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Abstract

The reconstruction of MR quantitative susceptibility mapping (QSM) from local phase 

measurements is an ill posed inverse problem and different regularization strategies incorporating 

a priori information extracted from magnitude and phase images have been proposed. However, 

the anatomy observed in magnitude and phase images does not always coincide spatially with that 

in susceptibility maps, which could give erroneous estimation in the reconstructed susceptibility 

map. In this paper, we develop a structural feature based collaborative reconstruction (SFCR) 

method for QSM including both magnitude and susceptibility based information. The SFCR 

algorithm is composed of two consecutive steps corresponding to complementary reconstruction 

models, each with a structural feature based l1 norm constraint and a voxel fidelity based l2 norm 

constraint, which allows both the structure edges and tiny features to be recovered, whereas the 

noise and artifacts could be reduced. In the M-step, the initial susceptibility map is reconstructed 

by employing a k-space based compressed sensing model incorporating magnitude prior. In the S-

step, the susceptibility map is fitted in spatial domain using weighted constraints derived from the 

initial susceptibility map from the M-step. Simulations and in vivo human experiments at 7T MRI 

show that the SFCR method provides high quality susceptibility maps with improved RMSE and 

MSSIM. Finally, the susceptibility values of deep gray matter are analyzed in multiple head 

positions, with the supine position most approximate to the gold standard COSMOS result.
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Index Terms
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structural features; deep gray matter

I. Introduction

Magnetic susceptibility is an intrinsic physical property of a material that reflects its degree 

of magnetization in response to an applied magnetic field. In brain imaging, tissue magnetic 

susceptibility contrast is dominated by tissue iron and myelin content with additional 

contributions from calcium under certain conditions [1]. Accurate measures of tissue 

susceptibility therefore may provide valuable information for the diagnosis of intracerebral 

bleeding and calcification and for monitoring neuro-degenerative diseases such as 

Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, Huntington’s disease and even 

cognitive development in children [2–4]. Imaging tissue magnetic susceptibility with high 

spatial resolution has recently become possible with the development of quantitative 

susceptibility mapping (QSM) techniques using high field MRI [5]. In a magnetic field, 

ferromagnetic, paramagnetic or diamagnetic tissue components such as iron or myelin 

induce changes in the local magnetic field that can be measured by MR phase or frequency 

imaging [6], e.g. using a gradient recalled echo (GRE) sequence. However, reconstruction of 

the magnetic susceptibility distribution from local phase is an ill-conditioned inverse 

problem due to the singularity at the magic angle in the dipole convolution kernel of the 

susceptibility to phase transformation [7].

Different strategies have been proposed to solve this ill-conditioned problem. Thresholded 

K-space Division (TKD) is a direct and fast solution in the Fourier domain, which simply 

sets small values in the convolution kernel below a threshold to a constant when performing 

the inverse calculation [8], [9]. Yet, it suffers from either underestimation of the 

susceptibility values or streaking artifacts. Calculation of susceptibility through multiple 

orientations sampling (COSMOS) [10], on the other hand, employs data redundancy, i.e. 

phase data acquired at multiple head orientations with respect to the main magnetic field, to 

stabilize the QSM inverse problem. COSMOS is usually the gold standard when comparing 

different QSM algorithms, but acquiring multiple orientation data is unfortunately 

inconvenient for clinical use and acquisitions are generally limited to single orientation. To 

derive quantitative susceptibility maps, several regularization methods incorporating 

different types of a priori information have been proposed [11–13]. In the morphology 

enabled dipole inversion (MEDI) approach [14–16], a priori anatomical information from 

magnitude images is used. Combined edge information extracted from both magnitude and 

phase images has also been proposed as a priori information for QSM regularization [17–

20], such as HEIDI. However, morphologic information obtained from either magnitude or 

phase does not necessarily match all the structural features seen in the susceptibility maps. 

