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Abstract

The present review systematically examines the integration of language models to improve 

classifier performance in brain-computer interface (BCI) communication systems. The domain of 

natural language has been studied extensively in linguistics and has been used in the natural 

language processing (NLP) field in applications including information extraction, machine 

translation, and speech recognition. While these methods have been used for years in traditional 

augmentative and assistive communication (AAC) devices, information about the output domain 

has largely been ignored in BCI communication systems. Over the last few years, BCI 

communication systems have started to leverage this information through the inclusion of 

language models. Although this movement began only recently, studies have already shown the 

potential of language integration in BCI communication and it has become a growing field in BCI 

research. BCI communication systems using language models in their classifiers have progressed 

down several parallel paths, including: word completion; signal classification; integration of 

process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each 

of these methods have shown significant progress, but have largely been addressed separately. 

Combining these methods could use the full potential of language model, yielding further 

performance improvements. This integration should be a priority as the field works to create a BCI 

system that meets the needs of the ALS population.

1. Introduction

Motor neuron disorders such as amyotrophic lateral sclerosis (ALS) and brainstem injuries 

can disrupt the neural transmission, resulting in the reduction of muscle control and 

impairing a patient’s ability to communicate. Assistive communication technologies exist 

that can help such patients by providing indirect communication methods based on 

alternative muscle movements such as eye tracking [1]. These technologies, however, can be 

difficult to implement and maintain in patients due to disease progression [2]. Brain 

computer interfaces (BCI) can restore these ‘locked-in’ patients’ ability to communicate by 

detecting their intent from electroencephalogram (EEG) signals and translating them into 
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computer commands, possibly providing a more robust solution due to the relative 

preservation of cortical physiology [3].

1.1 BCI communication

Several different BCI systems have been developed to enable communication for ‘locked-in’ 

patients by translating EEG signals into simulated keyboard input. The most common BCI 

communication system is the P300 speller which presents the user with a grid of characters 

on a computer monitor [4]. The user is instructed to focus on a target character while groups 

of characters are illuminated (i.e., “flashed”) in a pseudo-random manner. When the target 

character is flashed, a response known as the P300 signal is evoked and detected by EEG. A 

classifier detects these responses and, after combining the responses from several trials, 

determines the character that was most likely the subject’s target.

A similar BCI communication system is the rapid serial visual presentation (RSVP) speller 

[5]. Like the P300 speller, this system elicits P300 signals by serially presenting visual 

stimuli in a graphical interface. In the RSVP speller, however, the user focuses on the center 

of the screen where characters appear in a random sequence. This system is generally slower 

than the P300 speller because showing characters one at a time requires more time to display 

all possibilities. It has the advantage of being gaze-independent, which improves signal 

fidelity, particularly in neurologically impaired patients with restricted eye movement.

Similar to visual systems, evoked responses (ERPs) can be generated by auditory stimuli. 

Systems such as the auditory multi-class spatial ERP (AMUSE) system present the user with 

a series of distinct auditory stimuli [6]. These stimuli vary based on pitch and/or location, 

with each combination assigned to a specific character. As in the visual P300 speller, the 

target stimulus elicits an ERP which is detected by the classifier in order to choose a 

character. Because the correspondence between characters and tones is not obvious, a 

graphical interface is often included. Given enough training, a user could learn the 

associations and the system could function without a visual interface. This would eliminate 

any dependence on eye gaze, but would have additional requirements for the user’s 

environment such as a lack of distracting noise.

Several other systems have recently been developed which utilize other neural signal 

paradigms. Motor imagery has been used to navigate binary menus by mapping different 

imagined movements (e.g., right hand vs. left hand) to different options [7]. This paradigm 

has been adapted to create a spelling system by using these decisions to perform a binary 

search through the alphabet [8]. Similarly, motor imagery is used in the hex-o-spell system 

where the subject uses imagined movement to stop a cursor rotating between six sets of 

characters [9]. This system reduces the time to choose a character by making selections 

among six options rather than two, reducing the number of decisions required to select a 

character from 26 characters from five to two.

Steady state visually evoked potentials (SSVEP) have also been utilized in BCI 

communication systems. In SSVEP systems, multiple targets exist on screen which flicker a 

different frequencies. When the user focuses on one of the targets, a visually evoked signal 

in the user’s EEG matches the frequency of the flashing. When this frequency is observed in 
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the signal, the system selected the corresponding item. Because of limits in the number of 

distinct frequencies that can be identified, systems generally either use a series of menus 

[10] or move a cursor [11] in order to select from the set of possible characters. Other 

systems have combined the P300 speller and SSVEP systems by flashing characters as in the 

P300 speller and simultaneously having the nonflashing characters flicker at different 

frequencies [12,13].

Because the signal-to-noise ratio (SNR) in EEG is relatively low, several trials are usually 

combined in order to correctly classify responses. The resulting typing speed is therefore 

slower than required for adoption [2], prompting significant research in the optimization of 

BCI communication systems, both with respect to speed and accuracy. Approaches that have 

been adopted to accomplish such optimization in the P300 speller include varying the grid 

size [14], modifying stimulus presentation paradigms [15,16], optimizing system parameters 

[17,18], changing the visual stimulus [19], and adopting different signal classification 

algorithms [20–23]. Studies have also used electrocorticography (ECoG) to increase the 

SNR for BCI communication [24,25].

