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Huntington’s disease is a late-onset neurodegenerative disease caused by a CAG trinucle-
otide repeat in the gene encoding the huntingtin protein. Despite its well-defined genetic
origin, the molecular and cellular mechanisms underlying the disease are unclear and
complex. Here, we review some of the currently known functions of the wild-type hun-
tingtin protein and discuss the deleterious effects that arise from the expansion of the CAG
repeats, which are translated into an abnormally long polyglutamine tract. Finally, we
outline some of the therapeutic strategies that are currently being pursued to slow down
the disease.

INTRODUCTION TO HUNTINGTON’S
DISEASE: GENETICS AND PATHOLOGY

Huntington’s disease (HD) is an autosomal
dominant condition characterized by move-

ment disorders and cognitive decline. Typically,
the motor defects include chorea and loss of
coordination. Psychiatric symptoms, such as
depression, psychosis, and obsessive–compul-
sive disorder, are also common in HD and are
particularly distressing for patients (Rosenblatt
2007). The prevalence of the mutation is four to
ten cases per 100,000 in populations of Western
European origin.

HD is characterized by a general shrinkage
of the brain and degeneration of the striatum

(caudate nucleus and putamen), with specific
loss of efferent medium spiny neurons (MSNs)
(Reiner et al. 1988). Although the striatum ap-
pears to be the most affected region of the brain,
a regionally specific thinning of the cortical rib-
bon was found in patients with HD (Rosas et al.
2002). Such loss of cortical mass is an early
event in the pathology of HD and proceeds
from posterior to anterior cortical regions with
disease progression. This regionally selective cor-
tical degeneration may explain the heterogeneity
of clinical expression in HD. Additional features
are often present in HD patients, such as weight
loss, skeletal-muscle wasting, and cardiac failure
(Arenas et al. 1998; Aziz et al. 2008). Although
generally less investigated than neurological
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signs, these additional signs might be due to the
ubiquitous expression of mutant huntingtin (the
toxic protein that causes HD).

HD is due to mutations in the HTT gene
encoding huntingtin, a ubiquitously expressed
protein of 350 kDa (Huntington’s Disease Col-
laborative Research Group 1993). Huntingtin
contains a polyglutamine tract encoded by un-
interrupted CAG trinucleotide repeats in the
first exon of HTT. Wild-type alleles contain up
to 35 CAG repeats, whereas HD patients carry
expansions of 36 or more repeats (Rubinsztein
et al. 1996). Although complete penetrance of
HD is observed for CAG sizes of �42, only a
proportion of those with a CAG repeat length of
36–41 shows signs or symptoms of HD within a
normal life span (Rubinsztein et al. 1996; Brink-
man et al. 1997). For a review of polyglutamine-
containing proteins and their role in neurode-
generative disease, see Pearce and Kopito
(2017).

There is a strong inverse correlation between
the number of CAG repeats and the age of onset
of symptoms: larger CAG repeat expansions are
generally associated with earlier ages of onset
(Andrew et al. 1993). However, the CAG repeat
number only partially explains 65%–71% of
the variance in the age of onset, which also ap-
pears to be influenced by additional environ-
mental and genetic factors, like modifier genes
(Rosenblatt et al. 2001). Moreover, monozygot-
ic twins have been reported to show different
clinical symptoms, suggesting that epigenetic
factors or tissue-specific variation in CAG re-
peats, because of somatic instability, may influ-
ence the disease (Georgiou et al. 1999).

HD is also characterized by the phenome-
non of anticipation, where the age of onset
tends to decrease in successive generations.
This decrease is due to the unstable nature of
the CAG repeats that tend to increase in size,
particularly when passed through the male
germline (Trottier et al. 1994). Although germ-
line instability can explain the phenomenon of
anticipation, somatic instability has been pro-
posed as a mechanism underlying the tissue
specificity of the disease.

To study the pathophysiology of HD, several
mouse models have been generated. For an ex-

haustive description of those models, see re-
views by Menalled and Chesselet (2002) and
Lee et al. (2013).

WILD-TYPE HUNTINGTIN: STRUCTURE
AND FUNCTIONS

Huntingtin is an �350 kDa protein containing
the polyglutamine sequence at the NH2 termi-
nus and multiple consensus sequences called
HEAT (huntingtin, elongation factor 3, protein
phosphatase 2A, and TOR1 [target of rapamy-
cin 1]) repeats that are important for protein–
protein interactions. HEAT motifs have a he-
lix–turn–helix structure that is tightly packed
to form a superhelix hydrophobic core that re-
sists dissociation after proteolytic cleavage (Li
et al. 2006). These motifs are often present in
proteins involved in intracellular trafficking,
such as clathrin adaptors and COPI (coat pro-
tein complex I) coatomer (Neuwald and Hirano
2000), and are possibly responsible for the scaf-
folding role of Huntingtin in the formation of
protein complexes (Takano and Gusella 2002).

Huntingtin is a cytoplasmic protein with
partial nuclear localization. Recently, its nuclear
localization sequence (NLS) has been described
in the NH2 terminus of the protein (Desmond
et al. 2012). It spans between amino acids 174
and 207 and interacts with karyopherin b2,
a protein that mediates nuclear import of
proteins. This NLS comprises three consensus
components: a basic-charged sequence, a down-
stream-conserved arginine, and a proline-tyro-
sine sequence.

Huntingtin also contains a nuclear export
sequence in the COOH terminus (Xia et al.
2003). Moreover, the N-terminal sequence of
huntingtin interacts with Tpr, a nuclear pore
protein that is involved in nuclear export. Poly-
glutamine expansions decrease this interaction
and increase the nuclear accumulation of hun-
tingtin (Cornett et al. 2005).

