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Abstract

The Lorenz curve is a graphical tool that is used widely in econometrics. It represents the spread 

of a probability distribution, and its traditional use has been to characterize population 

distributions of wealth or income, or more specifically, inequalities in wealth or income. However, 

its utility in public health research has not been broadly established. The purpose of this article is 

to explain its special usefulness for characterizing the population distribution of disease risks, and 

in particular for identifying the precise disease burden that can be predicted to occur in segments 

of the population that are known to have especially high (or low) risks, a feature that is important 

for evaluating the yield of screening or other disease prevention initiatives. We demonstrate that, 

although the Lorenz curve represents the distribution of predicted risks in a population at risk for 

the disease, in fact it can be estimated from a case–control study conducted in the population 

without the need for information on absolute risks. We explore two different estimation strategies 

and compare their statistical properties using simulations. The Lorenz curve is a statistical tool that 

deserves wider use in public health research.
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Introduction

The development of risk prediction tools has been the subject of considerable research from 

methodologists in recent years.1 Particular attention has been paid to the topic of prediction 

accuracy and to the usefulness of summary measures of prediction accuracy that can be used 

to compare prediction rules. The measure that is most widely used, the area under the 

receiver operating curve, was initially developed for diagnostic tests and is suitable for 

predicting a binary event. It is based on the specificity and sensitivity of the risk score, and it 

measures the probability that a randomly selected diseased subject has a higher predicted 

risk than a randomly selected non-diseased subject.2 Concordance indices measure the same 

quantity over a follow-up period.3 To account for the fact that the onset of the disease takes 

time and that censoring can occur, a time-dependent area under the curve has been proposed 
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by Heagerty.4 Reclassification measures have also received a lot of attention. The net 

reclassification index evaluates the extent to which patients are reclassified when using a 

new predictive rule compared to an old one, conditional on disease status.5 The integrated 

discrimination index is a related measure based on the difference in sensitivity and 

specificity between the two scores. Another popular type of measure to assess prediction 

accuracy is the error of prediction, or Brier score, which quantifies the distance between the 

prediction and the actual outcome.6,7 Finally, calibration represents whether the risk 

predictions reflect the true risks in the population. For example, among individuals with 

risks in the region of p% we expect about p% to experience the predicted event. If so, the 

prediction rule is considered to be well calibrated.8

In a public health context the discriminative accuracy of a risk prediction tool is closely 

related to the notion of risk concentration, in that risk concentration reflects the extent to 

which occurrences of the disease are likely to occur in a predictable, ideally small subset of 

the population. Pepe and colleagues have recognized this feature of “risk predictiveness” and 

have proposed graphical tools that map out broad variations in risk in the population of 

relevance.9–11 Our view is that the variation in risk of the disease in the population is indeed 

the feature of a risk prediction tool that is the most relevant from a public health perspective. 

However, we feel that the ideal graphical tool for representing this distribution is an old 

fashioned tool in statistics, the Lorenz curve.12 The Lorenz curve has a long history of 

application in econometrics. We believe that it is especially useful in the context of disease 

prevention because it maps out what public health policy investigators need to know. That is, 

it tells us how much disease burden will occur in any given proportion of the population with 

risks above a chosen threshold. Very few investigators have made use of the Lorenz curve to 

illustrate public health concepts, though there have been some notable exceptions. For 

example, Green et al.13 used it to describe regional variations in the incidence of multiple 

sclerosis, Hickson et al.14 used the tool to characterize the representativeness of African 

American participants in a study of heart disease, Perini et al.15 used it to characterize the 

methylphenidale consumption in Brazil, Duarte et al.16 studied the distribution of malaria 

cases in the Brazilian Amazon, Hashemi et al.17 used it to characterize regional access to 

cataract surgery, and Gail18 and Petracci et al.19 have used it in evaluating breast cancer risk.

The Lorenz curve was initially developed by economists to characterize the distribution of 

the wealth (or income) among individuals, and it is frequently used to compare social 

inequalities between countries. In this context the X-axis represents the proportion of the 

population, ranked from those with the lowest wealth to the highest, while the Y-axis 

represents the cumulative distribution of total wealth. Consequently, the curve can be used to 

read off statistics such as, say, the top 1% of the population owns 40% of the wealth. In the 

context of risk prediction in public health the X-axis represents the cumulative proportion of 

individuals in the population at risk, ranked from the lowest risk to the highest. By analogy 

with the econometric context, the Y-axis is the corresponding cumulative percentage of risk. 