1.2 Language Models

While the P300 speller is designed to provide a means for communication, BCI systems 

have not traditionally taken advantage of existing knowledge about the language domain. In 

2000, Donchin et al. noted that “there are substantial sequential dependencies in English,” 

which could be utilized in classification [26]. However, traditional classification systems 

treat typing as a series of independent selections from a set of characters with no prior 

information. The domain of natural language has been well studied in other contexts and this 

knowledge can be used to aid in any communication system [27]. By exploiting known 

patterns and structures inherent in language, a bias can be added to a communication system 

which can improve typing speed and accuracy as well as adding other features such as word 

completion or automatic error correction. These methods are already widely employed in 

electronic communication systems such as word processing [28] and text messaging[29,30], 

but have only recently been considered for BCI communication.Language information can 

be included in a BCI system by storing a model of typical text that the system expects to 

generate as output. One example of such a model is a simple dictionary where the BCI 

system looks up the letters being typed to verify that they form valid words. This type of 

model can work as a filter that ensures that the system generates words that are valid in the 

language. If a string of characters does not start any word in the dictionary, the system can 

assume that there was a mistake and try to fix it by changing characters to match another 

word. Such a system can also look up words that start with the current output to generate 

“guesses” of the complete target word. These “guesses” can then be presented to the user so 

that the remainder of the word can be completed at once rather than by individual character 

selections, thereby increasing typing speed. One problem with these word based methods is 

that they are limited to the words that are seen during language model training and generally 

cannot handle out of vocabulary (OOV) words.

Other language models attempt to model character patterns based on corpora of existing text. 

These models can provide a probability distribution for target characters based on previous 
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selections, which can be used as a prior probability for future selections. The corpora for 

these models are generally publicly available sets of text from natural language research 

groups [31,32]. The simplest such model captures patterns by finding the relative frequency 

of n-grams, sequences of n consecutive characters. These models are created by parsing 

through a corpus of text and counting the number of occurrences of these sequences. The 

conditional probability of a character given the previous n−1 characters can then be 

computed:

where c(xt−2, xt−1, xt) is the number of occurrences of the string ‘xt−2xt−1xt’ in the corpus. 

The value for n is determined based on the tradeoff between the amount of information 

contained in the model and the complexity of the model. The number of n-grams is 

exponential in n, so classification algorithms can run too slowly for online classification with 

a large value of n. Also, the system can be undertrained if the training corpus is not large 

enough to represent all possible n-grams. Of note, context-relevant corpora can theoretically 

be employed and provide improved performance over a general corpus.

1.3 Scope of the review

The use of language modeling in text entry systems for individuals with severe motor 

disabilities has been prevalent in the field of augmentative and assistive communication 

(AAC) for over 20 years, including applications such as word completion [33], grid scanning 

[34–37], and interface optimization [38]. Language modeling in BCI communication has 

followed similar paths, ranging from changes in the user interface to modifying the signal 

classification algorithms. However, BCI communication systems differ from other AAC 

systems because of the time consuming and challenging intent classification that must occur 

at each step in the process. This difference indicates that language modelling in BCI 

classifiers has great potential as users who have difficulty typing with a communication 

system stand to gain the most from language integration [33]. There are additional 

challenges as well because traditional language modelling methods need to be adapted to 

address the noise and dimensionality of neural data. The current review focuses on how 

language information can be used by a classifier to improve the speed and accuracy of 

decision making when classifying neural signals for BCI communication.

A review of language models in BCI communication systems has been previously conducted 

which was more broad in scope, focusing mainly on changes to the graphical interface rather 

than the classifier [39]. Many of the methods covered in the previous review are similar to 

those already used in other AAC systems such as arranging the interface optimally [40,41] 

or dynamically [8] based on letter frequency and choosing between groups rather than 

individual characters [42]. The review makes a cursory mention of using language 

information in classification, but does not do a thorough review of the area or include details 

of the methods. In addition, two years have passed since the publication of the previous 

review, so it does not include recent work. Because of the recent nature of this field, many 

groups are engaged in parallel tracks to try to utilize language information. Many of these 
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systems could potentially work in conjunction with one another or could benefit from 

building off of previous works. The goal of this review is to give an overview of the different 

projects that have been completed in this area and to serve as a primer for integrating these 

methods into a unified, next generation system.

Based on the literature cited, we identified and discuss 7 different domains in which 

language models have been used to enhance BCI communication: (i) word completion; (ii) 

signal classification; (iii) integration of process models; (iv) dynamic stopping; (v) 

unsupervised learning; (vi) error correction; and (vii) evaluation metrics. The review of 

current literature is followed by a discussion of how these methods interact and whether they 

can be combined to further improve BCI communication rates. Finally, future directions for 

language model integration are discussed.