Huntingtin is widely expressed in humans
and rodents, with highest levels in the neurons
of the central nervous system, where it appears
to localize predominantly in the cytoplasm
and be associated to vesicle membranes (DiFi-
glia et al. 1995). In particular, huntingtin is
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enriched in scattered striatal large neurons and
in all corticostriatal neurons (Fusco et al.
1999).

PHYSIOLOGICAL FUNCTIONS
OF HUNTINGTIN

Since the discovery of HTT as the gene respon-
sible for HD, efforts have been made to eluci-
date the function of wild-type huntingtin, and
several roles have been described so far. Here, we
summarize the most studied ones.

Huntingtin Is Necessary for Embryonic
Development

Huntingtin is required for early embryonic de-
velopment, as knockout mice show embryonic
lethality around day 8.5, before the emergence
of the nervous system (Nasir et al. 1995; Zeitlin
et al. 1995). Moreover, recent studies reveal that
huntingtin plays a crucial role in neurogenesis.
In fact, huntingtin was shown to be required for
the maintenance of the lineage potential of
primitive neuronal stem cells during the pro-
cess of neural induction (Nguyen et al. 2013).
Furthermore, huntingtin has a crucial role
in neurulation controlling homotypic interac-
tions between neuroepithelial cells (Lo Sardo
et al. 2012). This function is executed by inhib-
iting both the activity of the metalloprotease
ADAM10 and N-cadherin cleavage. This obser-
vation was also made in vivo, as defects in neural
tube morphogenesis that were observed in hun-
tingtin-knockdown zebra fish embryos could be
rescued after treatment with GI254023X, an
ADAM10 inhibitor.

Huntingtin Acts as a Protein Scaffold

Wild-type huntingtin is a well-characterized
scaffolding protein. It interacts with b-tubulin
and binds to microtubules (Hoffner et al. 2002).
It also interacts with the dynein/dynactin
complex (Caviston et al. 2007), regulating sev-
eral intracellular trafficking processes. Recently,
huntingtin has been shown to localize to spin-
dle poles during mitosis, controlling spindle

orientation in mouse neuronal cells (Godin
et al. 2010). In the absence of huntingtin, dy-
nein/dynactin and NuMA were dispersed
around the spindle poles. Therefore, huntingtin
possibly functions as a scaffold molecule that
orchestrates the assembly of the dynein/dynac-
tin complex.

Huntingtin as a Transcriptional Regulator

The nuclear localization confers huntingtin a
role in transcriptional regulation (Kegel et al.
2002). Although numerous transcription fac-
tors are known to interact with mutant hun-
tingtin, less is known about the interactions
with the wild-type protein. Awell-known target
of huntingtin-mediated transcriptional regula-
tion is the gene encoding brain-derived neuro-
trophic factor (BDNF) (Zuccato et al. 2003). In
the cytoplasm, wild-type huntingtin sequesters
and inhibits the activity of REST/NRSF (re-
pressor element-1 transcription factor/neuron
restrictive silencer factor), a transcription fac-
tor that negatively regulates BDNF transcrip-
tion. Recently, it has been shown that hunting-
tin interacts with methyl-CpG-binding protein
2 in mouse and cellular models of HD. This
interaction may also modulate the hunting-
tin-mediated expression of BDNF (McFarland
et al. 2014).

Huntingtin in the Synapse

A new emerging role of huntingtin is in synaptic
connectivity. Huntingtin is associated with syn-
aptic vesicles in the presynaptic terminal (DiFi-
glia et al. 1995), as well as in the postsynaptic
density (Marcora and Kennedy 2010), where it
is associated with the scaffolding protein PSD95
(Sun et al. 2001). For many years, the role of
huntingtin in this compartment was obscure.
A recent study showed that huntingtin is re-
quired for a correct formation of cortical and
striatal excitatory synapses (McKinstry et al.
2014). In particular, when huntingtin was si-
lenced in developing mouse cortex, an increase
in excitatory synapse formation in the cortex
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and striatum was observed at P21, followed by
gliosis.

MECHANISMS OF PATHOGENESIS IN HD

Despite the well-known genetic origin of HD,
the number and variety of molecular alterations
reported in HD is broad and not completely
understood. Although it is known that toxicity
in HD arises from a gain of function of the
mutant protein, given that expression of an ex-
panded polyglutamine is toxic itself, a contri-
bution of a loss of function of the wild-type
protein cannot be discarded because deletion
or inactivation of wild-type huntingtin also
leads to neurodegeneration (O’Kusky et al.
1999; Dragatsis et al. 2000).

We outline here some of the mechanisms of
pathogenesis described to date and focus in par-
ticular on those that are related to potential tar-
gets for therapy (Fig. 1).

Mutant Huntingtin Aggregation:
Is It Protective or Deleterious?

The hallmark of HD, and common to other
polyglutamine disorders, is the presence of ag-
gregates in the brain. These were initially con-
sidered crucial in HD pathology. Similar to oth-
er polyglutamine-containing proteins, mutant
huntingtin aggregation proceeds by nucleated
growth polymerization (Perutz and Windle
2001), leading to polyglutamine strands form-
ing a b-sheet held together by hydrogen bonds
(Perutz et al. 1994), which results in an amyloid
structure (McGowan et al. 2000; Chen et al.
2002).

