction of 

nosocomial colonizations and nosocomial diseases.
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1 Introduction

Healthcare-associated infections (HAI) are a very significant problem in the U.S. health care 

system, exacting a severe cost in both lives and dollars (U.S. Department of Health and 

Human Services, 2013). One of the most common cause of HAI in the U.S. is the enteric 

pathogen Clostridium difficile (Lessa et al., 2015). Clostridium difficile is an anaerobic 

bacterium that produces spores and toxins (Leffler and Lamont, 2015). Clostridium difficile 
toxins cause a range of clinical signs including mild to severe or bloody diarrhea and colon 

perforation and peritonitis (Leffler and Lamont, 2015). Antibiotic therapy in hospitalized 

patients is a strong risk factor for C. difficile infections (CDI). Patients become susceptible 

to C. difficile colonization during and after antibiotic treatment. Antibiotics are given to treat 

a bacterial infection, but they also damage the gut microbiota, a negative side effect of 

antibiotics. Gut microbiota protects against C. difficile colonization by competing with C. 
difficile for nutrients and producing substances that inhibit C. difficile growth. Antibiotics 

vary on their effects on the gut microbiota based on their spectrum of action (Sullivan et al., 
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2001). Broad-spectrum antibiotics kill a wide range of bacteria, and therefore, they cause a 

severe damage on the gut microbiota and subsequently pose a greater risk for C. difficile 
colonization (Owens et al., 2008).

The incidence of CDI in the U.S. healthcare system has risen in the last decade. The rate of 

discharges in which the patient received the diagnosis of CDI more than doubled from 2001 

to 2010 (Steiner et al., 2012). In 2011, the number of C. difficile infections (CDI) was 

estimated to be about 500,000 and the number of deaths linked to the pathogen was 

estimated at 29,000 (Lessa et al., 2015). The cost attributable to CDI in U.S. acute care 

facilities is estimated to be as much as $4.8 billion per year (Dubberke and Olsen, 2012). 

Control measures against C. difficile have not changed sufficiently to manage these rising 

numbers. Upon colonization with the pathogen, patients can remain asymptomatically 

colonized (refered here as “colonized” patients) or they may present clinical signs (refered 

here as “diseased” patients). Clinical signs are the result of tissue damage caused by C. 
difficile toxins. Both colonized and diseased patients can transmit the pathogen. But the 

focus of current control measures is on testing patients with diarrhea in order to identify 

diseased patients with CDI so that isolation and contact precautions can be taken place 

(Cohen et al., 2010; Dubberke et al., 2008). Recent studies, however, point out the 

significance to transmission within the ward of both transmission pathways beyond the ward 

itself and additional sources of CDI infections

Mathematical models have been developed to describe nosocomial transmission; these 

studies often used ordinary differential equations (ODEs) to model the transmission 

dynamics (Brauer, 2015; Webb et al., 2004; Yahdi et al., 2012; Hsieh et al., 2014). In a study 

closely related to our work, Lanzas et al. (2011) developed and analyzed an ODE model for 

C. difficile transmission within a medical ward. A threshold value for within ward 

transmission assuming no admission of colonized or diseased individuals was calculated. 

One may think of this as the relative contribution of the hospital ward itself to transmission 

with respect to some larger population. In the absence of the admission of colonized and 

diseased patients, the basic reproductive number, R0, is less than one. The basic reproductive 

number in this case is defined as the average number of secondary infections caused by the 

introduction of a single infected individual into a disease free hospital ward. This suggests 

that the nosocomial infection rates of C. difficile may not be able attribute solely to 

transmission due to diseased patients. The role of asymptomatic carriers, for example, is 

significant to within-ward transmission. Lanzas and Dubberke (2014) developed an agent-

based model (ABM) to study the effectiveness of identifying asymptomatic carriers by 

screening upon admission in reducing the incidence of CDI. Sources of transmission such as 

admitted colonized and undetected diseased patients are significant in sustaining nosocomial 

transmission. A better understanding of transmission, therefore, requires a better 

understanding of the patients' pre-admission history with respect to factors pertinent to CDI 

and how these factors contribute to within-ward transmission.

Another important source of nosocomial transmission is the hospital environment (Dubberke 

et al., 2008; Gerding et al., 2008). Clostridium difficile produces spores that survive for 

prolonged periods of time in environmental surfaces (Bartlett, 2002). The risk of a 

susceptible patient becoming colonized by C. difficile depends significantly on the local 
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pathogen contamination level (Dubberke et al., 2014). Health-care workers are an important 

vector of transmission and the hands of health-care workers can become contaminated when 

contacting surfaces with C. difficile spores (McMaster-Baxter and Musher, 2007; Donskey, 

2010). The level of contamination in one hospital ward may vary significantly from that of 

another ward in the same hospital. One important control measure is to place symptomatic 

patients under quarantine in order for contact precautions to be initiated that decrease the 

spread of contamination associated with diarrhea (Gerding et al., 2008). Cleaning and 

disinfecting of the environment are also important control measures for reducing local 

contamination levels (Gerding et al., 2008).

Antibiotic treatments in hospitals provide a source of transmission heterogeneity. Antibiotics 

disrupt the intestinal microbiota, which facilitates the colonization of Clostridium difficile 
(Rupnik et al., 2009). The degree of microbiota disturbance, and subsequent risk of CDI, 

depends on the spectrum, duration and number of antibiotics (Slimings and Riley, 2014; 

Dancer et al., 2013). Antibiotic stewardship programs that reduce either the number of 

antibiotic treatments or the relative proportion of high risk antibiotic treatments are, 

therefore, important for the prevention and control of CDI (Feazel et al., 2014; Talpaert et 

al., 2011).

In this modeling study we will take into account these sources of transmission and 

transmission heterogeneity in order to better understand C. difficile transmission in hospitals 

and, thereby, more accurately evaluate the efficacy of control measures. In particular, our 

model includes individual patient characteristics important to pathogen transmission. We 

also incorporate certain stochastic effects that are significant to transmission dynamics in 

small populations such as a hospital. Agent-based models are well suited to simulate such 

individual (or agent) characteristics and behaviors as well as incorporating various stochastic 

effects. D'Agata et al. (2007) used an ABM to consider three processes: admission and 

discharge of patients, infection of patients by health-care workers and contamination of 

health-care workers by patients. It considered only one individual trait, the bacterial load of 

infected patients. The goal of their study was to “identify the key parameters contributing to 

the spread of a typical antimicrobial resistant bacteria in a typical hospital setting.” Notably 

absent from this work, however, were important individual patient characteristics such as 

patient history that are more important with respect to CDI than for other healthcare-

associated infections. Critically important to within-ward transmission is the precise state of 

individual patients with respect to CDI upon admission. Patients who are colonized upon 

admission, for example, are a significant source contributing to within-ward transmission 

(Curry et al., 2013).

D'Agata et al. (2007) also lacks within-hospital patient history such as when antibiotic 

treatment began and what level of risk is associated with this antibiotic. This is also the case 

for the ABM found in Codella et al. (2015). The probability associated with a susceptible 

patient becoming colonized varies significantly with the both of these factors and should not 

be considered constant (Slimings and Riley, 2014; Dancer et al., 2013; Feazel et al., 2014; 

Talpaert et al., 2011). Not only are such components important for understanding 

transmission, they are important for intervention and control measures.
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The ABM model developed by Rubin et al. (2013) features several components that are 

important for transmission such as patient-health care worker interactions, room 

contamination and hand hygiene. This study also incorporates antibiotic treatment. It does 

not, however, consider antimicrobial stewardship as a control measure. In an evidence-based 

systematic review, Hsu et al. (2010) conclude that antimicrobial stewardship is one of the 

control measures with the greatest evidence for preventing healthcare-associated CDI and, 

so, in this study we consider antimicrobial stewardship as a control measure.