2. Methods

The PubMed and IEEE databases were searched using the query:

(“language model” OR “natural language processing” OR “NLP” OR “predictive 

spelling”) AND (“brain computer interface” OR “BCI” OR “P300” OR “SSVEP”)

The initial search produced 29 articles. These articles were then filtered by reading their 

titles and abstracts to ensure that they fit within the scope of the review. Articles were further 

excluded if they were theses or conference proceedings that duplicated journal articles by 

the same authors, resulting in 13 articles. The query was then expanded by including any 

references in these articles which fell within the scope of this review, resulting in a final set 

of 28 articles.

3. Results

Among the 28 selected articles, two systems used a motor imagery based system, one used 

an SSVEP system, 20 used the P300 speller, and six used the RSVP speller. Six articles 

proposed systems that included word completion. Twenty of the articles proposed methods 

for including language models in the classifier, including threshold methods, naïve Bayes, 

reliability-based automatic repeat request (RB-ARQ), partially observable Markov decision 

processes (POMDPs), and hidden Markov models (HMMs). Six articles utilize language 

models to make further improvements to the system including dynamic stopping, 

unsupervised training, and integration into invasive BCI systems. Eight articles addressed 

error correction, both manual and automatic. Two articles introduced new evaluation metrics 

taking language models into consideration.

3.1 Word completion

The earliest application of language information in BCI was integrating word and phrase 

completion based on previous selections [43], similar to methods employed in text 

messaging [30] and AAC devices [33]. These systems contain language models that consist 

of dictionaries, usually with weightings based on the frequency of usage of the word. After 

each character selection, the system performs a lookup of the partially completed word and 

returns potential completions. These completions are then presented as selection options. 
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The user then has the option of continuing to spell by selecting individual letters, or 

selecting one of the completions. This method has the potential to increase typing speed by 

allowing the user to type multiple characters at once with a single selection. Errors can 

potentially be harder to correct in this system because an incorrect completion could result 

in multiple incorrect characters that would then all need to be deleted. This problem can be 

mitigated by adding additional commands such as “undo,” which can remove all of the 

characters at once.

Ryan et al. [43] conducted the first study using such a system. Their implementation ran a 

P300 speller concurrently with the WordQ2 word completion software (version 2.5, 

Quillsoft, Ltd., Toronto, ON). WordQ2 is assistive software designed to help people with 

difficultly writing by suggesting word completions, helping the user with spelling. 

Middleware was developed that routed the P300 output as input to WordQ2, which used 

dictionary lookups to find potential word completions. The top completion suggestions were 

then sent from WordQ2 to be presented to the user. The ten number spaces in the P300 grid 

were remapped to WordQ2 commands such as selection of a completed word or undoing a 

previous command. Their study showed that accuracy using this system decreased due to the 

added complexity of the task, but typing speed increased because of the ability to select 

multiple characters at once using word completion.

Lee et al. [44] presented a similar dictionary lookup scheme in a menu-based motor imagery 

system. In their system, the user selects a series of numbers, each mapped to a group of 

characters based on the T9 predictive text system used in some older mobile phones. For 

instance, if a user wanted to spell the word “good,” the string “3552” would be selected 

because “3” maps to “ghi,” “5” maps to “mno,” and “2” maps to “def.” These numbers 

could also map to the word “home,” so the user needs a way to choose between the possible 

target words. The system handles this by providing a column of words that match the typed 

numbers, which the user selects from once the word is completed. Unlike the Ryan et al. 

system, this method does not allow the user to type multiple characters at one time, and 

actually increases the number of necessary selections by one. Instead, this system improves 

typing speed by reducing the number of choices, making decisions easier for the classifier 

and reducing the time required to cycle through possible selections.

Kaufmann et al. [47] integrated a dictionary lookup scheme for common German words into 

the P300 system. Their system created a list of words that appeared in German internet 

pages and sorted them by the number of times the occurred. After each selection, their 

algorithm scanned the list for words starting with the current partially typed word. The top 

six matches were returned and were presented in the first column of the P300 speller matrix. 

To account for erroneous completions, they also provided a “delete word” option in the grid 

which would delete back to the last previously typed space.

3.2 Classification

While automatic completion can increase typing speed by reducing the number of selections 

required, embedding a language model into the classifier has the potential to increase the 

accuracy and reduce the amount of time required for individual selections. In general, these 

systems work by representing common character patterns in a language model, usually 

Speier et al. Page 6

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated from a corpus of text. These patterns are used to create a probability distribution 

over the next character to be selected given the text already typed, p(xt|xt−1, ..., x0). This 

probability distribution is then used to bias the system in favor of those characters that are 

more likely to be typed given knowledge of letter patterns in language. For instance, if the 

user is typing in English and the previous character is “Q,” the system can be fairly certain 

the next character is “U” before even considering the corresponding EEG signal. This 

method effectively reduces the number of characters the system considers, making decisions 

easier and requiring less data before making an accurate selection.

Speier et al. [45] presented the first such system, which incorporated trigram probabilities 

through a naïve Bayes classifier. The system converts the output from a traditional classifier, 

linear discriminant analysis (LDA) [68], into a conditional distribution by assuming that the 

resulting scores would follow a normal distribution for each class

where μa, μn, , and  are the means and variances of the scores for attended and 

nonattended flashes, respectively, and  is the set of characters flashed in group i for letter 

t. The prior probability was determined using a trigram character model

The posterior probability distribution over the possible target characters was found by 

multiplying the probability of the observed signals by the prior probability based on trigram 

counts.