HD aggregates, initially found in the nucle-
us (DiFiglia et al. 1997; Becher et al. 1998) and
later also in the cytoplasm and neuronal pro-
cesses in the brain of HD patients (Gutekunst
et al. 1999), are composed mainly of the expand-
ed mutant huntingtin but also of many other
proteins including ubiquitin (DiFiglia et al.
1997; Becher et al. 1998), proteasome subunits
and chaperones (Cummings et al. 1998; Warrick
et al. 1999), transcription factors (Huang et al.
1998; Steffan et al. 2000), or even the wild-type
form of huntingtin (Kazantsev et al. 1999; Busch

et al. 2003). Hence, the idea of a deleterious
effect as a consequence of the loss of functional
proteins sequestered into these aggregates was
quite appealing. Another argument on behalf of
their pathogenicity is that the number of poly-
glutamines correlates with both the rate of ag-
gregation and the onset of the disease (Becher
et al. 1998; Martindale et al. 1998; Perutz and
Windle 2001), which suggests a direct link be-
tween aggregation and cell toxicity (Hackam
et al. 1998).

Contrary to this intuitive hypothesis, there
are also arguments supporting the ideas that
aggregation does not correlate with toxicity
and that aggregates might be just coincidental
or even protective in HD (Saudou et al. 1998;
Kim et al. 1999) and other polyglutamine dis-
orders (Klement et al. 1998; Cummings et al.
1999). Single living neuron studies inferred an
inverse correlation between the presence of ag-
gregates and cell death (Arrasate et al. 2004) and
suggested a protective role for these inclusions
by sequestering toxic soluble species. In this
line, the toxicity of the different mutant hun-
tingtin species is currently a matter of debate:
monomeric huntingtin forms soluble oligo-
mers that precede fibrils and inclusions (Poirier
et al. 2002; Mukai et al. 2005; Legleiter et al.
2010), and many reports point at these oligo-
mers as the toxic species (Takahashi et al. 2008;
Lajoie and Snapp 2010, 2013). Understanding
which are the genuine harmful species is crucial
to designing therapeutic strategies.

The aggregates in adult-onset HD are typi-
cally cytoplasmic, whereas those in juvenile-on-
set disease were proposed to be more frequent in
the nucleus (DiFiglia et al. 1997; Becher et al.
1998). A recent study has suggested that some
aggregates that appear to be nuclear may indeed
be perinuclear (i.e., cytoplasmic). These perinu-
clear aggregates have been proposed to be the
toxic species, which appear to cause cell death
by abnormally activating the cell cycle (Liu et al.
2015). This study may resolve some of the con-
troversy about the roles of aggregates in HD, as it
appeared that the truly nuclear aggregates were
relatively benign, compared with the perinu-
clear aggregates, and that diffuse mutant hun-
tingtin does not impact cell death. However, the
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conclusions are still somewhat at odds with pre-
vious studies that suggested the mutant hun-
tingtin was most toxic in its nonaggregated state
(Arrasate et al. 2004).

Molecular chaperones promote efficient
folding and prevent aggregation (Hartl et al.
2011), and increased levels of HSP40, HSP70,
or HSP100 inhibit polyglutamine-induced
protein aggregation and prevent its toxicity
(Carmichael et al. 2000; Jana et al. 2000; Kro-
bitsch and Lindquist 2000). A genomic screen
recently identified that inhibition of gluta-
minyl-peptide cyclotransferase (QPCT), using
small interference RNAs or small molecule in-
hibitors, leads to increased levels of the small
heat shock protein (HSP) aB-crystallin, and
consequently reduces aggregation and toxicity
in several models of HD (Jimenez-Sanchez
et al. 2015).

Huntingtin Is Cleaved in Toxic Fragments

Accumulation of pathogenic N-terminal frag-
ments of huntingtin is characteristic in HD
(Davies et al. 1997; Kim et al. 1999; Mende-
Mueller et al. 2001). These fragments come
from diverse origins, including proteolysis by
caspases (Wellington et al. 1998; Kim et al.
2001; Hermel et al. 2004; Graham et al. 2006),
calpains (Bizat et al. 2003; Kim et al. 2003; Gafni
et al. 2004), and other proteases. In addition,
alternative mechanisms might contribute, such
as the aberrant splicing of the first exon of hun-
tingtin protein (Sathasivam et al. 2013).

Although both wild-type and expanded
huntingtin get cleaved, the presence of mutant
fragments correlates with increased toxicity,
which might be because of their higher propen-
sity to form nuclear versus cytoplasmic less-
toxic aggregates (Hackam et al. 1998; Lunkes
and Mandel 1998; Kim et al. 1999; Lunkes
et al. 2002). Also, the nature of these fragments
may vary between tissues, which might contrib-
ute to differences in cell susceptibility (Mende-
Mueller et al. 2001; Toneff et al. 2002; Welling-
ton et al. 2002). Hence, inhibiting the formation
of these fragments has been pursued as a ther-
apeutic strategy, which could be achieved also
indirectly—for example, by modifying the sus-

ceptibility of cleavage by phosphorylation of
huntingtin by Cdk5 (Luo et al. 2005), or phos-
phorylation of a domain that impairs calpain
cleavage (Schilling et al. 2006).