However, since disease occurrences in the population occur in proportion to risk, the Y-axis 

also represents the cumulative numbers of individuals predicted to contract the disease, and 

thus simultaneously represents the cumulative disease burden.20 Consequently, one can use 

the curve directly to read off statistics such as, say, 60% of the cancers will occur in the 20% 

of the population with the highest risks. This is precisely the kind of statistic that is crucially 
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relevant for planning screening programs or other focused disease prevention measures. 

These statistics, when combined with data on costs and benefits, are crucial for evaluating 

the cost-effectiveness of such initiatives.

The aim of this paper is to clarify the utility and relevance of the Lorenz curve in this public 

health context. Much of the extensive research on this topic in the econometric context of 

wealth or income distribution is applicable to the context of disease risk prediction.21–24 We 

further demonstrate that, although the Lorenz curve represents the distribution of absolute 

risks in the population of interest, it can be estimated solely from the relative risk estimates 

obtainable from population-based case–control studies. We describe candidate estimation 

methods and study and compare their statistical properties using simulations. We illustrate 

the methods in the context of investigating the additional risk predictiveness obtained by 

creating separate risk prediction tools for disease sub-types that are etiologically distinct, 

using data from a breast cancer study where the risk predictiveness of the different sub-types 

is compared.

Risk predictiveness and the Lorenz curve

Definition of the Lorenz curve

Let r denote generically the disease risk of a randomly selected individual in the population 

and let F(r) denote the cumulative distribution of risks. Then X = F(r)defines the X-axis. The 

Y-axis represents the cumulative risk in the population among all individuals with risks less 

than or equal to r, i.e. , where f (r) is the probability density of the 

risks and μ is the mean of the risk distribution.21 L(r) represents the size-biased distribution 

of risks that occurs when individuals are sampled in proportion to their individual risks.25 

This is precisely what happens when considering incident cases of disease that occur in a 

population. For example, if one individual has double the risk of another individual, the first 

one is literally twice as likely to become a case; if the risk is triple then first individual is 

three times as likely to become a case; and so on. It follows that when you identify all 

incident cases during a given time period, as in a population-based case–control study, you 

are in effect sampling individuals with risks from the distribution L(r), i.e. cases in a 

population-based case–control study have risks representative of the distribution L(r). 

Similarly, random sampling of controls in a population-based case–control study is akin to 

sampling from F(r), the distribution of risks in the population.

We note that the concept of risk is a construct that depends on the factors that are used to 

define it. For example, in cancer epidemiology many risk prediction tools have been 

developed. One of the earliest was the Gail model, used to predict the risk of breast cancer in 

women based on a small number of key risk factors.26 One could construct a Lorenz curve 

corresponding to the risks predicted by the Gail model by sampling women from the 

population at risk, identifying their Gail risk scores, and estimating the corresponding 

distributions F(r) and L(r). This Lorenz curve would correspond specifically to the Gail 

model. However, if the model were enhanced by inclusion of new risk factors then this new 

risk model would have a different Lorenz curve, with a broader distribution of risks.
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Summary Measures

The Lorenz curve characterizes the concentration of risk in the population. In this sense 

“concentration” refers to a concentration of disease occurrences in a subset of the population 

with the highest risks. Such “concentration” corresponds to increased variation in risks, as 

opposed to concentration of the risks themselves. In other words, the larger the variance of 

the risks, the more concentrated is the overall risk distribution. The curve can be used 

flexibly to determine the proportional burden of disease that will occur in a given proportion 

of the population with the highest predicted risks, and this can be accomplished for any such 

proportion. So we can determine, say, the proportion of cancers that will occur in the top 

10% of the population on the basis of predicted risk, or the top 20%, and so forth. In general, 

these proportions will be larger for curves that are more convex. However, it is useful to have 

a single measure that characterizes the degree of risk concentration in the population that can 

be used, for example, to compare different populations or different risk prediction tools. A 

natural candidate is the variance, or more specifically the coefficient of variation of the risks, 

since the Lorenz curve is a scale-free entity. It can be shown that the coefficient of variation, 

and thus the risk concentration, is necessarily increased when a new informative risk factor 

is added to an existing model.27

However, the most widely-used measure of concentration is the Gini index.28 The Gini index 

represents twice the area between the Lorenz curve and the 45° line, scaled to range from no 

concentration (Gini=0) to maximum concentration (in theory Gini=1). The Gini coefficient, 

denoted G, is defined as . In our later simulations we will use both 

this index and the squared coefficient of variation of the risk distribution, denoted by K2 = 

σ2/μ2, where σ2 is the variance of the risks, as measures of risk concentration. Estimation of 

these quantities will be used to evaluate the bias and accuracy of estimation techniques 

defined in the next section. These two indices are similar but not identical. Indeed, Lee29 has 

shown that the Gini index is actually half of the coefficient of deviation of the risk 

distribution as opposed to the coefficient of variation. The numerator of the coefficient of 

deviation is the mean absolute difference between two randomly selected risks while the 

numerator of the coefficient of variation is the mean absolute difference of a randomly 

selected risk from the mean risk. In both cases the denominator is the mean risk.