After normalization, this distribution yields the probabilities that each of the characters were 

the attended target. Once the system is ready to make a selection the character with the 

highest probability is selected. The probability distribution over the characters also create 

opportunities for other improvements such as dynamic stopping (see section 3.4) and error 

correction (see section 3.6).

Other groups have extended the trigram model to create models with other types of n-grams. 

Samizo et al. [54] tested the relative performance of their subjects using unigrams, bigrams 

and trigrams. They found that trigrams provided the fastest typing speed as they were able to 

capture a larger variety of language patterns. Orhan et al. [46] further extended the model to 

use 6-grams, which could capture larger character patterns, including many complete words. 
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These studies show that increasing the length of the patterns captured allows the model to 

better represent language, resulting in improved performance. However, as the model 

complexity increases, the amount of data required to train it increases exponentially, known 

as the curse of dimensionality. Thus, larger values of n will reduce the precision of the prior 

probabilities using an n-gram model as the training corpus will not be large enough to 

observe all possible character combinations. For instance, any combination that does not 

occur in the corpus given a zero probability, regardless of whether the string is possible in 

the language. This is a particular problem when typing uncommon strings that might not 

have occurred in the training corpus, such as OOV words. When designing a system, then, 

one must trade off the size of the model with the precision of its estimates, based on the size 

of the training corpus.

One way to mitigate the concerns of undertraining the system is to incorporate smoothing 

into the model. Smoothing works by moving probability mass in areas of a model that did 

not have sufficient observations in the training corpus. These methods will essentially 

default to a smaller, easier to train model in cases where the larger model was not 

sufficiently trained. Orhan et al. [46] used Witten-Bell smoothing [69] in the 6-gram model 

mentioned above. This method uses multiple models and creates the probabilities using a 

weighted average of the probabilities. In this example using a 6-gram and a 5-gram model, 

the probability becomes

where p̂(xt|xt−5:t−1) and p̂(xt|xt−4:t−1) are the 6-gram and the 5-gram probabilities, 

respectively. The value of λ is determined so that it is close to 1 when the 6-grams are 

common in the corpus, and close to 0 when the 6-grams are less common and the model is 

not trained as well.

where T(xt−5:t−1) is the number of distinct characters that follow xt−5:t−1 in the corpus and 

c(xt−5:t−1) is the total number of occurrence of xt−5:t−1 in the corpus. The probability 

distribution will be close to p̂(xt|xt−5:t−1) in cases where sufficient training data exists and 

will otherwise approach p̂(xt|xt−4:t−1). Witten-Bell can be reapplied between the 5-gram 

probability and the 4-gram probability in cases where the 5-gram is uncommon, and can 

cascade as necessary until a fully trained model is reached.

Kindermans et al. [55] used an alternative smoothing method, Kneser-Ney smoothing [70]. 

Like Witten-Bell, this method moves probability from complicated to simple models in 

cases with insufficient training data. In this model, a fixed value, δ, is subtracted from the 

counts using the more complicated models and the remaining probability is assigned using 

the simpler model.
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where N1+(xt−5:t−1,·) is the number of distinct 6-grams that start with xt−5:t−1 in the corpus. 

Like Witten-Bell, this approach can be applied on progressively simpler models until a fully 

trained model is reached.

3.3 Process models

A more sophisticated approach to language integration treats spelling as a process model. In 

these methods, typing is treated as a state model representing the user’s target characters. 

While the subject is focusing on a character, the system is in the corresponding state. When 

the character is selected, the system transitions to the state represented by the next character 

with a transition probability determined from character patterns in natural language. In 

general, this model is unobserved, so estimations of the current state must be made based on 

the observed EEG signal and the transition probabilities determined by the language model.

Park and Kim [48] created the first such model using a partially observable Markov decision 

process (POMDP). In a POMDP, typing is modeled as a series of discrete time points. At 

each time point, the system is in one state in the model, it receives an input, and it performs 

an action. In this implementation, the states of the system are characters being typed, the 

input is an EEG response to a single stimulus, and an action is either continuing to look at 

the current character, or to make a decision about the current character and transition to 

another character. Probabilities of being in a state were computed based on bigram 

probabilities. The probability of being in state xt was the total probability of being in any 

state x′t−1 and transitioning into that state

The decision to transfer to a new character in this method is dependent on value and policy 

functions that are optimized based on the state probabilities. This optimization is generally 

intractable, and requires estimation based on approximation algorithms. In their study, the 

point-based value iteration (PBVI) algorithm [71,72] was employed to determine the value 

and policy functions for the system.

Orhan et al. [49] and Ulas and Cetin [52] created similar systems that models BCI spelling 

as a hidden Markov model (HMM) in an offline setting with trigram transition probabilities. 