Mutant Huntingtin Disrupts Transcription

Transcriptional dysregulation has long been
considered a major pathogenic mechanism in
HD. DNA microarray studies have revealed
that expression profiles of a number of genes
are profoundly altered in HD (Luthi-Carter
et al. 2000; Sipione et al. 2002). The activation
domains of many transcription factors are
composed of glutamine-rich regions, suggest-
ing that they may interfere with expanded pol-
yglutamines. Indeed, mutant huntingtin inter-
acts with regulators of transcription, such as
p53, cAMP response element-binding (CREB)
protein, and CREB-binding protein (CBP), in-
volved in cell proliferation and survival (Stef-
fan et al. 2000; Nucifora et al. 2001; Sugars
et al. 2004); PGC-1a (peroxisome prolifera-
tor-activating receptor-g coactivator-1 a),
which is necessary for energy metabolism
(Cui et al. 2006; Chaturvedi et al. 2010); Sp1
and its coactivator TAFII130, which affects
transcription of genes such as D2 dopamine
receptor (Dunah et al. 2002; Zhai et al. 2005);
and cystathionine g-lyase, the biosynthetic en-
zyme for cysteine (Paul et al. 2014); among
many others.

The increased susceptibility of the striatum
in HD has been attributed to a reduction in the
levels of BDNF, a pro-survival factor produced
cortically to promote survival of striatal neu-
rons. Impairment in transcription (Zuccato
et al. 2001) or in axonal transport of BDNF
(Gauthier et al. 2004) or its receptor TrkB
(Liot et al. 2013) are all mechanisms that have
been proposed to contribute to this deficit. In
addition, corticostriatal synaptic defects in
mouse models have been recently attributed to
defects in BDNF signaling, rather than reduced
BDNF levels, through an impact on postsynap-
tic p75 neurotrophin receptor (Plotkin et al.
2014), which along with TrkB binds to BDNF
and is also implicated in HD (Brito et al. 2013;
Jiang et al. 2013; Simmons et al. 2013).
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Alterations in Gene Expression beyond
Transcription: Epigenetics and Noncoding
RNAs

Gene expression dysregulation in HD might
also arise from variations in the epigenetic land-
scape, as well as in the regulation of noncoding
RNAs. A first hint of deregulation of histone
modification in HD came from the study of
CBP, a transcriptional coactivator with histone
acetyltransferase (HAC) functions. Expanded
polyglutamines can bind to the HAC domain
of CBP as well as other HACs, which disrupts
their histone acetylation activity. Likewise, his-
tone deacetylase (HDAC) inhibitors prevent
neurodegeneration in cells, Drosophila, or
mouse models of HD (McCampbell et al.
2001; Steffan et al. 2001; Ferrante et al. 2003;
Hockly et al. 2003). More recently, genetic inhi-
bition of HDAC4 has been shown to restore
neurological dysfunction and extend life span
in HD mouse models independently of its
HDAC function but owing to reduced aggregate
formation through decreased interaction be-
tween expanded polyglutamines and its gluta-
mine-rich domain (Mielcarek et al. 2013).

In an effort to determine chromatin struc-
tural modifications in the genes downregulated
in HD, a genome-wide approach identified a
specific H3K4me3 pattern, a mark of active
chromatin and transcription initiation, which
correlated with transcriptional dysregulation
in the R6/2 HD mouse and human HD brain
(Vashishtha et al. 2013). Along similar lines,
DNA methylation in promoter regions, which
results in gene repression or silencing, was
changed in a significant fraction of the genes
altered in HD (Ng et al. 2013), although how
mutant huntingtin triggers DNA methylation is
currently unknown.

Gene expression is also influenced by non-
coding RNAs. In HD human brain, miRNA de-
regulation has been reported (Johnson et al.
2008; Packer et al. 2008; Martı́ et al. 2010).
Moreover, huntingtin has been found in RNA
structures such as P bodies (Savas et al. 2008),
stress granules (Ratovitski et al. 2012), or den-
dritic RNA granules (Savas et al. 2010), where it
could influence protein expression at a post-

transcriptional level. In Drosophila models of
the related polyglutamine disease spinocerebel-
lar ataxia type 3, expression of an untranslated
CAG triplet expansion was sufficient to confer
toxicity (Li et al. 2008). RNA toxicity mecha-
nisms include aberrant protein–RNA interac-
tions and sequestration of proteins, but also the
hairpin secondary structure formed by CAG
RNAs resemble double-stranded RNA (dsRNA)
structures that are substrates for Dicer (Handa
et al. 2003), cleaving them into shorter repeats
that silence specific genes (Krol et al. 2007).
Cleaved RNAs from CAG-expanded huntingtin
may also become neurotoxic through Ago2-me-
diated gene silencing of CTG-containing genes
(Bañez-Coronel et al. 2012).

Impairment of Protein Degradation Systems:
Ubiquitin–Proteasome System and
Autophagy

Two major degradation pathways exist to
degrade intracellular proteins: the ubiquitin–
proteasome system (UPS), which efficiently de-
grades wild-type huntingtin, and the autoph-
agy–lysosome system, which seems to be impor-
tant in degrading the expanded mutant forms
(Ravikumar et al. 2002; Shibata et al. 2006).

Although most efforts have focused on find-
ing strategies to upregulate these systems to re-
duce the levels of mutant protein, the influence
that mutant huntingtin has in UPS and autoph-
agy has also been a matter of research.

Early reports described an impairment in
proteasome activity as a consequence of the ex-
pression of polyglutamine-expanded hunting-
tin (Bence et al. 2001; Jana et al. 2001; Verhoef
et al. 2002; Bennett et al. 2005), a phenomenon
that might be explained by either the sequestra-
tion of components of the UPS into inclusions
(Davies et al. 1997; DiFiglia et al. 1997; Waelter
et al. 2001) or the interaction between the pro-
teasome and aggregation-resistant forms of
huntingtin (Holmberg et al. 2004; Venkatraman
et al. 2004).