The goal of this study is to evaluate the efficacy of various control measures aimed at 

reducing environmental contamination and mitigating the effects of antibiotic use on 

transmission for reducing the nosocomial incidence of colonization and infection. To clarify, 

antibiotic prescriptions given for a variety of infections, not just for CDI, are a key focus of 

our modeling work. We, therefore, propose and implement an ABM for C. difficile 
transmission in hospitals that accounts for several additional processes and individual factors 

that are relevant to C. difficile transmission in healthcare settings, including the 

environmental and antibiotic heterogeneities discussed above. Environmental 

decontamination strategies (Gerding et al., 2008) will result in lower probabilities of 

susceptible patients becoming colonized which, in turn, will further contribute to the 

decontamination of the environment. We account for local contamination levels in our ABM 

which contribute to the probability of colonization. These levels are influenced in our model 

by the probability of effective cleaning and this, then, is a control for modeling 

environmental decontamination.

There are two basic strategies employed in the implementation of an antimicrobial 

stewardship program (Dancer et al., 2013; Feazel et al., 2014; Talpaert et al., 2011; Gerding 

et al., 2008). One strategy is to reduce the overall number of antibiotic prescriptions by some 

proportion. This will result in a smaller number of susceptible patients and will lead, 

therefore, to a smaller number of colonizations. Alternatively, the relative proportions of 

antibiotics prescribed by type are changed. In particular, we are interested in differentiating 

antibiotics by the level of CDI risk with which they are associated. This will result in lower 

probabilities of susceptible patients becoming colonized. We account for both the number 

and type of antibiotic treatments given to patients in our model and thereby they are controls 

for modeling antimicrobial stewardship.

In order to describe the model in such a way that facilitates replication, we give a summary 

of its features in the next section and give the updated ODD (Overview, Design concepts, 

Details) protocol in the appendix (Grimm et al., 2010). Section 3 describes our control 

strategies for antimicrobial stewardship and environmental decontamination. Our simulation 

results for these strategies are reported in section 4 and our conclusions are in the final 

section.

2 Model Summary

We present an ABM that simulates the transmission of Clostridium difficile to evaluate the 

efficacy of antimicrobial and environmental (cleaning) stewardship in reducing the number 

of colonizations and infections occurring in a hospital. As described in the appendix, some 

Bintz et al. Page 4

Bull Math Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the rate parameters and the basic layout come from an epidemiological data set from 

Barnes-Jewish Hospital in St. Louis, Missouri used in Lanzas et al. (2011). The spatial scale 

of the model is one hospital consisting of six medical wards, each containing thirty-five 

rooms. We assume that at most one patient can occupy a room. The time step is one half-day 

and the simulations are run for one year. The length of stay for patients is assigned by 

resampling from that the distribution of length of stay, generated from the length of stay data 

for patients with that disease status.

The two kinds of entities in this model are hospital patients and rooms. A room has a certain 

level of contamination – low, medium, or high – and a room either is or is not occupied by a 

patient under quarantine. Diseased patients are placed in quarantine or isolation for the 

purpose of implementing contact precautions that decrease the environmental bioburden 

associated with diarrhea (Gerding et al., 2008). While healthcare workers are not explicitly 

present in this model, their effect as vectors for disease transmission is implicit in the fact 

that ward-level contamination levels contribute to patient colonization. The probability that a 

susceptible patient in a particular ward room will become colonized depends in part on the 

contamination level of the entire ward.

A patient can be resistant to colonization, susceptible to colonization, colonized, or diseased. 

A patient resistant to colonization cannot be colonized by C. difficile upon exposure. On the 

contrary, a patient susceptible to colonization can acquire C. difficile upon exposure. A 

patient who carries C. difficile in the gut without clinical signs is defined here as colonized 

patient. If the patient has clinical signs associated with C. difficile carriage, the patient is 

referred as diseased. Each patient is assigned a (hospital) length of stay and the patient's time 

since being admitted is tracked. The time since a patient's current disease status is tracked. If 

a patient goes on an antibiotic, the time since beginning the antibiotic treatment is tracked as 

well as the level of CDI risk associated with the antibiotic with which they are being treated. 

This model considers three such levels of risk – low, high, and very high risk. The number of 

antibiotics a patient has received during hospitalization is also tracked. Colonized patients 

either will or will not mount an immune response. Those who will not are said to be 

immunocompromised. Diseased patients either will or will not be identified as diseased 

upon screening and those that are treated for the disease either will or will not be treated 

successfully. See the appendix for details of the transition rates, including the probabilities 

that a patient will begin an antibiotic treatment with low, high or very-high risk with respect 

to CDI. The probabilities associated with different antibiotic risk levels are determined using 

odds ratios, which measure the association between an exposure to antibiotic treatment and 

the outcome of becoming colonized.

The model hospital is initially populated with patients who have various hospital and pre-

hospital histories. The occupancy level is kept constant. The environment is also initialized. 

As the patients from this initial population are discharged, new patients are admitted. In 

order for the initial hospital population not to have influence on model outputs, the 

simulation runs 200 time steps before recording outputs. Each room has a contamination 

status of clean, contaminated, or very contaminated represented by the values 0, 1, and 2 

respectively, and these values are changed by the cleaning procedure. The ward-level 

contamination is the sum of the contamination values of all the rooms in the same ward. 
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Colonized and diseased patients shed C. difficile spores in feces. Surfaces and equipment in 

rooms become contaminated with spores through hand contact of colonized and diseased 

patients or objects exposed to fecal matter. Spores remain viable on surface for months and 

are resistant to commonly used hospital cleaners and disinfectants.

The contamination level of a room with a quarantined patient does not contribute to the 

overall ward-level contamination, representing the effect of isolation and contact precautions 

that decrease the environmental bioburden associated with diarrhea. When a patient is 

quarantined due to CDI, they begin treatment for CDI and will be assigned an antibiotic, and 

the time of beginning treatment is initialized.

3 Control Strategies

The control measures considered in this study are antimicrobial stewardship and 

decontamination by cleaning. There are two basic strategies employed in the implementation 

of an antimicrobial stewardship program.

One strategy is to reduce the overall number of antibiotic prescriptions by some proportion. 

Here we consider three values for such reduction, 0, 0.1, and 0.2, where no reduction is 

considered the baseline value. Let qr be the reduction proportion. This reduction is achieved 

in the model by first deciding whether a patient would receive an antibiotic according to the 

global variable prob-antib with value 0.27 (Table 5), and then, if they were to receive one in 

the situation with no reduction, there is now a probability of 1 – qr that they will receive an 

antibiotic. Thus the probability of receiving an antibiotic with qr reduction strategy would be 

0.27(1 – qr)

Alternatively, rather than reducing the number of prescriptions, the relative proportions of 

antibiotics prescribed by type are changed. In particular, we are interested in differentiating 

antibiotics by the level of CDI risk with which they are associated. There are three categories 

of risk in this model, ‘low’, ‘high’, and ‘very high.’ We consider three scenarios. The 

baseline scenario, established from the hospital dataset, has the proportions 0.4, 0.26, and 

0.34 for ‘low’, ‘high’, and ‘very high’ respectively. For a second scenario, we consider 

replacing half of the very high risk prescriptions with high risk antibiotics. The 

corresponding proportions for this scenario are 0.4, 0.43, and 0.17. Finally, in addition to 

replacing half of the very high risk prescriptions with high risk antibiotics, we also replace 

half of the high risk prescriptions with low risk antibiotics. The resulting proportions for this 

scenario are 0.53, 0.3, and 0.17. These scenarios are summarized in Table 1. Our scenarios 

were chosen to reflect changes of antibiotic use that could be feasible in an antibiotic 

stewardship program. More extreme changes on antibiotic use (e.g. setting the use of 

antibiotic to zero) are unlikely. Antibiotics are given to treat a variety of infections 

encountered in hospitalized patients (e.g. urinary tract infection, pneumonia, bloodstream 

infection), and even when the hospital was able to reduce all the antibiotic prescriptions that 

are inadequate or unnecessary, there are some antibiotic prescriptions (including for 

antibiotics that fall in the very high risk category) that are necessary and unavoidable.
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As described in the Appendix (Section 7.6), there is a global variable in the model assigning 

a probability of effective cleaning. We select three values for this variable to represent the 

effect of certain levels of the effectiveness of a cleaning strategy. A baseline value of 0.5 was 

assigned to this variable under the assumption that the basline value reflects standard 

cleaning practices, without additional cleaning or disinfection interventions. Accordingly, 

the other two values considered are 0.2 and 0.8.