Such discrepancies can introduce erroneous structure shapes in the reconstructed 

susceptibility maps.
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In order to address this problem, we propose a structural feature based collaborative 

reconstruction algorithm (SFCR) for QSM. The SFCR is composed of two consecutive steps 

corresponding to two complementary reconstruction models. In the M(agnitude)-step, we 

reconstruct an initial estimate of the susceptibility map employing a regional adaptive 

compressed sensing model in k-space with constraints incorporating the morphological 

information from magnitude images. In the S(usceptibility)-step, the ultimate susceptibility 

map is fitted in image space with a weighted l1 norm constraint using a priori information 

extracted from the M-step susceptibility map. Besides, a voxel fidelity based l2 norm 

constraint is introduced to suppress the possible artifacts as well as prevent voxels of high 

SNR from under estimation. The performance of SFCR is compared with that of TKD and 

MEDI using both numerical simulation and in vivo human data and evaluated in terms of 

Root Mean Square Error (RMSE) and Mean Structure Similarity Index (MSSIM). Since 

QSM has the unique potential to represent the characteristics of deep gray matter and 

diseases related to these regions, we focus our comparison analysis on regions of interest 

(ROI) mainly in deep gray matter for both the simulation model and the in vivo human brain 

data.

II. Theory

A. QSM Theory

The normalized magnetic field shift  measured in a gradient echo sequence is 

related to the MR image phase via , where B0 is the main magnetic 

field strength, γ is the gyromagnetic ratio, and TE the echo time. Following the Maxwell’s 

equation, the relative field shift δB becomes an element wise multiplication between the 

susceptibility distribution χ and a dipole kernel in Fourier domain. Denoting the dipole 

kernel in the Fourier domain with , where k is the spatial frequency 

vector, the susceptibility map may be estimated from the measured phase map using the 

inverse of the kernel as

(1)

However, this problem is ill-posed because of the zero values of Ck(k) in k-space on a 

double conical surface at the magic angle 54.7°. A straight forward approach is to perform a 

threshold based k-space division, e.g. in the TKD approach, using k-space masking to avoid 

noise amplification in regions where the kernel function is small [8], [9]. However, such 

modification of the convolution kernel leads to streaking artifacts or underestimation of the 

susceptibility values and certain systematic corrections [18] are needed to get a less biased 

quantitative estimation.

A common approach to solve ill-posed inverse problems is regularization, such as Tikhonov 

regularization using l2 norm [21]. In addition, regularization using l1 norm tends to promote 

sparsity in the solution [22]. Previously QSM studies have shown that regularization 

incorporating the morphological information available from magnitude images can suppress 

streaking artifacts, as is done in MEDI [14]. It assumes consistency of the tissue structures 
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between the susceptibility and magnitude images obtained from the same acquisition. 

However, the anatomical features of T2* weighted magnitude images do not necessarily 

match those of susceptibility maps. Such discrepancies between the structure prior constraint 

used for QSM regularization and the true morphology will introduce erroneous structure 

shapes or artifacts in the reconstructed susceptibility maps. Therefore, technical 

developments to account for such difference are needed.

B. Structural Feature based Collaborative Reconstruction (SFCR) Method

In this method, we propose a collaborative reconstruction framework composed of two steps 

using complementary theories, each with two regularization constraints. At first we derive an 

initial estimation of the susceptibility map in k-space with structural features extracted from 

GRE magnitude images (M-step). In the subsequent collaborative S-step, we use this 

estimation to extract a more accurate a priori weighting matrix for estimating the final 

susceptibility map in spatial space.