Conversely, some groups did not observe
deficits in UPS activity in HD (Bett et al.
2009; Maynard et al. 2009; Schipper-Krom
et al. 2014a). Studies in single neurons and in
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mouse models have addressed this contradic-
tion by revealing that an initial UPS impairment
is followed by its normalization coinciding
with the appearance of inclusions, suggesting
an adaptive mechanism (Mitra et al. 2009; Or-
tega et al. 2010). More recently, it was shown
that proteasomes can completely degrade ex-
panded polyglutamines (Juenemann et al.
2013), which, together with the observation
that proteasomes can be dynamically recruited
to inclusions without affecting their activity
(Schipper-Krom et al. 2014b), favor a compe-
tent UPS in HD.

Although an increased number of autopha-
gosomes was described in HD models (Kegel
et al. 2000), autophagosome formation is not
affected by either mutant or wild-type hunting-
tin (Zheng et al. 2010). A closer look to the
autophagic machinery revealed that, although
formed, HD autophagosomes cannot optimally
sequester substrates (Martinez-Vicente et al.
2010). This observation might be explained by
the recently hypothesized role of wild-type hun-
tingtin as a protein scaffold to recruit the
autophagy machinery in selective autophagy,
although the consequences of the triplet expan-
sion in this scaffold function have not been ad-
dressed (Ochaba et al. 2014). Additionally, it has
been proposed that HD autophagosomes have
impaired axonal transport (Wong and Holz-
baur 2014), which leads to inefficient autopha-
gosome–lysosome fusion and decreased degra-
dation of autophagosome content (Ravikumar
et al. 2005; Jahreiss et al. 2008).

Altered Synaptic Plasticity and Neuronal
Homeostasis in HD

Neuronal and synaptic abnormalities are early
pathological events in HD (Usdin et al. 1999;
Cummings et al. 2006; Milnerwood et al.
2006). Neuronal homeostasis might be compro-
mised not only by decreased transcription of
essential genes in neurotransmission and signal-
ing but also by defects in the delivery of proteins
and organelles along their axons. Pathogenic
huntingtin inhibits fast axonal transport of
organelles (Li et al. 2001; Gunawardena et al.
2003; Szebenyi et al. 2003; Lee et al. 2004; Tru-

shina et al. 2004), a phenomenon that has
been explained by aggregates blocking axons
(Li et al. 2001; Lee et al. 2004), aggregate seques-
tration of motor proteins (Gunawardena et al.
2003; Trushina et al. 2004), or loss of function
of wild-type huntingin (Gunawardena et al.
2003; Trushina et al. 2004). Huntingtin facili-
tates vesicle trafficking by serving as a scaffold
between cargoes, microtubules, and motor
proteins such as dyneins or kinesins (Caviston
et al. 2007; Colin et al. 2008), an interaction
mediated through huntingtin-associated pro-
tein 1 (HAP1), which appears to be disrupted
in disease (Gauthier et al. 2004; McGuire et al.
2006). Polyglutamine-expanded huntingtin
may also have an indirect effect by enhancing
JNK3 phosphorylation of kinesin heavy chain,
which disrupts its binding to microtubules in
cellular and animal models of HD, thereby per-
turbing fast axonal transport (Morfini et al.
2009).

Axonal transport is required to correct de-
livery to neuronal membranes to ensure synap-
tic transmission. In HD, a failed delivery of
receptors, such as GABA(A) (g-aminobutyric
acid type A) or AMPA (a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid) receptors,
inhibits synaptic excitability. HAP1 is the scaf-
fold linking these receptors to the kinesin motor
KIF5, and this interaction is interrupted by mu-
tant huntingtin (Twelvetrees et al. 2010; Mandal
et al. 2011; Yuen et al. 2012). Mutant huntingtin
also inhibits cortical transport and release of
BDNF (Gauthier et al. 2004), or the retrograde
transport in the striatum of its receptor TrkB
(Liot et al. 2013), necessary to promote survival
signals in the cell body.

MSNs in the striatum experience the most
prominent degeneration in HD. The observa-
tion that MSNs were selectively affected by glu-
tamatergic signals (Coyle and Schwarcz 1976;
McGeer and McGeer 1976; Beal et al. 1986)
leads to the hypothesis that striatal neurons in
HD could be harmed by excessive neurotrans-
mission, mainly through glutamate stimulation
of NMDA receptors, resulting in neuronal cell
death via a process termed excitotoxicity.

Alterations in the levels of the different sub-
units of postsynaptic NMDAR in the striatum
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could explain their aberrant activity in HD (Ce-
peda et al. 2001; Ali and Levine 2006; Benn et al.
2007; Fan et al. 2007), which may predispose
striatal neurons to excitotoxic damage (Laforet
et al. 2001; Zeron et al. 2002). In addition, mu-
tations in HD might also affect trafficking of
NMDAR in striatal neurons (Fan et al. 2007;
Marco et al. 2013). But also, the balance be-
tween synaptic (pro-survival) and extrasynap-
tic (detrimental) NMDAR activity is altered in
HD (Okamoto et al. 2009; Milnerwood et al.
2010). Excitotoxicity might result from in-
creased glutamate release or from impaired up-
take and clearance, as downregulation of GLT1
glial glutamate transporter has been observed in
HD (Liévens et al. 2001; Shin et al. 2005; Estra-
da-Sánchez et al. 2009). Therapeutic agents
targeting excitotoxicity may act directly on
NMDAR, such as memantine (Okamoto et al.
2009; Milnerwood et al. 2010), or modulate lev-
els of excitatory neurotransmitters, such as 3-
hydroxikynurenine and quinolinic acid, both
metabolites of the kynurenine pathway, the ma-
jor tryptophan degradative pathway, which is
perturbed in HD (Giorgini et al. 2005; Guidetti
et al. 2006; Campesan et al. 2011; Zwilling et al.
2011).