Separately from the control strategies, we evaluated the effect of the three parameters we 

considered to be the most uncertain on the model predictions. Specifically, we varied the 

probability of a patient being immunocompromised, the length of the incubation period with 

respect to antibiotic risk, and the length of time for the restoration of a normal gut flora. We 

vary these three parameters over three values for each (baseline and +/- 25%) and measured 

the response in terms of normalized nosocomial infections and colonizations. For each of the 

twenty-seven combinations of these three parameters, one hundred yearlong simulations 

were run. We kept the other parameters and stewardship strategies at baseline. The effect of 

the varied parameters on the outputs was evaluated using a three-way ANOVA analysis.

4 Simulation Results

for Stewardship Strategies A complete factorial design for the combination of these three 

strategies with each of their respective three scenarios was implemented. The 27 strategies 

are summarized in Table 2. One hundred runs were completed for each strategy. In the 

figures to follow, the combination strategy will be referred to by its corresponding number in 

this table. Note that combination strategy number 2 is the baseline scenario. Recall that the 

baseline scenario is the scenario that corresponds to the data set used to design the model 

(see Section 6.2) and reflects current strategies for controlling disease transmission. Strategy 

number 2 reflects no reduction in the number of antibiotic treatments given and, so, the 

baseline value for the proportion reduction is 0. The relative proportions of treatments from 

the hospital dataset that were low, high, and very-high risk with respect to CDI are 0.4,0.26 

and 0.34 respectively. These are, therefore, the baseline risk-scenario. Finally, as described 

above, the baseline value for effective cleaning, 0.5 was chosen in order to compare 

strategies that are both more effective and less effective in this regard.

The outputs to measure the relative effectiveness of these strategies were the incidence 

numbers of nosocomial colonizations and diseases per year, normalized to 10,000 patients 

admitted per year. In order to compare scenarios that differ in number of admitted patients, 

we divide the number of diseased (or colonized) patients by the number of admitted patients, 

and expressed as number of diseased (or colonized) patients per 10,000 admissions. This 

type of normalization is common practice in hospital epidemiology. The number of patients 

admitted in hospitals change over time and varies among hospitals, therefore comparing total 

number of diseased or colonized patients without normalization can be misleading. In the 

box plots shown in Figure 1, the 27 combined strategies are ranked according to their 

respective median values of nosocomial colonizations. These median values are indicated by 

the circles with dots in the center. The top chart contains box plots for the number of new 

colonizations by strategy and they are plotted in increasing order by median values. The 

bottom chart indicates the corresponding box plots for the number of new diseases.
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Note, for example, the rank of the baseline scenario, scenario 2. There are 5 scenarios that, 

on average, resulted in more new colonizations. As one would expect, each of these 5 

scenarios (13, 7, 10, 4, 1) are cases where the probability of effective cleaning is less than 

the baseline value for this probability. Recall that the baseline value for this probability is 0.5 

and in those 5 scenarios it is 0.2. It is worth pointing out, however, that there are 4 scenarios 

(16, 19, 22, 25) with probability 0.2 of effective cleaning that, on average, resulted in fewer 
new colonizations. For scenario 22, the median number of new colonizations is 5747 which 

is 8% less than the 6261 colonizations for the baseline scenario. Scenario 16 results in 7% 

fewer colonizations. In scenario 25, however, the median number of new colonizations was 

5286 compared to the baseline median value of 6261, which is a 16% reduction. The 

strategy implemented in scenario 25 involved both a reduction in overall antibiotic 

treatments as well as a reduction in the relative proportions of antibiotic treatments that are 

high and very-high risk with respect to CDI. This suggests that it is possible for an 

aggressive antibiotic stewardship strategy reduce the number of new colonizations even in 

the event of less effective cleaning.

The bottom chart in Figure 1 shows the corresponding numbers of nosocomial diseases. 

These numbers do not necessarily increase respectively by scenario to the numbers of new 

colonizations. As noted above, compared to the baseline scenario, the reduction in new 

colonizations for scenario 22 was modest compared to that for scenario 25: 8% compared to 

16%. The corresponding comparison of these scenarios for the reduction in new diseases is 

closer: 26% compared to 31%. The only difference between these two strategies is that 

scenario 22 represents risk-scenario number 2 while scenario 25 represents risk-scenario 

number 3 (see Table 1). This suggests that there are strategies that may be similarly effective 

with respect to reducing the number of nosocomial colonizations but differ in terms of 

reducing nosocomial diseases.

In Figure 2, the 27 combined strategies are ranked according to their respective median 

values of nosocomial diseases. The bottom chart contains box plots for the number of new 

diseases by strategy and they are plotted in increasing order by median values. The top chart 

indicates the corresponding box plots for the number of new colonizations. By this ranking 

there are only 2 scenarios (10,1) that, on average, resulted in more new diseases than the 

baseline scenario. And, again, each of these 2 are scenarios where the probability of 

effective cleaning is less than that of the baseline scenario. There are, therefore, 7 scenarios 

in which the probability of effective cleaning is less than that of the baseline scenario and, 

yet, are more effective in reducing the number of new diseases. Of these, scenario 25 

represents the largest reduction and was discussed above as having 31% less disease 

incidence than the baseline scenario.

What stands out when ranked according to the number of new diseases is the corresponding 

change in the number of new colonizations. In particular, we note a significant change in the 

number of new colonizations between scenarios 4 and 21 (see Figure 2). The median 

numbers of new diseases for these two scenarios are close to the same, 146 and 144 

respectively. The median number, 6860, of new colonizations represented by scenario 4 is, 

however, 45% more than the 4726 new colonizations represented by scenario 21. The 

strategy for scenario 4 involves no reduction in the overall proportion of antibiotic 
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treatments but it does represent stewardship of the relative proportions of treatments 

according to risk using risk scenario 2 (see Table 1). Scenario 21, on the other hand, does not 

implement a stewardship of risk proportions, but, rather, it implements an overall reduction 

in the number of treatments and a more effective cleaning strategy. This suggests that there 

are strategies that may be similarly effective with respect to reducing the number of 

nosocomial diseases but differ significantly in terms of reducing nosocomial colonizations. 

In terms of policy, it is important to consider strategies the efficacy of which are evaluated in 

terms of reducing both nosocomial diseases and colonizations. One important consequence 

of ignoring the reduction of nosocomial colonizations is that some of these individuals could 

develop the disease after leaving the hospital. This will inevitably lead to an increase in the 

admission rate of diseased patients (Otten et al., 2010).

Suppose one wants to implement only one of the three strategies and wants to know the 

relative efficacy of one strategy over another in reducing nosocomial colonizations and/or 

diseases. Table 3 summarizes the relevant values from our simulations for making this 

evaluation. There is no single strategy that ranks first for both colonization and disease 

(Table 3). The scenario with a risk-scenario 3 (i.e., reducing the proportion of very-high and 

high risk antibiotic) was the best scenario when considered the rank for decreasing 

colonizations and diseases simultaneously. The median number of new colonizations for this 

strategy is 5213 which is 17% less than the baseline number of new colonizations which is 

6261. The median number of new diseases for this strategy is 122 which is 29% less than the 

baseline number of new diseases which is 173. In fact, in terms of reducing nosocomial 

diseases, the other strategy in this risk-scenario category ranks 2nd, with 136 new diseases 

which is 21% less than the baseline. This is the strategy that reduces the relative proportion 

of antibiotic treatments that are very-high risk with respect to CDI but does not reduce the 

relative proportion of antibiotic treatments that are high risk with respect to CDI. If the more 

aggressive strategy is unrealizable or, perhaps, too expensive, then one might choose the 

same type of, but less aggressive, stewardship policy. This would be, however, another 

example of ignoring the value of reducing the number of nosocomial colonizations. Notice 

that this strategy, while ranking 2nd with respect to reducing the number of diseases, ranks 

5th with respect to reducing the number of colonizations; only slightly better than the 

baseline scenario. If one wishes to take into account both goals of reducing disease and 

colonization (and the more aggressive strategy is not available), then the next best strategy is 

the other type of stewardship policy that reduces the overall number of antibiotic treatments 

by 20%. This highlights the importance of understanding the complexities of Clostridium 
difficile transmission in order to make the best decisions with respect to implementing 

control measures.