Estimation of the Lorenz curve from case–control data

We consider the setting in which we have data from a case–control study with n controls and 

m cases. We assume that a risk prediction model is estimated from the cases and controls 

using the risk factors in the study and that this is used to estimate the individual risks of each 

of the cases and controls. For example, if the vector of risk factors is denoted by x and we 

use a conventional logistic regression then the risk predictor would be of the form exp(β̂′x), 

where β represents the parameters of the model and β̂ represents the parameter estimates. 

Unadjusted for the overall disease rate in the population these predictors simply represent 

the relative probability that a given individual in the study is a case versus a control, with 

sampling fractions proportional to m and n. However, since the Lorenz curve represents risk 

concentration, a standardized entity, it is only the relative values of these risk predictors that 

need to be employed in constructing it. Furthermore, since the Lorenz curve is a function 
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solely of the risk distribution in the population it can be constructed solely from the 

estimated risks in the controls (representing the population at risk) as follows. Let r ̂i, i = 1,

…, n represent the ranked risks in the controls estimated in this way. Then an empirical 

estimate of the Lorenz curve can be obtained using F̂(ri) = i / n and . 

We refer to this as Method A. Note that the cases do influence this estimator through their 

influence in creating the risk score.

We also examine an alternative approach that makes use of the risk estimates in the cases. 

Let these be denoted r̃j, j = 1,…, m. Since the Y-axis of the Lorenz curve represents the risk 

distribution in incident cases we can use these to estimate L(r) directly. It follows that an 

empirical estimate of the Lorenz curve can be constructed from the joint ranks of the cases 

and controls as follows: F̂(ri) = i / n as before, while L ̂(ri) = j /m, where j satisfies the 

conditions rj̃ ≤ r̂i and r̃j+1 > r̂i. We refer to this as Method B.

The coefficient of risk variation can be estimated directly from the predicted risks in the 

controls using K2̂ = σ̂2/μ̂2, where  and . The estimate of 

the Gini coefficient, which is double the area between the Lorenz curve and the 45° line, can 

be obtained using , where d=1, …, D, indexes the distinct 

risk categories and D is the total number of risk categories. [In the case of a continuous risk 

model with no ties, D = n.] These results will of course be dependent on whether Method A 

or Method B is used to estimate L ̂ (●).

Example

To illustrate the use of the Lorenz curve in epidemiology we use a subset of cases from the 

Cancer and Steroid Hormone Study for whom tumor tissue was collected for molecular 

analysis and analyzed for the purposes of identifying etiologically distinctive sub-types.30 

This collection of m=551 cases and n=2,990 controls was used recently to identify 

etiologically distinct subtypes of breast cancer using gene expressions in the tumors from a 

panel of breast cancer genes to create the subtypes.31 This research made use of data from a 

study that was approved by the institutional review board at Memorial Sloan Kettering 

Cancer Center under a waiver of authorization (WA0324-12).

We first demonstrate the use of Lorenz curves to gauge the increases in risk concentration 

due to the addition of groups of risk factors sequentially to the risk prediction model. First, 

the risk of breast cancer for each subject was estimated by logistic regression comparing all 

cases and controls using age at diagnosis, pre- and post-menopausal body mass index, and 

race. This leads to a modest Gini coefficient of 0.11, and the Lorenz curve is displayed in 

black in Figure 1. On the basis of this model only 24% of cases will occur in the 20% of the 

population with the highest risks. We then augmented the model by including the hormonal 

factors age at menarche, nulliparity, number of children, age at first birth, months of 

breastfeeding, menopausal status, and age at menopause. The Gini index is increased to 0.21 

and the corresponding blue Lorenz curve in Figure 1 indicates that 31% of the cases will 

occur in the top 20% of the population based on risk. Finally, when adding the information 
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about relevant disease (prior benign breast disease) and family history of breast cancer the 

Gini index increases to 0.25. Using this risk prediction model 35% of the cases will occur in 

the 20% of the population with the highest estimated risks.