Mitochondrial Dysfunction in HD

Altered mitochondrial function resulting in de-
fects in ATP production, Caþþ buffering capac-
ity, and apoptosis is associated with neurode-
generation in HD (Sawa et al. 1999; Panov et al.
2002). Some evidence suggests that mutant
huntingtin can interact with the outer mito-
chondrial membrane, resulting in mitochon-
drial calcium abnormalities (Panov et al. 2002;
Choo et al. 2004). Mutant huntingtin also in-
terferes with normal organellar axonal trans-
port and can therefore reduce transport of
mitochondria to synapses, as well as ATP
production (Orr et al. 2008; Song et al. 2011;
Shirendeb et al. 2012).

Decreased transcription of mitochondrial
genes may also contribute to mitochondrial de-
fects, such as repression of PGC-1a, a nuclear
coactivator that regulates the expression of
genes that mediate mitochondrial biogenesis

and respiration (Cui et al. 2006), or depletion
of the enzyme necessary for synthesizing cys-
teine, which maintains mitochondrial homeo-
stasis (Paul et al. 2014). Also, transport of
proteins into mitochondria could be defective
because huntingtin interacts and inhibits
TIM23, a component of the inner mitochondri-
al membrane transport complex, and this defect
may contribute to respiratory dysfunction and
neuronal cell death (Yano et al. 2014).

Mitochondria are dynamic organelles that
undergo fusion–fission cycles in response to
stimuli and metabolic demands. Fragmentation
leads to caspase activation and apoptosis, and,
therefore, inhibiting mitochondria fission de-
lays cell death (Youle and Karbowski 2005). Ex-
panded huntingtin interferes with mitochon-
drial dynamics and interacts with a central
regulator of protein fission, dynamin-related
protein 1 (Drp-1), increasing its enzymatic ac-
tivity and mitochondrial fragmentation. Con-
versely, overexpression of a negative form of
Drp-1 or fusion-promoting enzymes inhibits
mutant huntingtin-induced mitochondrial
fragmentation and toxicity (Wang et al. 2009;
Song et al. 2011; Shirendeb et al. 2012), and
selective Drp-1 inhibitors have proved benefi-
cial to slow down disease progression in several
HD models (Guo et al. 2013).

A consequence of mitochondrial malfunc-
tion is the aberrant production of reactive oxy-
gen species (ROS), which in turn causes more
damage to mitochondria. Postmortem brain of
HD patients and experimental models of HD
show evidence of oxidative damage (Perluigi
et al. 2005; Stoy et al. 2005; Sorolla et al.
2008). Therefore, antioxidants are currently be-
ing tested to ameliorate levels of ROS and to
help in mitochondrial dysfunction.

Cell-to-Cell Transmission of Aggregates

Emerging evidence suggests that prion-like
transmission from cell to cell of proteins like
tau or a-synuclein spreads these disease-associ-
ated proteins to different brain regions (Lee
et al. 2010; Guo and Lee 2014). This “infec-
tious” property has also been associated with
polyglutamine proteins, where internalization
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of exogenous polyglutamine aggregates serves
as seeds for nucleating aggregation of cytoplas-
mic soluble polyglutamines (Ren et al. 2009).
This first report suggested that aggregates are
internalized from the extracellular space, but,
more recently, cell-to-cell transfer of aggregates
through tunneling nanotubes, actin-rich mem-
brane bridges that connect cells and mediate the
transfer of cytoplasmic content (Rustom et al.
2004) such as prions (Gousset et al. 2009), were
suggested as an alternative route (Costanzo et al.
2013).

In vivo studies have shed some light on
this hypothesis. Human embryonic stem cell
(hESC)-derived neurons that were integrated
into corticostriatal organotypic brain slices of
an R6/2 mouse or injected into the cortex
acquired mutant huntingtin aggregates after 2
or 4 weeks, respectively, which correlated with
alterations in neuron integrity. Furthermore,
corticostriatal co-cultures revealed that mutant
huntingtin spread from R6/2 cortex to wild-
type MSNs in the striatum but not in the oppo-
site direction (Pecho-Vrieseling et al. 2014),
suggesting that propagation occurred in a pre-
to postsynaptic path, which was confirmed
by using inhibitors of synaptic vesicle fusion
(Pecho-Vrieseling et al. 2014).

Astrocyte and Microglial Dysfunction in HD

Although huntingtin aggregates are more
prominent in neurons than in non-neuronal
glial cells (Shin et al. 2005), probably because
of the lack of cell division in neurons or to a less
efficient protein homeostasis system (Tydlacka
et al. 2008), glial cells also contribute to disease
in HD, and reactive gliosis is observed in many
HD mouse models (Reddy et al. 1998; Lin et al.
2001; Yu et al. 2003) and in postmortem brains
of HD patients (Myers et al. 1991; Sapp et al.
2001).

Astrocytes are the major type of glia. They
provide support to neurons and enable uptake
of extracellular glutamate, preventing excito-
toxicity. In an effort to discern the role of astro-
cytes in HD pathology, an N-terminal hunting-
tin with 160Q was selectively expressed in
astrocytes. Despite no obvious degeneration of

glia or neurons, these mice developed late-onset
neurological symptoms, which correlated with
reduced levels of the GLT-1 glutamate trans-
porter (Bradford et al. 2009). When mutant
huntingtin was expressed in both astrocytes
and neurons, it worsened the phenotype relative
to neuronal-only expression, confirming the
contribution of astroglia to disease (Bradford
et al. 2010).