This methods was later extended by Speier et al. [60] into an online system that incorporated 

dynamic stopping and automatic error correction (see sections 3.4 and 3.6). Similar to the 

POMDP method, this system models typing with a state model where a single state 

represents attempting to spell a target character with transitions based on the co-occurrence 

of characters in a language model. The model itself is not observable, so the system must 

estimate the location in the model based on indirect observations. Unlike the POMDP 
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method, a time point in this model represents the total amount of time that the user focuses 

on a single character and the associated observations are all of the stimulus responses for 

that character. The system computes the probability distributions in a similar manner, 

modified to account for the trigram model

The optimal state sequence can then be found using the Viterbi algorithm

POMDPs and HMMs compute transitions by finding a sum or maximum over the possible 

state space. While this is possible in simple n-gram models, it quickly becomes intractable 

as language models increase in complexity. Sampling methods are necessary for estimating 

the probability distribution over such models so that high probability sequences can still be 

tracked without losing the ability to run analysis in real time. Speier et al. [66] applied 

sequential importance resampling, a standard particle filtering (PF) method to handle more 

complicated language models. In this system, a probabilistic automaton was used to 

represent word frequency in English text. Because the model contains over 200,000 states, 

maximizing over the entire state space in not possible in a real time system. PF methods 

estimate the distribution over the state space by projecting possible realizations of the system 

(called particles) through the model over time. Particles are resampled periodically based on 

the observed signal, so the existing particle distribution closely reflects the posterior 

probability of a given character. This method was tested online against simpler language 

models and showed significant improvements in both typing speed and accuracy.

The main concern with using this method is the number of particles to use. Using more 

particles increases the processing necessary for estimating the distributions. However, a low 

number of particles could result in undersampling the distributions and missing important 

possible sequences. Sensitivity analysis in the Speier et al. study showed that performance 

levelled off in offline analysis when using more than 10,000 particles and it was sufficient 

for good results in their online study.

3.4 Dynamic stopping

Traditional BCI communication experiments are designed with a static, predetermined 

number of stimuli presented for each selection, often including 10–15 trials. The system 

displays these stimuli and then runs the classifier to determine the most probable character 

and a selection is made. In many cases, enough information could be obtained before all of 

the stimuli are presented, so a character could be selected earlier, reducing the amount of 

time required significantly since trial repetition is one of the most time consuming 

components of the P300 speller system. This time savings can be achieved by running the 

classification algorithm after each stimulus and testing the results against a target threshold 
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value. This process is analogous to methods used in other AAC systems where dwell times 

can be reduced for probable characters [36]. Termed dynamic stopping or dynamic 

classification, methods for adapting the number of stimuli presented have been presented 

before [22], but they have started with a uniform probability distribution and therefore took 

longer to reach the required threshold.

The naïve Bayes method presented in Speier et al. [45] was the first system to incorporate 

dynamic stopping along with a language model. Several subsequent methods have since 

incorporated similar methods and it is quickly becoming the standard in P300 classification 

[48,54,55,60,66]. Dynamic classification was implemented by setting a threshold 

probability, pThresh, to determine when a decision should be made. The program flashed 

characters until either one of the characters’ probabilities exceeded the threshold

or the number of flashes reached the maximum. The classifier then selected the character 

that satisfied

When the subject attempts to spell a word that commonly occurs in the language model, the 

prior probability is heavily weighted towards the target characters. In this case, selections 

can be made after very few stimuli. Depending on how common the word is and the value of 

the target threshold, this model can even select characters without presenting any stimuli, 

effectively employing an autocomplete method. When the user is attempting to spell a word 

that is less common, the prior probability tends to bias the system away from the correct 

letters. Usually, the probability of the correct letters is still greater than a uniform 

distribution over the characters, so the system does not perform more slowly unless another 

character exceeds the threshold before enough EEG information can be collected to make 

the correct decision.

When choosing the threshold value to use, system designers need to consider the speed 

accuracy tradeoff. A lower threshold is easier to reach, meaning a system will make 

selections faster and typing speed will increase. However, a lower threshold also increases 

the risk that a non-target character will exceed the threshold spuriously, resulting in an error. 

In offline studies, the threshold value is typically optimized by finding results for various 

values and choosing the best for each subject. For online studies, it is generally impractical 

to optimize the threshold value and an empirical value around 0.95 is used.

3.5 Unsupervised learning

Because neurological signals vary between people and over time, each BCI session is 

usually preceded by a training session to calibrate the system. Because “locked-in” subjects 

are prone to fatigue, minimizing this training session could maximize the amount of time 
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available for using the system for actual communication. Prior work has attempted to create 

a general classifier that would remove the necessity for this training session [73]. In general, 

these generic classifiers perform significantly worse because of the variation in the neural 

signals between people. A better approach is to use a subject’s own signals to adapt a 

classifier while the subject is using the system. This approach is difficult because the target 

character is unknown prior to classification. A language model can make such an approach 

possible by adding a bias to the system, allowing it to determine likely target characters and 

train the classifier.

Kindermans et al. [74] proposed a method using expectation maximization (EM) to train the 

system during an unsupervised session of free spelling. During use, the subject selects 

characters for a target word or phrase as in the traditional system. After each selection, the 

classifier attempts to retrain itself using an iterative process. First, EEG signals are classified 

based on a random initial system configuration. Then, treating these classifications as true 

labels, system parameters are optimized as in a training session. Using these parameters, 

EEG signals are again classified and the process alternates until convergence to a single 

configuration. This method is dependent on the initial configuration and can result in local 

optima that do not accurately classify signals. In this study, the problem was addressed by 

creating multiple initial configurations and running EM separately for each. The result with 

the highest log likelihood would then be chosen as the true classifier.