We varied the most uncertain parameters; the probability of a patient being 

immunocompromised, the length of the incubation period with respect to antibiotic risk, and 

the length of time for the restoration of a normal gut flora. When the three parameters were 

varied, the mean predicted number of colonized patients per 10,000 admissions was 6,295 

with a standard deviation of 135.21. These outputs compare to the corresponding baseline 

outputs of The mean number of colonized was only sensitive to the probability of being 

immunocompromised as indicated by the ANOVA analysis. The number of diseased patients 

per 10,000 admissions was 176.2 with a standard deviations of 44.7 The number of diseased 
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patients was sensitive to the scenario chosen for the incubation time and the probability of 

being immunocompromised. The parameter time to normal was not influential for either 

outcome. Comparing to such outputs for our baseline scenario, our outputs seem reasonably 

robust to these three parameters.

5 Conclusions

In this study we have pointed out the significance to nosocomial transmission of Clostridium 
difficile as influenced by the presence of asymptomatic carriers, environmental 

contamination, and antibiotic treatments in hospitals.

We implemented an ABM for Clostridium difficile transmission in hospitals that accounts 

for several processes and individual factors including environmental and antibiotic 

heterogeneity in order to evaluate the efficacy of various control measures aimed at reducing 

environmental contamination and mitigating the effects of antibiotic use on transmission. In 

particular, we accounted for local contamination levels in our ABM which contribute to the 

probability of colonization. These levels are influenced in our model by the probability of 

effective cleaning and, so, served as a control for modeling environmental decontamination. 

We also accounted for both the number and type of antibiotic treatments given to patients in 

our model and, so, served as controls for modeling antimicrobial stewardship.

Our model showed that it is possible for an aggressive antibiotic stewardship strategy to 

reduce the number of new colonizations even in the event of less effective cleaning. We 

showed that there are strategies that may be similarly effective with respect to reducing the 

number of nosocomial colonizations but differ significantly in terms of reducing nosocomial 

diseases. We showed that there are, likewise, strategies that may be similarly effective with 

respect to reducing the number of nosocomial diseases but differ significantly in terms of 

reducing nosocomial colonizations.

Antimicrobial stewardship encompasses a variety of practices such as physician education, 

removal of specific drugs from the hospital pharmacy, or prescriptions reviews. These 

practices reduce the number of antibiotic prescriptions and the relative proportion of 

prescriptions for the high-risk antibiotics. Our model evaluates these two strategies 

independently and shows that both strategies are effective in reducing C. difficile disease. In 

an evidence-based systematic review, Hsu et al. (2010) evaluated the efficacy of 

interventions for the prevention of CDI in healthcare institutions. Corroborating our 

modeling results, this study concludes that there is good evidence to support the 

effectiveness of antimicrobial stewardship for preventing healthcare-associated CDI. Note 

that our outputs of numbers of diseased and colonized patients was robust from the ANOVA 

analysis including three key parameters. Similarly, a meta-analysis of quasi-experimental 

and observational studies found that restricting the use of high risk antibiotics had a 

protective effect against C. difficile (Feazel et al., 2014).

We also considered the situation wherein one implements only one of the three strategies for 

the control of C. difficile transmission. We showed the relative efficacy of one strategy over 

another in reducing nosocomial colonizations and/or diseases. Our study illustrates that 
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choosing a strategy for the goal of reducing nosocomial diseases does not necessarily 

achieve the same relative success for the goal of reducing nosocomial colonizations. This is 

an important oversight since discharging more patients who are colonized by C. difficile 
could lead to more individuals that develop the disease after leaving the hospital. This could 

inevitably lead to an increase in the admission rate of diseased patients.

The agent-based model presented here is a useful tool for investigating strategies for 

reducing the overall C. difficile burden in healthcare settings. In the future, we plan to design 

simulations for evaluating additional management strategies that are connected to current 

practices in order to predict their expected impact on C. difficile burden. For example, an 

aggressive antimicrobial stewardship policy may be difficult to implement and will likely be 

influenced by both the needs of patients and the actual pathogens involved. Our model can 

easily incorporate the compliance habits of healthcare workers and can be adapted to other 

hospital settings and management protocols.
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Appendix

6 Appendix: ODD Protocol: Overview

6.1 Purpose

We present an ABM that simulates the transmission of C. difficile in healthcare settings in 

order to evaluate the efficacy of various control measures (e.g. antimicrobial and 

environmental stewardship) in reducing the nosocomial incidence of colonization and 

infection.

6.2 Input Data

The model layout and agent behaviors as well as rate parameters and initial conditions come 

from published studies as well as previously collected epidemiological data from Barnes-

Jewish Hospital in St. Louis, Missouri. These data are for a retrospective cohort of 11046 

admissions in medicine wards at a large tertiary care hospital, which included laboratory-

confirmed cases of CDI, admission, discharge, and confirmed laboratory dates, and 

antimicrobial exposures. Summary data from this set were provided by Lanzas and further 

description of these can be found in Lanzas et al. (2011).

Control measures for reducing nosocomial colonization and infection are model inputs. The 

level of contamination is one factor contributing to the probability of a susceptible patient 

becoming colonized. We regard effective cleaning to be cleaning that reduces the 

contamination level of a ward room (see Section 7.6). The probability that a vacant room 
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will be effectively cleaned (terminal cleaning) is a global variable. Changing the value of 

this probability is a control input for the model representing different cleaning programs.

Another control strategy of the model is to reduce the overall number of antibiotic 

treatments by a certain proportion. This is implemented in the following way. Let q be the 

proportion reduction to be implemented. Of all the patients that were assigned to receive a 

treatment each half day according to the half-daily probability of receiving an antibiotic (see 

Table 5), only 1 – q of them will now actually receive a treatment.

Alternatively, one may change the relative proportions of the types of antibiotic treatments 

that are prescribed. Each time an antibiotic treatment is prescribed, there is a probability that 

it will be low, high, or very-high risk with respect to CDI. The baseline values for these 

probabilities were taken from the data and are 0.4,0.26 and 0.34 respectively (see Table 5). 

These proportions can be changed in accordance with a specified stewardship program.

6.3 Entities, State Variables, and Scales

The model has two kinds of entities: hospital patients and rooms. Individual rooms are 

classified by two state variables. A room has a certain level of contamination - low, medium, 

or high - and a room either is or is not occupied by a patient under quarantine. Symptomatic 

patients are placed in quarantine or isolation for the purpose of implementing contact 

precautions that decrease the environmental bioburden associated with diarrhea (Gerding et 

al., 2008). While healthcare workers are not agents of this model, their effect as vectors for 

disease transmission is implicit in the fact that ward-level contamination levels contribute to 

patient colonization. That is, the probability that a susceptible patient in a particular ward 

room will become colonized depends in part on the contamination level of the entire ward. 

We regard the contamination level of a hospital ward a reasonable measure of the scope of a 

healthcare worker's interaction with patients.