Additional defects might contribute to pa-
thology, such as impaired secretion of the che-
mokine CCL5 (Chou et al. 2008) or BDNF
(Wang et al. 2012) from HD astrocytes. Also,
striatal astrocytes from R6/2 and Q175 HD
mouse models showed reduced levels of Kir4.1
Kþ channels, which lead to increased extracel-
lular Kþ and neuronal excitability, whereas viral
delivery of Kir4.1 attenuated the R6/2 mouse
phenotype (Tong et al. 2014).

Growing evidence implicates neuroinflam-
mation in neurodegeneration. In HD, increased
secretion of proinflammatory cytokines and
chemokines has been reported in late but also
in early presymptomatic gene carriers (Tai et al.
2007; Björkqvist et al. 2008; Wild et al. 2011),
suggesting that neuroinflammation is not only a
reactive process but also an active player in dis-
ease progression.

Huntingtin is expressed in immune cells,
resulting in cell-autonomous microglial activa-
tion and secretion of proinflammatory cyto-
kines, as a consequence of elevated transcrip-
tion of myeloid lineage-determining factors
PU.1 and C/EBPs (CCAAT/enhancer-binding
proteins) (Crotti et al. 2014). In the peripheral
immune system, mutant huntingtin also im-
pacts inflammatory responses through inhibi-
tion of NF-kB signaling (Träger et al. 2014).
Signaling through CB2 cannabinoid receptors
might also explain inflammation in HD (Pala-
zuelos et al. 2009; Bouchard et al. 2012). In
addition, both microglia and peripheral cells
expressing mutant huntingtin showed reduced
migration in response to chemotactic signals
(Kwan et al. 2012b). Moreover, bone-marrow
transplantation with wild-type cells restored
the levels of cytokines and chemokines and par-
tially suppressed pathology in HD mouse mod-
els (Kwan et al. 2012a).
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Interplay between Mutant Huntingtin
and Other Aggregate-Prone Proteins

Mutant huntingtin is also associated with other
brain pathologies. a-Synuclein, the component
of Lewy bodies in Parkinson’s disease, is found
close to huntingtin aggregates (Charles et al.
2000), and excess a-synuclein expression is as-
sociated with increased mutant huntingtin ag-
gregation (Furlong et al. 2000; Herrera and
Outeiro 2012). In agreement with these find-
ings, when a-synuclein was knocked out in an
R6/1 mouse, the number of inclusions was re-
duced, and the disease progression attenuated
(Tomás-Zapico et al. 2012). Overexpression of
a-synuclein has a negative effect on autophagy
(Winslow et al. 2010) and worsens the disease
phenotype in R6/1 and N171-82Q mouse
models (Corrochano et al. 2012). Conversely,
its depletion was beneficial and correlated
with an increase in autophagy in these mice,
which explains the crosstalk between these
two diseases (Corrochano et al. 2012). Because
mutant huntingtin is an autophagy substrate,
these observations are likely a major contributor
to the crosstalk between a-synuclein and hun-
tingtin aggregation, as opposed to any obvious
cross-seeding.

An imbalance in the levels of tau isoforms
containing either three or four microtubule
binding repeats (3R or 4R) with an increased
4R/3R ratio is sufficient to cause neurodegen-
eration. This relation is increased in HD mice as
a consequence of splicing defects and enhances
HD pathology (Fernández-Nogales et al. 2014).
Tau phosphorylation is also affected by HD
mouse models, which might have consequences
in HD progression (Blum et al. 2014).

THERAPY FOR HD

HD as a Tractable Therapeutic Problem

Although HD is rare, it does receive a great deal
of research attention. One reason is that HD has
some features that make it more likely to be a
tractable problem than other neurodegenerative
conditions. First, the autosomal dominant na-
ture of the condition means that the diagnosis is

almost definitive and can be made before death.
Thus, it is possible to accurately model and
study the disease in vitro and in vivo. Perhaps
more important, one can be sure that patients
are suffering from a reasonably homogeneous
condition. In other dementing illnesses, the di-
agnosis is seldom definitive, and postmortem
analysis often shows a mix of pathologies. Sec-
ond, the familial nature of the condition means
that diagnosis can be made before symptom
onset. Early diagnosis is a crucial advantage,
as it means that therapy can begin before major
neuronal loss, and by which point in the illness,
it may be more difficult to slow progression and
impossible to correct existing deficits. Finally,
the Huntington’s community of patients, their
families, and their doctors have a history of co-
operation, which has made large-scale clinical
trials possible. This collaboration is clear not
only from trials that have taken place but also
from long-term longitudinal studies of disease
progression that have provided rich data sources
to inform the design of future trials, particularly
with regard to appropriate trial end points
(Tabrizi et al. 2013).

Current Treatment for HD

There are no known disease-modifying drugs
currently available for HD. Treatment is symp-
tomatic only. Tetrabenazine is the only drug
with a licensed indication for HD in the United
Kingdom, where it is used to treat choreiform
movements. Trials of cholinesterase inhibitors
used to treat the cognitive problems seen in Alz-
heimer’s disease have been largely negative in
HD (Cubo et al. 2006). Psychiatric symptoms,
which are often the most troubling for patients,
are often treated with standard drug treatments
used in non-HD patients. For example, psycho-
sis is treated with atypical antipsychotics and
depression with selective serotonin uptake in-
hibitor (SSRI) or selective norepinephrine up-
take inhibitor (SNRI) antidepressants (Phillips
et al. 2008). With the exception of one open
label trial with venlafaxine, these treatments
are supported largely by case studies or small
series (Holl et al. 2010). The current care of
people with HD involves many paramedical dis-
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ciplines, including speech and language therapy,
physiotherapy, nursing, and social care.