1). M-step: Initial Reconstruction based on a Priori Magnitude Information—
The susceptibility map is reconstructed using a k-space regional adaptive compressed 

sensing (CS) model with a regularization constraint that incorporates the morphological 

information extracted from magnitude images. The ill-conditioned k-space regions are 

treated as missing data in an under-sampled acquisition. Previous studies have shown that 

using compressed sensing can effectively recover the susceptibility estimation in the ill-

conditioned k-space regions while suppress the streaking artifacts and noise [13]. With an a 

priori magnitude based regularization constraint, the initial susceptibility reconstruction is 

formulated as

(2)

The first data fidelity item is a CS-like form, where F is a Fourier transform operator in 

matrix format. H is a binary mask with 1 and 0 corresponding to well-conditioned and ill-

conditioned subdomains in k-space by thresholding Ck(k), and diag(H) denotes a diagonal 

matrix with the elements of H on its diagonal. λ1 and λ2 are Lagrange multipliers adjusting 

constraint weights. Considering that morphological inconsistencies between susceptibility 

and magnitude images are sparse, a sparsity regularization constraint in the spatial domain is 

added, where the l1 norm can be regarded as an effective substitute for the l0 norm, which is 

harder to solve in practice. The structural weighting matrix Pmag is derived from 

thresholding the gradient of magnitude image. It is a binary mask that is zero in voxels with 

large gradients and one for voxels with small gradients

(3)
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where I is the three dimensional magnitude image and ∇iI denotes its gradient in the ith 

dimension. μmag is selected according to the structure complexity and noise level in I. In the 

l1 norm constraint, susceptibility features corresponding to tissue edges showing strong 

contrast in magnitude images are expected to be emphasized, while susceptibility features 

corresponding to those edges showing weak contrast in magnitude are prone to be 

suppressed by the sparsity constraint. In the l2 norm smooth constraint, R1 is a fidelity mask 

in which the value in brain tissue with high SNR is equal to zero, while it is one in case of 

low SNR.

2) S-step: Collaborative Reconstruction based on Susceptibility Structural 
Features—In the S-step, we employ a weighted l1 constraint constructed from the 

susceptibility map  obtained in the M-step to correct possible errors induced by 

morphology differences that exist between the magnitude and susceptibility maps

(4)

The fidelity term in S-step is evaluated in the spatial domain, complementary to the data 

fidelity term in k-space used in the M-step. W is a weighting matrix proportional to the 

signal to noise ratio reflecting the reliability of the data measured for each voxel. C is a 

matrix encoding the convolution with the unit dipole field C=F−1Ck(k)F, where F denotes 

the Fourier transform. The Lagrange multipliers γ1 and γ2 adjust the constraint weights 

relative to the energy fidelity term. The structural feature weighting matrix  is derived 

from gradients of the initial susceptibility map  generated from the M-step with a threshold 

μsus as

(5)

In the S-step reconstruction, the l1 norm performs a weighted sparsity constraint based on 

structural information extracted from susceptibility maps, i.e. through its gradient strength. 

Thus, the susceptibility structure features are emphasized, while tiny variations are 

suppressed as artifacts. The reconstruction error caused by a priori information derived from 

magnitude image will be corrected in this step. However, using the reconstrution model with 

a single l1 norm constraint, the reconstructed three dimensional susceptibility maps are still 

prone to be contaminated by granular or chessboard artifact. Meanwhile, large and abrupt 

susceptibility variation may cause nonneglectable susceptibility artifacts, especially around 

large vessels and deep gray matter regions of substantia nigra (SN) and globus pallidus (GP), 

where the susceptibility artifact may obviously decrease the susceptibility from the actual 

value [23], [24]. Therefore, an l2 norm constraint is introduced to piecewise smooth the 

reconstructed susceptibility map and suppress the possible artifacts. The weighting matrix 

R2 is a fidelity mask similar to R1 mask in the M-step, where the voxel of high SNR in the 

initial susceptibility map is equal to zero, and the low SNR voxel is one, moreover, the voxel 

corresponds to the susceptibility artifact is set to be 2. Using the R2 weighted l2 norm 
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constraint, it can protect voxels in regions of high susceptibility from being over-smoothed, 

and also prevent granular or chessboard reconstruction artifacts.