Patients are classified by several state variables. These are summarized in Table 4. With 

respect to C. difficile infection (CDI), a patient can be resistant to colonization, susceptible 

to colonization, colonized, or diseased. Each patient is assigned a (hospital) length of stay 

(LOS) and the patient's time since being admitted is tracked. The time since a patient's 

current disease status is tracked. If a patient goes on an antibiotic, the time since beginning 

the antibiotic treatment is tracked as well as the level of CDI risk associated with the 

antibiotic with which they are being treated. This model considers three such levels of risk – 

low, high, and very high risk. The number of antibiotics a patient has received during 

hospitalization is also tracked. Colonized patients either will or will not mount an immune 

response against C. difficile. Those who will not are said to be immunocompromised. 

Diseased patients either will or will not be identified as diseased upon screening and those 

that are treated for the disease either will or will not be treated successfully.

We here describe the model's global variables. A summary of these global variables and their 

values is given in Table 5. The occupancy level for the hospital is a global variable set to 

0.85. The probability of a patient being resistant upon admission is 0.58 while the 

probability of being diseased upon admission is 0.01. The probability of being susceptible 

upon admission is chosen randomly from a uniform distribution ranging from 0.21 to 0.40. 
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This value will fix the corresponding probability of being colonized upon admission which 

will range between 0.01 and 0.20. The probability that a colonized patient will be 

immunocompromised is a global variable. The baseline value for this variable is 0.10. There 

is a half-daily probability that a susceptible patient or a colonized patient that is not 

immunocompromised will regain resistance. The minimum such probability is a global 

variable, and its value is 0.2. For a full description see Section 7.4. There is a half-daily 

probability that a patient will begin an antibiotic treatment. The baseline value for this 

variable is 0.27. This value was chosen so that simulation outputs pertaining to overall 

number of antibiotic treatments per patient reflect the hospital dataset. Each time an 

antibiotic treatment is prescribed, there is a probability that it will be low, high, or very-high 

risk with respect to CDI. The baseline values for these probabilities were taken from the data 

and are 0.4, 0.26 and 0.34 respectively. The odds ratio values for high and very-high risk 

antibiotics are global variables and are given by ORh = 4 and ORvh = 8, respectively. For a 

full description see Section 7.8. The half-daily probability of a susceptible patient becoming 

colonized given that they are being treated with a low risk antibiotic in a highly 

contaminated environment, denoted by , is a global variable and its value is 0.15. Again, 

for a full description see Section 7.8. Each time a room is cleaned, there is a probability that 

it will be cleaned effectively. For a description of what this means see Section 7.6. A 

baseline value of 0.5 was assigned to this variable under the simple assumption that different 

cleaning measures could be more or less effective at reducing the level of contamination. In 

our model it is assumed that patients with CDI are also symptomatic. Once a patient 

becomes diseased and, thus, symptomatic, they are screened for CDI. The sensitivity (0.91) 

of this test is a global variable as well as the turnover time (2 half-days) for this test (Planche 

et al., 2008). When a patient is treated for CDI, there is a probability (0.8) that the treatment 

will be successful.

The spatial scale of the model is one hospital consisting of six medical wards, each 

containing thirty-five rooms. This is reflective of the hospital from which the previously 

described dataset came. In this model we assume that at most one patient can occupy a 

room. The time step is one half-day and the temporal extent of the simulation is one year.

6.4 Process Overview and Scheduling

The following process takes place each time step (half-day). Time-tracking characteristics 

for patients are updated. New patients are admitted, the contamination of the environment is 

updated, the patients progress with respect to their infection status, patients are discharged, 

and vacant rooms are cleaned.

6.5 Initialization

The model hospital is initially populated with patients who have various hospital and pre-

hospital histories with respect to each of the patient variables listed in Table 4. The 

occupancy level is a global variable set to 0.85 and is kept constant. The environment is then 

initialized (see Section 7.3 for details). As the patients from this initial population are 

discharged, new patients are admitted. The hospital-history of these new patients more 

accurately reflect the processes of the model. In order for the initial hospital population not 
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to have influence on model outputs, the simulation runs 200 time steps before recording 

outputs.

7 Appendix: ODD Protocol: Submodels

This section describes in detail the subroutines that make up the main process.

7.1 Update Time Characteristics

Patients' time since admission and, with one exception, time since current disease status are 

updated. For resistant patients, the time since current disease status is not tracked. This is 

because the value of this state variable is only relevant for the progression of patients who 

are susceptible, colonized or diseased. Unlike them, a patient who is resistant will remain 

resistant until and unless they receive an antibiotic at which time they become susceptible to 

colonization.

Susceptible patients and colonized patients who are not immunocompromised have their 

time since beginning antibiotic treatment updated. Colonized patients who are 

immunocompromised have their time until diseased updated. Three classes of diseased 

patients are considered here. Those who have been screened successfully but have not yet 

reached the turnaround time have their time since screening updated. The turnaround time 

for a screening is the time between administering the test and receiving the results. Those 

who have been screened unsuccessfully but have not yet reached the turnaround time also 

have their time since screening updated. In this way, they will not be screened again until at 

least the turnaround time has passed. Finally, those who have been screened successfully and 

have begun treatment have their time since beginning treatment updated.

7.2 Admission

Each time step, a number of patients are admitted. This is referred to as an admission class. 

The same number of patients is admitted as were just discharged. This is done to assure 

consistency, so that the number of patients to be admitted does not exceed the number of 

vacant rooms. Moreover, the number of patients being discharged varies significantly each 

time step since it is ultimately based on the patients' varying lengths of stay and times since 

admission.

For each admission class, the probability of a patient being resistant upon admission is 0.58 

while the probability of being diseased upon admission is 0.01 (Lanzas et al., 2011). 

However, for each admission class, at each time step, the probability of being susceptible 

upon admission is chosen randomly from a uniform distribution ranging from 0.21 to 0.40. 

This value will fix the corresponding probability of being colonized upon admission which 

will range between 0.01 and 0.20.

Each patient is randomly admitted to a vacant room and their time since admission is 

initialized. They are then assigned a disease status according to the above probabilities as 

well as a length of stay based on the hospital dataset. The procedure for this assignment is 

described in detail in Section 7.10.
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Susceptible patients are given an antibiotic history since patients become susceptible to 

colonization via the disruption of the gut microbiota caused by antibiotic treatment. First, a 

particular type of antibiotic is assigned according to the treatment length, time until flora 

recovery, and the risk level vis a vis CDI associated with this antibiotic. This procedure is 

described in Section 7.7. Second, a time since beginning antibiotic treatment is assigned. 

This is a random integer drawn from a uniform distribution ranging from 0 to an upper limit 

defined as the sum of the treatment length (14 half-days) and time until microbiota recovery 

(28 half-days for low and high-risk antibiotic, 70 half-days for very high-risk antibiotic). 

That is, we regard a patient as susceptible to colonization from the moment they begin an 

antibiotic treatment and they can remain susceptible as long as their gut microbiota is not 

normal. Finally, the patient is assigned a time since becoming susceptible. In this case, it is 

precisely the time since they began antibiotic treatment.

Colonized patients either will or will not mount an immune response and so are 

characterized as one or the other according the global variable for the probability that a 

colonized patient is immunocompromised. Patients who are not immunocompromised are 

given an antibiotic history. First, an antibiotic is assigned in the same way as described 

above for susceptible patients. Second, a time since beginning antibiotic treatment is 

assigned; again, in the same way as for susceptible patients. Lastly, they are assigned a time 

since becoming colonized. A patient may have become colonized at any time since they 

began antibiotic treatment and, thus, this variable is assigned a uniform random integer 

between 0 and the time since they began treatment.

If the colonized patient is immunocompromised, they will become diseased at a certain point 

in time that must be assigned. First, an antibiotic history is assigned. In this case, what 

matters most is the risk level associated with their antibiotic assignment. Next, the length of 

the incubation period is determined. The incubation period depends on the risk level 

associated with their antibiotic assignment. For each level of antibiotic risk, there is a pair of 

global values for the minimum and maximum length of the incubation period. Baseline 

values for these pairs are (20,60), (14,40), and (8,20) for low, high, and very high risk 

antibiotics respectively. A random integer from a uniform distribution of integers in the 

appropriate range is assigned as the length of the incubation period. The patient's time until 

becoming diseased is assigned as a random integer greater than or equal to 0 but less than 

the incubation period. The time since current disease status in this case is equal to the length 

of the incubation period minus the time until becoming diseased.