We then explored the extent to which risk concentration might be improved by defining 

disease sub-types with distinct risk profiles, such as those defined by estrogen receptor, 

progesterone receptor or human epidermal growth factor receptor 2 status in the tumor 

samples. We display the results for the strongest of these, estrogen receptor status. The risk 

prediction models for the subtypes characterized by presence or absence of estrogen 

receptors involved logistic regression comparing cases in the sub-type of interest (receptor 

positive or negative) versus all controls using the same set of risk factors as before. The 

results are illustrated in Figure 2. The figure demonstrates that the risk factors more 

accurately predict estrogen receptor positive cases, showing that 40% of estrogen receptor 

positive cases will occur in the top 20% of the population ranked on the basis of risk of this 

sub-type (blue curve). By contrast the risk factors do not improve our ability to predict 

estrogen receptor negative breast cancers (black curve).

Statistical properties / Simulations

Our first simulation was designed to confirm that the Lorenz curve can indeed be estimated 

from case–control data when in fact the data are generated from a pre-specified disease 

incidence model. We generated data from an underlying “true” model with lognormal risks, 

i.e. we generated a risk r = exp(x) for each subject in the population, where x was generated 

from a normal distribution. That is, we generated data from a population with a known log-

normal risk distribution. By controlling the mean and variance of x we are able to choose the 

expected value for both the prevalence and the coefficient of risk variation, K. We used these 

sets of risks to generate datasets and to estimate the Lorenz curve and its concentration 

measures K2 and G by both Method A and Method B. Population controls were generated 

by randomly sampling n values of x, while cases were sampled by generating a random 

value of x, including the subject as a case on the basis of a Bernoulli trial with probability of 

success r = exp(x), and repeating the process until m cases were successfully sampled. This 

process was repeated a large number of times (1000 times) to determine biases and 

variances. The results for Method A are shown in Table 1. The results for Method B are very 

similar and are available on-line in eTable 1. In the top panel (K2=0.25) the risk distribution 

was configured to produce a degree of concentration similar to that observed in the example 

from the Cancer and Steroid Hormone Study. The bottom panel represents a much higher 

degree of risk concentration. Absolute risks of 0.1 and 0.01 represent settings in which the 

disease occurrence is common and relatively rare, respectively.

The results demonstrate that there is essentially no bias in the estimate of the Gini 

coefficient. The estimate of K2 is modestly positively biased for the smaller sample sizes 

examined, although the larger biases in this setting are in part a result of the larger standard 

errors. Results for an intermediate risk concentration are available in eTable 1. Overall the 

results confirm that it is possible to estimate the Lorenz curve from case–control data, 

regardless of the fact that the curve represents concentration of the distribution of absolute 

risks.
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To test the method in a setting that is a better representation of how it would be applied in 

practice we constructed simulations framed by the Cancer and Steroid Hormone Study 

dataset used in the example in the previous section. First, we used the complete set of 551 

cases and 2,990 controls to develop a baseline risk prediction model. We used a logistic 

regression model to estimate the parameters which we assumed to be the “true” underlying 

risk prediction model based on β̂′x where x represents the set of risk factors and β̂ is the set 

of parameter estimates assumed to be the true estimates. In simulating data from this model 

we varied the underlying population risk by using as the risk log(r) = β̆ + β̂′x where β̆ = 

log(π̆)−log(π/ (1−π)), π is the sampling fraction of cases in the case–control study, i.e. 551/

(551+2990), and π̆ is the population risk of disease which was varied systematically in the 

simulations. We used this “true” model to determine the true values of K2 and G, using a 

sample of 10,000 controls.

We randomly selected with replacement a sample of n controls from the Cancer and Steroid 

Hormone Study data, with covariates xi, i=1, …, n. To generate the cases, we first randomly 

selected (with replacement) a control with covariate vector x. We then calculated r = exp(β̆
+β̂′x), generated a Bernoulli with probability r, and assigned x as a case if the Bernoulli was 

a “success”. A new control was sampled and the process continued until m cases were 

“successfully” accrued, with covariate vectors denoted (x1̃, x̃2,….x̃m). We then performed 

logistic regression on (x ̃1, x̃2,….x̃m). versus (x1, x2,…, xn). We used the parameter estimates 

β* from this run to estimate risks r* = exp(β*′x) for each case and control and used these 

sets of risks to estimate the Lorenz curve, K2 and G by both Method A and Method B. As 

before, this process was repeated a large number of times (1000 times) to determine biases 

and variances.