Therapeutic Trials Based on Potential
Pathogenic Mechanisms

Gene Silencing

Silencing the expression of the mutant hunting-
tin gene is attractive, as one might expect it to
provide an effective treatment by dealing with
the pathology at its source. Indeed, trials in ro-
dents have found the approach to be efficacious
in ameliorating symptoms and pathology using
either RNA interference (Drouet et al. 2009;
Stanek et al. 2014) or antisense oligonucleotides
(Kordasiewicz et al. 2012). Although attractive,
this approach has a number of potential diffi-
culties. These include allele specificity, off-tar-
get effects, and delivery. Recent nonhuman pri-
mate trials have shown promising safety data,
and a small safety trial of antisense oligonucle-
otides in HD patients was planned for 2015
(McBride et al. 2011; Grondin et al. 2012).

Antiapoptotics/Caspase Inhibition

The tetracycline antibiotic minocycline is a cas-
pase inhibitor, although like many of the com-
pounds described here has pleiotropic mecha-
nisms of action, including antioxidant and
cytokine-modulating properties. It was initially
shown to prolong life expectancy in a mouse
model of HD, although subsequent work in
the same mouse model was not encouraging
(Chen et al. 2000; Menalled et al. 2010). Never-
theless, following small safety trials, a larger trial
of patients with an end point of change in total
functional capacity compared with historical
controls suggested no benefit of minocycline.
This finding highlights the importance of care-
ful reproduction of preclinical data before mov-
ing to clinical trials.

Transglutaminase Inhibition

The glutamine residues in huntingtin are cross-
linked by transglutaminase. Transglutaminase
inhibitors, such as cystamine, have produced

promising results in mouse models of the dis-
ease (Dedeoglu et al. 2002; Karpuj et al. 2002). A
safety and dose-finding study of a cystamine
dimer, cysteamine, has been performed (Du-
binsky and Gray 2006), and a larger trial involv-
ing 96 HD patients is underway.

Mitochondria, Oxidative Stress, and
Excitotoxicity

Using antioxidants to decrease oxidative stress
has been a putative therapeutic strategy for a
number of neurodegenerative diseases. This ap-
proach is another example in which treatment
of mouse models suggested benefit, in this case
with the NMDA receptor antagonist remace-
mide and the antioxidant coenzyme Q10 (Fer-
rante et al. 2002). Unfortunately, these results
were not recapitulated in large clinical trials of
patients (Huntington Study Group 2001). More
recently, in the largest proposed trial in HD to
date, the 2CARE study of high-dose coenzyme
Q10 was stopped early due to a combination of
futility and safety concerns. Other clinical trials
with other NMDA receptor antagonists have
also been disappointing (Kremer et al. 1999),
as have trials of creatine, a potential antioxidant
with previous positive results in mice. Trials of
creatine in symptomatic patients have been dis-
appointing, but further trials have been under-
taken in at-risk individuals with some more
positive findings on imaging (Rosas et al. 2014).

Upregulating Autophagy

Autophagy upregulation using a variety of
drugs has shown amelioration of the HD phe-
notype and pathology in cellular, fly, fish, and
mice models, as reviewed by Hochfeld et al.
(2013). Conversely, inhibition of autophagy
has been shown to worsen phenotypes, includ-
ing using antioxidants that are autophagy in-
hibitors, and this observation may provide an
explanation for the relative failure of antioxi-
dant-based strategies (Underwood et al. 2010).
The repertoire of drugs that upregulate autoph-
agy has been expanded and includes com-
pounds, such as rilmenidine, that have a benign
side-effect profile and long records of safe hu-
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man use. A safety trial of rilmenidine is current-
ly underway in HD patients in Cambridge,
United Kingdom.

Transplantation

Once symptoms are manifest, it may be difficult
to reverse deficits with drug treatment, as neu-
rons have been lost. One approach to correcting
this deficit is to transplant new neuronal tissue,
a strategy that has shown some promise in an-
imal models of the disease (Dunnett et al. 1998).
Early human studies have shown potential for
graft survival, although a recent long-term fol-
low-up study was less encouraging, and mutant
huntingtin was found in transplanted tissue
(Barker et al. 2013; Cicchetti et al. 2014). The
variable results in terms of graft survival, safety,
and outcome may reflect differences in protocol
and procedure, which may lead to more success-
ful trials now that a proof of principle has been
established.

Other Clinical Trials

Other large trials have been reported in HD.
Latrepirdine (Dimebon) was originally synthe-
sized as an antihistamine and showed some
early promise as a treatment for Alzheimer’s
disease. Results from the relatively large DIA-
MOND trial in HD patients suggested some
improvement in cognition, but the subsequent
larger HORIZON trial showed no benefit, and
the company involved is no longer taking this
compound forward as a potential therapy (Kie-
burtz et al. 2010). Other compounds that may
help with symptoms but may not be disease
modifying have also been studied in large-scale
trials. Pridopidine is a drug that may have a
beneficial effect on movement via its effect on
dopamine signaling. A large recent trial did not
reach statistical significance for the primary
motor end point, but did suggest some promise
in motor scores overall. Nondrug strategies are
also being pursued; for example, recent trials of
physical activity and rehabilitation in HD pa-
tients have been reported (Busse et al. 2013).

The increase in understanding the basic sci-
ence of HD has yet to translate into an effective

disease-modifying therapy. Feasibility of large-
scale trials of various sorts has been demon-
strated, and a wide variety of approaches are
currently being pursued, which one hopes will
start to bring benefits in the near future.
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