C. Algorithm Implementation

The objective functions in the M-step and S-step involve a combined optimization of l1 and 

l2 norm constraints that is difficult to solve directly using traditional methods [25]. In order 

to solve this optimization model, we introduced an intermediate variable , 

allowing the optimization to be devided into two sub-procedures: first to fix χ and solve b 
by using an Iterative Shrinkage Thresholding algorithm (IST) [26], [27], and then to fix b 
and solve χ using the Conjugate Gradient (CG) algorithm.

In the M-step, employing the intermediate variable , the objective function (2) 

can be rewritten as

(6)

when β→∞, the solution to (6) approaches the solution to (2). Assuming that β is fixed, (6) 

can be solved in two alternating iterative optimization procedures. To compute b for a fixed 

χ, the subproblem in (6) becomes

(7)

We solve this reweighted l1 minimization problem using the IST algorithm

(8)

in which soft(·,1/β) is a soft thresholding function with threshold 1/β. Here the parameter β 
grows with the power of 2 during the iteration, which helps the IST algorithm to converge 

faster. To update χ with a fixed b, the approximation corresponds to

(9)

This is a quadratic programming problem and the optimal solution is achievable by setting 

its gradient to zero with respect to χ. We then have

(10)
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This function can be solved using the CG method. To demonstrate our approach, we outline 

below the detailed algorithm implementation for the M-step procedure.

M-step Algorithm procedure

Initialization:

a) Use the thresholded Ck(k) to get the weighting matrix H;
b) Compute the a priori weighting matrix Pmag and fidelity weighting matrix R1;
c) Initialize parameters β = 2, b = 0, and Lagrange multipliers λ1 and λ2;
d) Set CG tolerance error η = 1×10−3 and iteration number 100;
e) Preset iteration counter m and maximal iteration number M;

Iteration:

f) Calculate b with  using (8), update ;

g) Calculate χ with  using (10), update ;

h) If m < M, update , return to f);
 otherwise, iteration terminate and output χ.

A similar algorithm implementation can be applied to solve the optimization problem in the 

S-step, except for some parameter settings. The CG algorithm formulation for S-step is

(11)

III. Materials and Methods

Both numerical simulation and in vivo human experiment were used to evaluate the 

performance of the SFCR algorithm in comparison to TKD [8], [9], MEDI [14], [16] and 

HEIDI- like method called as HEDI in our paper [17]. The MEDI implementation used the 

code distributed by the original authors. For the HEIDI code is not public, we implemented 

HEDI using MEDI solvers with extracting gradient weighting matrix from the background 

field corrected GRE phase (i.e. field shift in the paper). The edge percentage was set as a 

constant of 30% for all methods in the experiment. The RMSE and MSSIM with respect to 

the gold standards (known model for the simulation and COSMOS for in vivo data) were 

used as quantitative performance evaluation. The MSSIM was defined as mean SSIM 

(Structure Similarity) [28]. The regularization parameters of all methods were optimized to 

minimize RMSE and maximize MSSIM for both the simulation and in vivo data. More 

information is in the supplementary material.

A. Numerical Brain Simulations

A 3D numerical brain phantom of size 217×181×181 was designed based on the 

susceptibility data used in the human brain atlas from a previous study [29]. The background 

area and all Cerebrospinal fluid (CSF) regions were set to have zero susceptibility. While 

inside the brain, the susceptibility value of all white matter regions was set to −0.03 ppm, 

gray matter cortex to 0.01 ppm, and the caudate nucleus (CN), globus pallidus (GP), 

putamen (PU), red nucleus (RN), and substantia nigra (SN) to 0.08, 0.18, 0.07, 0.12, 0.12 

ppm, respectively. Normally distributed Gaussian noise with a standard deviation of 0.002 
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ppm was also added. In addition, a magnitude image was simulated by setting white matter, 

gray matter cortex and CN, GP, PU, RN, and SN to be 0.95, 1, 0.8, 0.4, 0.8, 0.5, 0.5 in 

normalized intensity [16] with normally distributed Gaussian noise added (standard 

deviation 0.005). The relative field shift δB was generated from the forward calculation in 

Section II.