The results for Method A are presented in Table 2. As before the results for Method B are 

similar and are available on-line in eTable 2. As in Table 1 the biases are unaffected by the 

true prevalence of disease, confirming the fact that the Lorenz curve reflects the risk 

concentration rather than absolute risk. There is positive bias throughout, due to the fact that 

the prediction model is estimated from the data on which it is evaluated. However, as would 

be expected, bias declines as the sample size increases. Biases for K2 are larger than for G, 

though they decrease substantially with increasing sample sizes.

Discussion

A widely used graphical tool for characterizing the accuracy of risk prediction models is the 

receiver operating characteristic curve. This is somewhat similar to the Lorenz curve but 

differs in important ways. The receiver operating characteristic curve is constructed around a 

binary classification, for example disease present versus disease absent, and it contrasts the 

sensitivity against the specificity of a classification rule or diagnostic test. By contrast, the 

Lorenz curve focuses on the concentration of a continuous quantity, in our case risk. The Y-

axis of the Lorenz curve represents, in essence, the expected number of cases that will occur 

in a defined segment of the population, while the X-axis represents the total population 

rather than individuals who do not experience the disease. Just as for the receiver operating 

characteristic curve, as the size of the high risk group progressively decreases, the number of 

subjects who will experience the disease who are excluded from this high risk group 
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progressively increases. By focusing on risk concentration, the Lorenz curve allows users to 

identify the extent to which incidences of disease will occur in subsets of the population 

characterized by risk. In an era in which we are increasingly able to predict risks of various 

diseases, and in which both the economic and morbidity costs of screening programs are 

hotly debated, the extent to which risk prediction models can identify segments of the 

population in which the preponderance of the cases will occur is one of the crucial measures 

for evaluating the merit of their utility. For this reason we believe that the Lorenz curve is the 

natural graphical tool for displaying and characterizing risk predictiveness.

We do note that risk concentration is a metric that is unrelated to absolute risk. Indeed, this 

independence is why we are able to estimate the Lorenz curve from retrospectively sampled 

case–control data. Although calibration is a very important attribute of a risk prediction tool, 

interestingly, estimation of the Lorenz curve is less likely to be influenced by a poorly 

calibrated model. That is, proportional biases in the risk prediction model will not influence 

the corresponding Lorenz curve, though clearly non-proportional biases in the risk predictor 

would lead to bias.

The Lorenz curve is an inherently population-based metric. That is, the risk concentration is 

dependent on the population from which the data are derived. For example, if the curve is 

derived from a case-cohort design using incidence density sampling it will reflect the risk 

concentration in the specific cohort employed. Likewise, for a population-based case–

control study the curve will reflect the risk concentration in the population from which the 

cases and controls are sampled. The use of data from matched case–control studies will 

potentially influence risk concentration in that matching on a factor that influences risk 

effectively removes the contribution of that factor from the coefficient of risk variation and 

thus would correspondingly reduce the risk concentration in the Lorenz curve. To our 

knowledge methods for re-calibrating a Lorenz curve to eliminate the effect of matching or 

to translate a curve estimated on one population to a different population have not been 

developed and are topics for future research.

The technical message from our work is that although the Lorenz curve characterizes the 

distribution of absolute risks one does not need data on absolute risks to construct it. Risk 

concentration is a scale free entity. Thus even though risk predictions constructed from a 

case–control study represent relative risks (unless they are separately adjusted to population 

rates) the concentration of these relative risks will be the same regardless of the sampling 

fractions of cases and controls used in the study. Consequently we can construct the Lorenz 

curve using data from a case–control study. We have also shown that the parameters 

representing risk concentration can be estimated with modest bias provided that the sample 

sizes in the case–control study are not especially small, and that biases that do occur are 

largely due to the well-known overconfidence that results when a risk prediction rule is 

applied to the dataset from which it is generated, a bias that can be corrected using a 

validation sample.3 Such bias increases with the number of covariates examined for 

inclusion in the risk prediction tool and decreases with the sample size of the study.

In summary, the Lorenz curve is a simple and accessible graphical tool that provides 

information that is especially relevant for evaluating the potential yield of screening 
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programs that target high-risk subsets of the population. It is a tool that should be more 

widely used in the public health setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Lorenz curves comparing three prediction models on the Cancer and Steroid Hormone Study 

cases and controls based on 551 cases and 2990 controls.
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Figure 2. 
Lorenz curves comparing the risk predictiveness of two sub-types of breast cancer based on 

data from the Cancer and Steroid Hormone Study. The blue curve is based on 294 estrogen 

receptor positive (ER+) cases versus the 2990 controls. The black curve is based on 224 

estrogen receptor negative (ER−) cases versus 2990 controls. The benchmark red curve is 

based on all cases and is the same one as the red curve in Figure 1.
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