While the initial system only used constraints of the system, Kindermans et al. [50] and 

Speier et al. [58] created similar systems that extended the HMM method from section 3.4 to 

train a BCI system using unlabeled data. As in the initial Kindermans study, this system uses 

EM (in this case the Baum-Welch algorithm) to find the optimal system configuration given 

the observed EEG data and the underlying language model. The expectation step models 

typing as an HMM and uses the forward-backward algorithm to find the optimal state labels 

by breaking the computation into two steps: the total probability of all sequences into state 

and the total probability out of the state given the observed EEG data. These probabilities 

are computed by assuming that current estimates of model parameters are correct values. 

The total probability of the state can then be determined by multiplying these two 

probabilities together for each time point.

Given the observed data and the labels from the expectation step, the maximization step 

finds the values of model parameters, including the classifier weights which maximize the 

log likelihood of the data. The optimal values of the weights can be found through a 

traditional classifier by treating the estimated states as supervised labels. The maximal 

values other parameters can then be determined by maximizing the log likelihood function. 

The expectation and maximization steps are then alternated until the labels converge to the 

optimal configuration. The Speier et al. study showed the capability of the classifier to learn 

accurate labels given different starting conditions. If the initial conditions are completely 

unbiased, containing no prior information about neural signals, the classifier is able to learn 

accurate system parameters for most subjects. For two of the 15 subjects, however, the 

classifier converged to a local optimum and did not classify any characters correctly. 

Alternatively, a generic set of parameters learned from a separate population of subjects can 

be used as a starting point for the algorithm. In this case, the classifier quickly learned 
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parameters for the system that matched those learned through traditional supervised training 

for all subjects.

3.6 Error Correction

When assigning prior probabilities to characters, the additional problem arises about what 

probability to give non-character selections, particularly backspace. When a language model 

is not used, the backspace option is generally given the same probability as the other 

elements in the grid [15,75], but it is less obvious how to weight this element in systems that 

distribute prior probability unevenly based on a language model. The simplest solution is to 

give these selections a static probability. Orhan et al. [46] proposed an option of giving the 

backspace selection a static probability of 0.1. They also proposed an alternate possibility of 

giving the backspace selection a probability based on the previous selection. In this case, a 

backspace would have the probability

The remaining characters would then be scaled down by a factor of p(xt−1|xt−2,…, x0) to 

make the total probability equal one. Kindermans et al. [55] proposed a similar method that 

works in two steps. Initially, the backspace character is given a weight p̂(xt = ‘backspace’|
xt−1,…, x0) defined s above and all characters are given probabilities p̂(xt | xt−1,…, x0) based 

on the language model. All of the probabilities are then reweighted based on the new total 

probability including the backspace selection:

In both of these methods, the values of p(xt−i | xt−i−1,…, x0) must be stored for all i so that 

the system can accurately assign probabilities to the backspace selection due to the 

possibility that the user will want to perform multiple consecutive backspace operations.

Several of the presented studies have included the possibility of automatically correcting 

errors through the algorithm. These methods are widely used in text messaging [29] and 

have been applied previously to other AAC systems [33]. They generally work by having the 

user continue to use the system after an error without attempting to correct it. After 

subsequent characters are selected, the system looks back at previous selections and 

determines whether they agree with the language model. If errors are detected, the system 

attempts to replace them with more probable selections with little or no additional input 

from the user.

The system presented by Ryan et al. [43] allows for some error correction when the user 

selects word completions. When the WordQ software produces proposals for word 

completion, it does not require an exact match with the incomplete word already typed. 

Thus, even if a user mistypes a character, it is possible that WordQ would match the string to 

the correct word and the system would present it as one of the options for completion. In this 
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case, the correct word would overwrite the mistyped string, thereby correcting the error. In 

cases where the error prevented the program from matching to the correct completion, the 

user would be required to use a backspace key to make a manual correction.

Ahi et al. [41] presented a system that would attempt to match an entire input string to a 

word in the dictionary. While the system was presented as only performing the matching 

after the entire word was typed, it can be intuitively extended to a system where the 

matching is performed to substrings of the words after each selection. Because the 

optimization is performed over the entire substring after each selection, the output characters 

can possibly change as additional characters are typed. For example, consider a situation 

where the optimal string after two characters could be found to be “ta,” but after a third 

character was typed the optimal string was “the.” In this case, the second character would be 

overwritten from the initial decision, ‘a,’ to a new decision, ‘h,’ that agreed more with the 

subsequent selection. This method assumes that boundaries between words are correct as 

each optimization starts at the beginning of the word. Characters in a word are also in flux 

until the word is completed, meaning that the user does not know if the system will be able 

to correctly classify characters until the word is completed.

Process model approaches such as those presented by Speier et al. [60,66] optimize over the 

entire output string and are able to update mistyped characters as more selections are made. 