B. In Vivo Human Brain Data Acquisition

In vivo human data were acquired at the F. M. Kirby Research Center in Kennedy Krieger 

Institute and Johns Hopkins University Hospital, after IRB approval and written informed 

consent. Five healthy male subjects (30 to 36 years old) were studied using a 7T Philips 

Healthcare MRI equipped with a 32-channel Novamedical head receive coil. A 3D multi-

echo GRE sequence was used with field of view (FOV) 220mm×220mm×110mm, matrix 

size of 224×224×110, TR/TE1/ΔTE = 45/2/2ms, 9–16 echoes, SENSE factor = 2.5×2 for the 

phase-encode directions, flip angle = 9°, and scan duration of 5:15 min per acquisition. Fat 

suppression was accomplished using a water-selective ProSet 121 pulse. In vivo human 

brain data at multiple head orientations were acquired to calculate susceptibility maps using 

COSMOS [10], which was used as a gold standard for quantitative comparison of the single 

orientation QSM reconstruction methods and for adjusting regularization parameters. 

Multiple orientation data were acquired with the volunteer’s head at four positions: normal 

supine position, tilted to subject’s right shoulder, tilted to subject’s left shoulder and tilted to 

subject’s back. The rotation angle for each orientation varied randomly between 5° to 22° 

from the main  axis. Axial GRE images were positioned parallel to the AC-PC axis and 

perpendicular to the mid-sagittal plane, and the magnet was quickly shimmed every time the 

head position was changed.

C. Human Brain Data Preprocessing

For each subject, the magnitude images at the first echo of the three tilted head orientations 

were coregistered to that of normal supine position by rigid body linear transformation using 

the FSL FLIRT tool [30], [31]. The coregistration transformation matrix was then applied to 

all other echo times to generate the coregistered magnitude and phase images. Subsequently, 

all data were put in the same subject frame of reference. After that, coregistrated phase 

images were unwrapped using a Laplacian-based phase unwrapping algorithm [32]. To 

eliminate the background field caused mainly by the susceptibility variations around the air-

tissue interfaces, the SHARP method [23] with a spherical convolution kernel of radius 4 

mm was applied to the unwrapped phase images using our QSM toolbox. A brain mask was 

generated with the FSL BET tool using the magnitude image at the supine position.

D. Susceptibility Map Reconstruction

The frequency shift was calculated by least squares fitting of the linear slope of the phase as 

the function of TE using multiple echoes. The linear fitting of the phase over time also 

provides an estimate of the initial phase, which can be used to exclude some voxels those 

have unreliable phase measurement due to turbulent flow, partial volume effect or extremely 

high invoxel resonance frequency shift. We used the mean normalized GRE magnitude 

image at the sixth echo (TE=12ms) to generate the weighting matrix which showed 

Bao et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appropriate tissue contrast for comparison at 7T scanner. Serving as the in vivo gold 

standard susceptibility reference, COSMOS based susceptibility maps were calculated with 

relative convergence tolerance of 10−5 using LSQR algorithm. In addition, the lateral 

ventricular region was selected as a reference for susceptibility quantification setting CSF to 

0 ppm. Data processing was implemented in MATLAB 2014a on a windows 7 workstation 

with an Intel Xeon processor E5-1620, and 16GB RAM. For quantitative susceptibility 

analysis, we selected local regions of interest based on a QSM human brain atlas [29] for 

three dimensional data using LDDMM, part of the MRI Studio toolbox (X. Li, H. Jiang, S. 

Mori; Johns Hopkins University, http://www.mristudio.org), and then fine ROI delineations 

were corrected manually.