Finally, for patients who are diseased upon admission, it is decided if the initial screening 

will be successful in identifying them as diseased according to the global variable for the 

sensitivity of the test and it is also decided if treatment will be successful according the 

global variable for this probability. The baseline values for the sensitivity and probability of 

successful treatment are 0.91 (Planche et al., 2008) and 0.8 (McFarland, 2008) respectively. 

Patients who will be identified as diseased due to successful screening are assigned a time 

since the successful screen. In this way, they will be identified when that time reaches the 

turnaround time for the test. The baseline value for the turnaround is 2 half-days (Planche et 

al., 2008). At that point the patient will be quarantined and treatment will begin as described 

in Section 7.9. Diseased patients who are unsuccessfully screened will not be tested again 
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until after the turnaround time for the test and so are assigned a time since the unsuccessful 

screening.

7.3 Update Contamination Status

After a class of patients is admitted, the environment is updated. Each room has a 

contamination status of clean, contaminated, or very contaminated represented by the values 

0, 1, and 2 respectively. During an update, the contamination status of a room occupied by a 

colonized patient is set to 1 while the contamination status of a room occupied by a diseased 

patient is set to 2. This value is affected by the cleaning procedure (Section 7.6).

The ward-level contamination is the sum of the contamination status values of all the rooms 

in the same ward. Since each ward has 35 rooms, each with a maximum contamination value 

of 2, this will be an integer between 0 and 70. This sum excludes the contamination values 

of those rooms that contain a quarantined patient. Thus, our model assumes that quarantine 

is 100% effective. This does not effect, however, the uncertain level of cleaning the room 

will receive upon the discharge of the quarantined patient. This value will be used in 

determining the probability that a susceptible patient will become colonized (Section 7.8). 

While healthcare workers are not agents of this model, their effect as vectors for disease 

transmission is implicit in the fact that ward-level contamination levels contribute to patient 

colonization. That is, the probability that a susceptible patient in a particular ward room will 

become colonized depends in part on the contamination level of the entire ward. We regard a 

hospital ward a reasonable measure of the scope of a healthcare worker's interaction with 

patients. Therefore, the contamination level of the ward, rather than that of the individual 

patient room, contributes to the probability of becoming colonized.

7.4 Update Disease Status

Each half-day there is a probability that a patient will begin an antibiotic treatment- even if 

they are currently being treated with antibiotics. This model parameter was chosen so that 

simulation outputs pertaining to overall number of antibiotic treatments per patient reflect 

the hospital dataset. One of the model control strategies is to reduce the overall number of 

treatments by a certain proportion. This is implemented in the following way. Of all the 

patients that were assigned to receive a treatment each half day according to the probability 

just described, only a proportion of them will now actually receive a treatment.

The transitions described in this section are illustrated by the diagram in Figure 3. If a 

resistant patient goes on an antibiotic, they become susceptible and an antibiotic is assigned. 

The time since beginning antibiotic and time since current disease status are set to 0. A new 

length of stay is selected for this patient according the new disease status. If it is longer than 

the patient's current length of stay, then the patient's length of stay is changed to this value.

Each half-day, there is a probability that a susceptible patient will regain resistance. This 

probability is a logistic function of the time since they began their most recent antibiotic 

treatment. In particular, let t be the time since the patient began antibiotic treatment and let T 
be the sum of the treatment length and the associated time until a normal microbiota is 

restored. Then, the probability, p, of regaining resistance is given by
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where pmin = 0.2 is the minimum probability of regaining resistance and the parameter value 

12 determines the steepness of the logistic curve.

If they do not regain resistance, there is a probability they will receive an additional 

antibiotic as described above. Then, there is a probability they will become colonized 

(Section 7.8). If they do become colonized, they are designated as either 

immunocompromised or not according to the global variable for the probability of being 

immunocompromised. If the now colonized patient is immunocompromised, then an 

incubation period is assigned as before. This value determines when they will become 

diseased. Furthermore, the number of nosocomial colonizations is tracked.

Similar to susceptible patients, colonized patients who will mount an immune response can 

regain resistance. If they do not regain resistance, there is a chance they will receive an 

additional antibiotic; this is also the case for those patients who will not mount an immune 

response. For these patients, if their incubation period is over, they become diseased. If that 

happens, they will be screened at the next time step (because they are now symptomatic) and 

it is determined if the screening will be successful in identifying them as diseased according 

to the global variable for sensitivity. It is also decided if the subsequent treatment will be 

successful according the global variable for this probability. The number of nosocomial 

diseases is tracked.

A diseased patient is quarantined and treatment is begun (Section 7.9) if they have been 

identified; that is, if they were successfully screened and they have reached the turnaround 

time. A diseased patient who has not been identified as diseased is re-screened if the 

turnover time since the unsuccessful screening has been reached. Diseased patients that have 

completed a successful treatment become susceptible.

7.5 Discharge Patients

Patients are discharged if their length-of-stay variable is the same value as their time-since-

admission variable. The current disease status, disease status at admission and the number of 

antibiotics received during their stay are tallied for each discharged patient.

7.6 Cleaning

After a patient is discharged, the vacant room is cleaned. If the room has contamination 

status 2 or 1, then there is a probability that cleaning will result in a new contamination 

status of 1 or 0, respectively. The probability of effective cleaning is a global variable. A 

baseline value of 0.5 was assigned to this variable under the simple assumption that different 

cleaning measures could be more or less effective at reducing the level of contamination. 

Rooms are subject to terminal cleaning once the patient is discharge, but additional efforts 

on daily or terminal cleaning may be recommended if there is an outbreak or 

hyperendemicity (incidence above observed on similar facilities). This additional level of 
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cleaning can be incorporated in the model by modifying the contamination status according 

patient status if cleaning targets rooms with diseased patients or the probability of effective 

cleaning if additional cleaning is applied to the whole ward.

7.7 Antibiotic Assignment

When a patient goes on an antibiotic, there is a probability that it will be low, high, or very 

high-risk with respect to CDI. Antibiotics disrupt the normal gut microbiota. The degree of 

disruption and the subsequent risk of C. difficile colonization depends on the spectrum of 

the antibiotic. Antibiotics were categorized in these three categories (low, high and very 

high-risk) based on epidemiological studies reporting the association of type of antibiotic 

and C. difficile. There is a treatment length and time to normal flora associated with each 

class. The risk level is one factor in determining the probability of being colonized.

7.8 Assign Probability of Becoming Colonized

The half-daily probability of a susceptible patient becoming colonized depends on both the 

local, ward-level environment and the risk level associated with the antibiotic they are 

receiving.

The environment is classified as low, medium, or high contamination. These classifications 

are determined by the typical range and variance of ward-level contamination values for the 

simulations of this model.

The probabilities associated with different antibiotic risk levels (see Section 7.7) are 

determined using odds ratios. The odds ratio (OR) of interest in this case is a measure of the 

association between an exposure to antibiotic treatment and the outcome of becoming 

colonized by C. difficile. Studies have quantified the odds ratios for infection risk assigned 

to specific antibiotics (Bignardi, 1998; Feazel et al., 2014; Slimings and Riley, 2014). In our 

model, the OR represents the odds that a patient will become colonized if they have been 

given a high or very high risk antibiotic, compared to the odds of becoming colonized when 

given a low risk antibiotic. These are global variables in the model.