Characters are changed if subsequent characters create strings that do not agree with the 

language model. Because the optimization is over the entire string, word boundaries are not 

required to be correct. For example, the output string “themc” can be corrected to “the c,” 

splitting the word to create an optimal output string. In the HMM model, these corrections 

are based on local character patterns and can still type strings that do not match words in the 

corpus. The PF method makes corrections using a word-based model, so it will correct text 

to match words that appeared in the training corpus. In both cases, the system will be unable 

to make corrections of errors that do not conflict with the language model. The string “then,” 

for instance, could not be corrected to “than” because both are valid words and use common 

character patterns. Manual corrections would need to be possible to make such corrections.

While optimization over the entire string allows for more errors to be corrected, it can lead 

to problems in the case where manual corrections are also allowed. If a user believes the 

system will correct an error and continues to type rather than correcting it, many additional 

selections may be needed to delete subsequent characters in order to correct the error. Also, 

there is an additional cognitive overhead if the user is expected to look at the entire typed 

string to verify if any changes have been made. In practice, most corrections will involve 

only the most recent word, so this overhead may not be significantly greater than in the 

standard system. In addition, word suggestions could help with making changes to 

characters that the system fails to correct without requiring multiple deletions (see 

discussion). Usability studies need to be performed in order to determine the optimal 

strategy for correction in this type of system, identifying situations where the system is able 

to make the corrections automatically and when users should fix an error manually.
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3.7 Evaluation metrics

As new systems are proposed, evaluation metrics play an important role in the direction of 

research as they are used to evaluate the improvement and relative value of systems’ results. 

Several metrics have been developed for BCI communication output, but most were created 

with traditional classifiers in mind. They therefore treat all characters as equally probable 

and do not take interactions between subsequent selections into account. For example, 

information transfer rate (ITR) essentially defines the amount of information contained in a 

selection as the difference between selection accuracy and the accuracy from choosing 

randomly. However, if the prior character is known to be ‘Q,’ a reader would likely assume 

that the next character would be ‘U’ based on their knowledge of the English language. 

Typing ‘U’ in this case does not provide much additional information. As a result, metrics 

generally overestimate the amount of information that is conveyed in a system’s output.

Ryan et al. [43] demonstrated an additional problem with ITR in systems with word 

completion that arises because ITR considers selections rather than output characters. In 

their study, subjects were able to complete the target sentence in less time using their 

proposed system, but the control system had a higher average ITR. This was because 

selections in their system could contain multiple characters when words were completed, but 

they were still considered a single selection by ITR. This disconnect is similar to concerns in 

other AAC methods where economy of selections do not always translate into faster typing 

speeds due to cognitive overhead, which is generally addressed by comparing total times to 

produce a target output string [35]. Ryan et al. proposed a similar metric, output characters 

per minute (OCM), which directly addresses typing speed by dividing the total number of 

output characters by the time required to type them. This metric does not address errors in 

output as it assumes subjects manually correct all errors. The metric also assumes all target 

sentences are equally difficult to type, which is not true in general as those that are probable 

in a language are generally easier in systems that use language models because they have a 

higher prior probability or are likely to occur as suggestions for autocomplete.

Speier et al. [56] proposed a metric that incorporates some of this information to more 

accurately assess the true amount of information that is conveyed in a BCI output string. It 

achieves this by measuring the mutual information between the target string and the actual 

output string with using a language model to represent the interactions between subsequent 

selections. Given a perfect language model, this method would give an accurate estimate of 

the information contained in an output string as it essentially subtracts out all of the 

language information captured by the model. In practice, however, this method 

overestimates the amount of information contained in the string because no language model 

exists that perfectly accounts for all structure in language. The estimates from this method 

still improve over those that ignore language information, and provide a framework for 

incorporating more advanced models to further refine the estimates.

4. Discussion

Each of these avenues of integrating language information into BCI communication systems 

has provided significant improvements over traditional implementations. Several of these 

methods are currently employed simultaneously in systems: dynamic stopping is frequently 
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used in systems that use language models in the classifier; unsupervised learning has been 

used to train a classifier in systems that model language as a process model; and a word 

completion implementation has allowed for correcting of some errors. However, many of 

these methods have been developed along parallel tracks and their interactions have not been 

explored. In many cases, these methods could work in concert to further improve 

communication speed and accuracy, resulting in a system closer to fulfilling the needs of the 

target population.

Word completion could be integrated with a system with a language model in its 

classification. In systems with an n-gram model, the two systems could run independently: 

the n-gram model would be used for producing prior probabilities for individual characters 

and a separate dictionary-based model could provide suggested completions. The main task 

would be determining the prior probability for selecting one of the completions. This 

probability could either be static or determined based on the relative frequencies of the 

suggested words.

For systems with a word-based model, word completion and classifier integration can be 

more closely combined. Word-based models can project the current state through the model 

to determine the most likely completions of the current text. In systems with a dictionary-

based model, this method consists of simply looking up words that start with the typed text. 

In the particle filtering algorithm, some particles could be projected through the model until 

they reach a terminal state. A histogram of the paths these particles took would then 

represent relative probabilities of the possible words that the user could intend to spell.