IV. Results

A. Parameter Determination

The optimal regularization parameters for MEDI and SFCR are determined by successively 

reconstructing susceptibility maps with different values and calculating the RMSE and 

MSSIM with respect to the susceptibility model and the corresponding COSMOS maps of 

the volunteers, respectively. The choice of λ in MEDI offers a trade-off between data fidelity 

and streaking artifacts. The data fidelity term in the code of MEDI toolbox is 

. Fig.1a–c shows that λ varies from 0 to 6000 plotted against RMSE, 

MSSIM and the Residual error using the simulation data. The minimal RMSE and the 

maximal MSSIM all achieve at λ=250 as marked, while the Residual error 

 converges with increasing λ. Here, the optimal value 250 is close to 

the choice of 316 used in [7]. The optimal λ for the in vivo human brain data was set to be 

300 in the same way.

In our SFCR method, the model formations of the two steps and their regularization 

parameters are similar. λ1 and λ2 are Lagrange multipliers defined in the M-step, while γ1 

and γ2 are in the S-step. λ1 and γ1 adjust the weights of the data fidelity term relative to the 

structure a priori regularization term. An increasing λ1 and γ1 means to a strong constraint 

on the data fidelity but the streaking artifacts may not be removed clearly. On the contrast, 

decreasing λ1 and γ1 may lead to structural features missing in the reconstructed map. Since 

the M-step is used to generate the interim susceptibility map for extracting a priori 

information, while the final susceptibility map is reconstructed by the S-step, we illustrate 

the regularization parameter determination of γ1 using the simulation data as an example in 

Fig.1d–f by setting λ1=50, λ2=γ2=1 as default. We observed that the minimal RMSE and 

the maximal MSSIM achieve at different values, and the Residual error 

 converges to 1.03×10−3. Finally, we determined γ1=1500 for the 

simulation data and γ1=2000 for the in vivo data, while setting λ1=50 for all data.

Parameters of λ2 and γ2 are the Lagrange multipliers of the fidelity mask based constraint 

terms. A proper determination of λ2 and γ2 is helpful to smooth chessboard or granular 

artifacts and suppress susceptibility artifacts, but too large values may yield to over-

smoothing or underestimation. We tested λ2 and γ2 in the range of 0–50 with a fixed λ1 and 
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γ1, and then it was determined to be λ2=γ2=1 for the simulation data, and λ2=1, γ2=20 for 

the in vivo data. In the same way, we took 0.2 as the optimum threshold for Ck(k).

B. Numerical Simulation Results

The brain simulation model and the related structure weighting matrix are depicted with two 

typical slices in Fig.2, which mimics the condition in real human data. We can see that in 

Fig. 2a–b the structural features extracted from the magnitude images and the field shifts are 

not consistent with that from the susceptibility maps. For example, some edges in the 

regions pointed by the red arrows are missing in the magnitude images, while some 

redundant structures in the field maps are not in the true QSMs. In Fig. 2c–d, even though 

the initial QSM generated by the M-step do not recover the exact contrast yet, it is able to 

capture those missing edges and most of the edges are overlapped with the true QSM.

In Fig. 3, the reconstructed susceptibility maps of the brain model generated by the TKD, 

MEDI, HEDI and SFCR methods are compared on two different slices accompanied with 

their error maps relative to the true QSM. Local regions over the deep gray matter are 

zoomed to show more details, and two line profiles across the local regions are plotted for 

improved illustration of the edges. For the results of TKD, the maps are corrupted by serious 

streaking artifacts and significant overestimation or underestimation in several regions (as 

seen in the error maps). The MEDI and HEDI results although with improvement on the 

streaking artifacts suppression over TKD, still have discernible structure related errors easy 

to observe in the error maps. In Fig.3e–f, the profiles of the simulation are piecewise 

constant. However, the susceptibility values of TKD fluctuate around the true values. The 

contrast decrease in profiles of MEDI (arrows I and II) is caused by the missing edges 

marked in Fig. 2a. The noise in the HEDI result as arrows pointed is due to redundant 

structures in the field map shown in Fig. 2b. Finally, the susceptibility maps calculated by 