Let p be the half-daily probability of a susceptible patient becoming colonized given that 

they are being treated with a low risk antibiotic. In general, we can use p together with a 

known odds ratio value associated with a particular antibiotic to find the half daily 

probability of the patient becoming colonized given they are being treated with that 

particular antibiotic. Let ORA be the odds ratio associated with antibiotic A and let pA be the 

half daily probability of the patient becoming colonized given they are being treated with 

antibiotic A. Then the relationship

implies
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Odds ratio values for the categories “high risk” and “very-High risk” are based on the odds 

ratio values for the individual antibiotics in these categories (Bignardi, 1998; Feazel et al., 

2014; Slimings and Riley, 2014) as well as information from the hospital dataset regarding 

the relative proportion of the number of treatments for each specific antibiotic to the overall 

number of antibiotic treatments. For each category, a weighted average was calculated using 

the odds ratio values for each specific antibiotic in the category and the corresponding 

number of these treatments from the hospital dataset. In this way, we estimated the odds 

ratio values for high and very-high risk antibiotics to be ORh = 4 and ORvh = 8, respectively.

Since there is also an environmental component to colonization, we will have half-daily 

probabilities for each of the 9 combinations from the 3 environmental contamination levels 

and the 3 antibiotic risk categories; see Table 6. Let  be the half-daily probability of a 

susceptible patient becoming colonized given that they are being treated with a low risk 

antibiotic in a highly contaminated environment. Here the subscript, ℓ, refers to the risk level 

associated with the antibiotic and stands for “low”. The superscript, h, refers to the level of 

ward contamination and stands for “high”. Table 6 indicates the values for each of the 9 

combinations and how they are calculated.

First a value is assigned to . The value 0.15 for  was chosen by calibration to match the 

proportion of nosocomial infections from the data. From this value and the values for ORh 

and ORvh, we calculate the other two probabilities for a highly contaminated environment, 

 and . Next, we calculate the probability, , of a susceptible patient becoming 

colonized given that they are being treated with a low risk antibiotic in a low contamination 

environment. We do this by scaling down by a certain factor, . This factor is a 

measure of the relative contribution of the environment to the colonization of a susceptible 

patient. For the simulations we assigned the value 0.5 to the factor q. The other two 

probabilities for a low contamination environment are then calculated similar to above. 

Finally, we take  to be the average of  and  and from this calculate the other two 

probabilities for a medium contamination environment.

7.9 Quarantine and Treat

In this model, quarantined means that the contamination level of their room does not 

contribute to the overall ward-level contamination. This models the effect of isolation and 

contact precautions that decrease the environmental bio-burden associated with diarrhea 

(Gerding et al., 2008). When a patient is quarantined due to CDI, they begin treatment for 

CDI. This means they will be assigned an antibiotic (Section 7.7) and the time since 

beginning treatment is initialized.
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7.10 Length of Stay

Patients are assigned a length of stay upon admission according to their disease status. This 

half-daily value is assigned by resampling summary data from the hospital dataset. In 

particular, given a patient's disease status, their length of stay is assigned by resampling from 

the dataset (from Barnes-Jewish Hospital) generated by the length of stay data for patients 

with that disease status. The range of the values for the length of stay in half-days for 

resistant, susceptible, and diseased patients are [0, 32], [0, 68] and [0, 160], respectively. The 

range for colonized patients is the same as that for susceptible patients.

References

Bartlett JG. Antibiotic-associated diarrhea. New England Journal of Medicine. 2002; 346(5):334–339. 
[PubMed: 11821511] 

Bignardi G. Risk factors for Clostridium difficile infection. Journal of Hospital Infection. 1998; 40(1):
1–15. The 4th International Conference of the Hospital Infection Society Effective Infection 
Control: Ahead of Change. [PubMed: 9777516] 

Brauer F. Some simple nosocomial disease transmission models. Bulletin of Mathematical Biology. 
2015; 77(3):460–469. [PubMed: 25608612] 

Codella J, Safdar N, Heffernan R, Alagoz O. An agent-based simulation model for Clostridium 
difficile infection control. Medical Decision Making. 2015; 35(2):211–229. [PubMed: 25112595] 

Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH. Clinical 
practice guidelines for Clostridium difficile infection in adults: 2010 Update by the Society for 
Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America 
(IDSA). Infection Control and Hospital Epidemiology. 2010; 31(5):431–455. [PubMed: 20307191] 

Curry SR, Muto CA, Schlackman JL, Pasculle AW, Shutt KA, Marsh JW, Harrison LH. Use of 
multilocus variable number of tandem repeats analysis genotyping to determine the role of 
asymptomatic carriers in Clostridium difficile transmission. Clinical Infectious Diseases. 2013; 
57(8):1094–1102. [PubMed: 23881150] 

D'Agata EM, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: The 
impact of minimizing treatment duration. Journal of Theoretical Biology. 2007; 249(3):487–499. 
[PubMed: 17905310] 

Dancer S, Kirkpatrick P, Corcoran D, Christison F, Farmer D, Robertson C. Approaching zero: 
temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, 
extended-spectrum β-lactamase-producing coliforms and meticillin-resistant Staphylococcus 
aureus. International Journal of Antimicrobial Agents. 2013; 41(2):137–142. [PubMed: 23276500] 

Donskey CJ. Preventing transmission of Clostridium difficile: Is the answer blowing in the wind? 
Clinical Infectious Diseases. 2010; 50(11):1458–1461. [PubMed: 20415566] 

Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clinical Infectious 
Diseases. 2012; 55(suppl 2):S88–S92. [PubMed: 22752870] 

Dubberke ER, Gerding DN, Classen D, Arias KM, Kelly CP, Deverick MC, Anderson J, Burstin H, 
Calfee DP, Coffin SE, Fraser V, Griffin FA, Gross P, Kaye KS, Klompas M, Lo E, Marschall J, 
Mermel LA, Nicolle L, Pegues DA, Perl TM, Saint S, Salgado CD, Weinstein RA, Wise R, Yokoe 
DS. Strategies to prevent Clostridium difficile infections in acute care hospitals. Infection Control 
and Hospital Epidemiology. 2008; 29(Sl):S81–S92. [PubMed: 18840091] 

Dubberke ER, Carling PM, Carrico R, Donskey CJ, Loo VG, McDonald LC, Maragakis LL, Sandora 
TJ, Weber DJ, Yokoe DS, Gerding DN. Strategies to prevent Clostridium difficile infections in 
acute care hospitals: 2014 update. Infection Control and Hospital Epidemiology. 2014; 35(6):628–
645. [PubMed: 24799639] 

Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML. Effect of antibiotic 
stewardship programmes on Clostridium difficile incidence: a systematic review and meta-
analysis. Journal of Antimicrobial Chemotherapy. 2014; 69(7):1748–1754. [PubMed: 24633207] 

Bintz et al. Page 20

Bull Math Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gerding DN, Muto CA, Owens RC. Measures to control and prevent Clostridium difficile infection. 
Clinical Infectious Diseases. 2008; 46(Supplement 1):S43–S49. [PubMed: 18177221] 

Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: A review 
and first update. Ecological Modelling. 2010; 221(23):2760–2768.

Hsieh YH, Liu J, Tzeng YH, Wu J. Impact of visitors and hospital staff on nosocomial transmission 
and spread to community. Journal of Theoretical Biology. 2014; 356(0):20–29. [PubMed: 
24727185] 

Hsu J, Abad C, Dinh M, Safdar N. Prevention of endemic healthcare-associated Clostridium difficile 
infection: Reviewing the evidence. The American Journal of Gastroenterology. 2010; 105(11):
2327–2339. [PubMed: 20606676] 

Lanzas C, Dubberke ER, Lu Z, Reske KA, Grohn Y. Epidemiological model for Clostridium difficile 
transmission in healthcare settings. Infection Control and Hospital Epidemiology. 2011; 32(06):
553–561. [PubMed: 21558767] 

Lanzas CP, Dubberke ER. Effectiveness of screening hospital admissions to detect asymptomatic 
carriers of Clostridium difficile: A modeling evaluation. Infection Control and Hospital 
Epidemiology. 2014; 35(8):1043–1050. [PubMed: 25026622] 

Leffler DA, Lamont JT. Clostridium difficile infection. New England Journal of Medicine. 2015; 
372(16):1539–1548. [PubMed: 25875259] 

Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, 
Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, 
McDonald LC. Burden of Clostridium difficile infection in the United States. New England 
Journal of Medicine. 2015; 372(9):825–834. [PubMed: 25714160] 

McFarland LV. Update on the changing epidemiology of Clostridium difficile-associated disease. 
Nature Clinical Practice Gastroenterology & Hepatology. 2008; 5(l):40–48.