Word completion could provide an additional benefit when combined with an automatic 

error correction method. BCI systems that use automatic error correction do so by 

optimizing over the possible target strings. When computing the most probable string, these 

methods also find alternative, less probable strings. These strings are currently discarded, but 

could be presented to the user as options as in the completion method. By doing this, the 

system is more likely to present the correct string, reducing the number of times that a user 

will be required to manually correct the error. This method would also reduce the number of 

times that characters are incorrectly changed, which is possible in cases where a user is 

trying to spell a word that is similar in spelling, but less common than another word. For 

example, a user trying to spell “theme” might have the word autocorrected to “there” 

because of the relative frequency of the words, but both could be presented as options to 

allow the user to override this mistaken correction.

Word and character based models could be combined in a classifier using a smoothing 

method. As currently posed, word-based models such as the probabilistic automata and word 

dictionaries do not allow users to spell OOV words. Because these models are based on 

general corpora of language, they will often miss uncommon words, particularly proper 

nouns. The smoothing methods currently used in n-gram models could be implemented here 

to combine word and character level models. Using these methods, some probability would 

be given to strings that follow character patterns that are consistent with language, even if 

they do not make up words that occur in the model. This method would allow systems to 
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accept OOV words and they could subsequently be added to the word level model allowing 

it to adapt to the user (see future directions).

The error correction methods used here have the potential to improve performance of 

unsupervised learning methods. Kindermans et al. [76] recently implemented their 

unsupervised method in an online system using the AMUSE auditory ERP system. In their 

study, the classifier was only able to achieve an accuracy comparable to random chance as 

the system started without any prior information, but as subjects continued to use the system, 

performance increased significantly. The system then reanalyzed the previous selections as 

the classifier was retrained using more data, allowing some earlier errors to be corrected. 

These corrections did not take language information into account, however, as corrections 

were made based only on a better-trained classifier. Combining this method with a language 

model would improve these corrections further and could accelerate the unsupervised 

learning by providing better labels for the EM algorithm.

4.1 Future directions

Current language models used in BCI systems are based on patterns in general corpora of 

language, and are therefore not necessarily optimal for the specific context of BCI 

communication. The frequency of words in published text differs from the word frequency 

in everyday speech, and likely differs even further from locked-in patients who may use the 

system frequently to communicate things related to their disease (e.g., asking for help 

adjusting equipment). While general language models can help the user create valid words, 

it could likely perform better if it can predict the topics of conversation, thereby tailoring the 

model to the more likely words to be used. Topics of interest will vary between subjects so a 

language model that reflects one person’s speech patterns will not likely be optimal for any 

other subject. Ideally, a unique language model would be built for each individual user based 

on the text that they generate using the system. Such a system could start with a more 

general model, and gradually tailor it to the user over time as has previously been done in 

other AAC systems [33]. The likely words and topics will also vary between time and 

context, so an optimal language model should adjust to outside information such as the time 

of day, the state of other devices in the room, or the identities of the people with whom the 

subject is speaking. This adaptation to outside context has been shown in other BCI systems 

[75], but has not yet been incorporated into language model-based communication.

Existing BCI systems limit their usage of language models to single words. Significant 

information available from the relationships between words such as sentence structure and 

parts of speech is ignored. Common phrases also make up a large part of everyday 

communication, which could significantly accelerate typing speed if included in a language 

model. While a complete model of language would be impractical for this application, 

simplified models can be used to include some of the information, which could yield 

significant improvements in system performance. The n-gram models currently used for 

characters in BCI can be extended to words, which would provide a starting point for 

including this information.

Prior information from the language model can also be used to change the stimuli presented 

to the user. The number or frequency of character stimuli can be augmented based on the 

Speier et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability of the character possibly reducing the number of necessary stimuli to make a 

selection and thereby increasing system speed. The RSVP speller may be particularly 

suitable for this approach as low probability characters can be removed from the set of 

presented characters [46,67]. The P300 speller could be similarly use this approach by 

applying pseudo-random flashing paradigms such as those presented by Townsend et al. [15] 

and Jin et al. [16] to a reduced set of potential characters determined by the language model.

While the target population for this system is “locked-in” patients, most of the systems 

presented here tested exclusively on healthy volunteers with only three including ALS 

patients [59,61,63]. The translation of results from healthy subjects to the target population 

is a general concern for the field as ALS patients can have additional difficulties such as the 

loss of eye gaze control. The systems here that involve changing graphical interfaces such as 

the word completion methods could therefore be more difficult for these subjects to control. 

Systems that include automatic error correction could be problematic as well, as patients 

would have the additional task of deciding which errors the system would be able to fix on 

its own and which require manual correction. Some of these issues might possibly self-

correct over time as the patient becomes more accustomed to suing the system. Testing in 

the target population will be required in order to determine the true improvement seen by 

these patients when using a system with language models. Additionally, longitudinal studies 

can demonstrate the long-term effectiveness of the systems as the patient familiarizes with 

the system. Longitudinal studies could also allow for tailoring language models to the 

individual subject to further improve performance.

5. Conclusion

While the exploration of integration of language information into BCI communication only 

recently, significant advances have already been demonstrated. These improvements come 

from various aspects of the system, ranging from changes in the user interface to modifying 

the signal classification algorithms. Because of the recent nature of this concept, many 

groups are engaged in parallel tracks to try to utilize this information. Many of these systems 

could potentially work in conjunction with one another or could benefit from building off of 

previous works.
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