McMaster-Baxter NL, Musher DM. Clostridium difficile: Recent epidemiologic findings and advances 
in therapy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2007; 
27(7):1029–1039.

Otten AM, Reid-Smith RJ, Fazil A, Weese JS. Disease transmission model for community-associated 
Clostridium difficile infection. Epidemiology & Infection. 2010; 138:907–914. [PubMed: 
20092667] 

Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for 
Clostridium difficile infection. Clinical Infectious Diseases. 2008; 46:S19–31. [PubMed: 
18177218] 

Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, Krishna S. Diagnosis of 
Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infectious 
Diseases. 2008; 8(12):777–784. [PubMed: 18977696] 

Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human 
microflora. Lancet Infectious Diseases. 2001; 1(2):101–114. [PubMed: 11871461] 

Rubin MA, Jones M, Leecaster M, Khader K, Ray W, Huttner A, Huttner B, Toth D, Sablay T, 
Borotkanics RJ, Gerding DN, Samore MH. A simulation-based assessment of strategies to control 
Clostridium difficile transmission and infection. PLoS ONE. 2013; 8(ll):e80671. [PubMed: 
24278304] 

Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in 
epidemiology and pathogenesis. Nature Reviews Microbiology. 2009; 7(7):526–536. [PubMed: 
19528959] 

Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of 
systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy. 2014; 69(4):881–
891. [PubMed: 24324224] 

Steiner C, Barrett M, Terrel L. HCUP projections: Clostridium difficile hospitalizations 2011 to 2012. 
HCUP Projections Report # 2012-01. 2012

Talpaert MJ, Gopal Rao G, Cooper BS, Wade P. Impact of guidelines and enhanced antibiotic 
stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium 
difficile infection. Journal of Antimicrobial Chemotherapy. 2011; 66(9):2168–2174. [PubMed: 
21676904] 

Bintz et al. Page 21

Bull Math Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



U.S. Department of Health and Human Services. National action plan to prevent health care-associated 
infections: Road map to elimination. Technical report. 2013

Webb G, Blaser MJ, Zhu H, Ardal S, Wu J. Critical role of nosocomial transmission in the toronto sars 
outbreak. Mathematical Biosciences and Engineering. 2004; 1(1):1–13. [PubMed: 20369956] 

Yahdi M, Abdelmageed S, Lowden J, Tannenbaum L. Vancomycin-resistent enterococci colonization-
infection model: parameter impacts and outbreak risks. Journal of Biological Dynamics. 2012; 
6(2):645. [PubMed: 22873610] 

Bintz et al. Page 22

Bull Math Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Box plots for strategies ranked by number of new colonizations at top and corresponding 

box plots for number of new diseases on bottom. The white dot in the center of each box 

plot represents the median. The upper and lower areas of each center box indicate the 75th 

and 25th percentiles respectively (50% of the values are included; the interquartile range (H) 

is the difference between the 2 percentiles). The whiskers on the lines are values that fall 

within 1.5 times H.
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Fig. 2. 
Box plots for strategies ranked by number of new diseases on bottom and corresponding box 

plots for number of new colonizations on top. The white dot in the center of each box plot 

represents the median. The upper and lower areas of each center box indicate the 75th and 

25th percentiles respectively (50% of the values are included; the interquartile range (H) is 

the difference between the 2 percentiles). The whiskers on the lines are values that fall 

within 1.5 times H.
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Fig. 3. Disease state transitions for CDI
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Table 1

Antibiotic risk proportion scenarios.

Scenario Proportion low-risk Proportion high-risk Proportion very high-risk

1 0.4 0.26 0.34

2 0.4 0.43 0.17

3 0.53 0.3 0.17
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Table 2

Numbering of combination strategies.

Combination Proportion reduction Risk-scenario Probability of effective cleaning

1 0 1 0.2

2 0 1 0.5

3 0 1 0.8

4 0 2 0.2

5 0 2 0.5

6 0 2 0.8

7 0 3 0.2

8 0 3 0.5

9 0 3 0.8

10 0.1 1 0.2

11 0.1 1 0.5

12 0.1 1 0.8

13 0.1 2 0.2

14 0.1 2 0.5

15 0.1 2 0.8

16 0.1 3 0.2

17 0.1 3 0.5

18 0.1 3 0.8

19 0.2 1 0.2

20 0.2 1 0.5

21 0.2 1 0.8

22 0.2 2 0.2

23 0.2 2 0.5

24 0.2 2 0.8

25 0.2 3 0.2

26 0.2 3 0.5

27 0.2 3 0.8
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Table 4

Description of room and patient variables of the agent based model.

Description Values

Room Variable

number-ward-rooms number of rooms per ward 35

contamination-status room-level contamination measure 0, 1, 2

contamination-quotient ward-level contamination measure 0, 1, …, 70

quarantine-patient-here indicates whether the occupant is under quarantine Yes, No

Patient Variable

length-of-stay patient's hospital length of stay [0, 160]

time-since-admission patient's time since being admitted 0, 1, 2, …

disease-status patient disease status R,S,C,D

time-since-current-status patient's time since their current disease status 0, 1, 2, …

time-since-began-antib patient's time since beginning their current antibiotic treatment 0, 1, 2, …

treatment-length prescribed length of the current antibiotic treatment 14

time-to-normal time until patient's gut flora is considered normal

 low risk: 28

 high risk: 28

 very-high risk: 70

antib-risk-level risk level of the current antibiotic with respect to CDI low, high, very-high

number- hosp-antibs number of hospital antibiotics the patient has received 0, 1, 2, …

immunocompromised indicates if a colonized patient is immunocompromised yes, no

prob-regaining-resistance probability of regaining resistance to colonization [0, 1]

prob-becoming-colonized probability of becoming colonized [0, 1]

length-incubation-period length of time between colonization and becoming diseased by antibiotic risk level

 low risk: [20, 60]

 high risk: [14, 40]

 very-high risk: [8, 20]

time-until-diseased time until an immunocompromised, colonized patient will become diseased [0, 60]

will-ID determines whether a particular screening will correctly test positive for CDI yes, no

will-treat-succ determines whether a patient will be successfully treated for CDI yes, no
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Table 5

Description of global variables of the agent based model.

Variable Description Baseline Value

occupancy occupancy level of the hospital 0.85

prob-R probability a patient is resistant upon admission 0.58

prob-S probability a patient is susceptible upon admission [0.21, 0.40]

prob-C probability a patient is colonized upon admission [0.01, 0.20]

prob-D probability a patient is diseased upon admission 0.01

immcomp-prob probability a colonized patient is immunocompromised 0.1

pmin minimum probability of regaining resistance 0.2

prob-antib half-daily probability that a patient will begin an antibiotic treatment 0.27

prob-low-risk probability a hospital assigned antibiotic is low-risk with respect to CDI 0.4

prob- high-risk probability a hospital assigned antibiotic is high-risk with respect to CDI 0.26

prob-vhigh-risk probability a hospital assigned antibiotic is very high-risk with respect to CDI 0.34

ORh odds ratio value for high risk antibiotics 4

ORvh odds ratio value for very-high risk antibiotics 8

probability of becoming colonized if treated with low risk antibiotic in highly contaminated environment 0.15

prob-eff-clean probability of effective cleaning 0.5

sensitivity sensitivity of the screening test for CDI 0.91

turnover turnover time for the screening test for CDI 2

prob-succ-treat probability of successful treatment of CDI 0.8
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Table 6

Global variables for the half-daily probabilities of becoming colonized.

Variable Antibiotic risk Level of contamination Value

Low High

High High

Very high High

Low Low

High Low

Very high Low

Low Medium

High Medium

Very high Medium
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