SFCR achieve a reconstruction with excellent image contrast, precise estimation and no 

streaking artifacts as shown in their error maps and zooming views, where the number of 

remaining structural features is seldom and the errors are close to zero. Table I quantitatively 

evaluates the reconstruction performance of these methods in Fig. 3 in terms of their RMSE 

(left column) and MSSIM (right column). The results of MEDI and HEDI are better than 

TKD, but SFCR method further improves the reconstruction accuracy. The computation time 

of the simulation data was 229s for MEDI and 198s for SFCR.

C. In Vivo Human Brain Results

Two slices of a human subject are shown in Fig. 4 together with the corresponding a priori 

weighting matrices. We can observe that the obvious tissue edges between white matter, 

gray matter and blood vessels in the susceptibility maps do not always correspond to those 

in the magnitude image or the field shift, which is especially clear in the structure weighting 

matrix. For instance, the interfaces around the PU and CN derived from the susceptibility 

map of slice 35 are not fully represented in the magnitude images (red arrows in Fig.4a), 

while the edge information extracted from the field shift encompasses an area that is larger 

than the susceptibility map, e.g. the region pointed by red arrows in slice 23 in Fig.4b. 

However, the weighting matrices extracted from the initial QSM in the M-step are almost 
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consistent to the COSMOS. Thus, it is the best way to employ the susceptibility map to 

derive the structural feature weighting matrix.

Since we know venous blood is rich of deoxygenated hemoglobin, their high magnetic 

susceptibilities induce local magnetic field inhomogeneity. Even after background removing, 

the subsequent field map still exhibits unreliable data around regions of the interpeduncular 

vein (I), basal vein (II), crus cerebri and SN pars reticulate (III) [23]. Even in the COSMOS 

result, we can see the effect of this kind of susceptibility artifact around interpeduncular vein 

in the zoomed view, where the value of white matter is smaller than −0.1ppm. The fidelity 

mask R2 is used to suppress such artifacts, where the voxels affected by serious 

susceptibility artifacts are extracted by thresholding the three dimensional gradient of the 

susceptibility map  with threshold 0.2 ppm. In slice 35, the artifacts distribute mainly 

around the great cerebral vein, while for slice 23 the artifacts locate primarily over the SN as 

shown in Fig. 4e–f.

In Fig.5, susceptibility maps of an in vivo human brain in supine position generated by 

TKD, MEDI, HEDI and SFCR are compared to the COSMOS reconstruction. TKD again is 

unable to reconstruct the map without streaking artifacts that is more visible in the error 

maps, where the GP is clearly underestimated. The over-smoothing in the reconstructed 

maps of MEDI prohibits identification of subtle susceptibility variations. As a consequence, 

the GP, CN and PU appear homogenous. In addition, voxels over SN and RN are 

accompanied with granular artifacts as shown in the zooming views. The results of HEDI are 

suffered from the redundant structures especially for slice 23, in which the susceptibility 

contrast cannot be well recovered like MEDI as show in Fig.5f with arrow indication. 

However, the results of SFCR have little artifacts and also have a good performance in 

preserving the fine structures, such as tiny blood vessels and tissue subtle variations 

appearing in the COSMOS map. Compared with other methods, the profiles of SFCR are 

generally closest to those of COSMOS without apparent deviation. With the fidelity mask 

based constraint, SFCR method is able to suppress the susceptibility artifacts along the veins 

(regions I-III) without decreasing the contrast, leading to best performance over the SN and 

RN in the midbrain. Table II summarizes the reconstruction performance of all methods for 

in vivo human brain data. The results of SFCR are apparently better than the other methods. 

Computation time for the single orientation method was 216s for MEDI and 182s for SFCR. 

More detail is in the supplementary material.

Fig. 6 presents SFCR calculated susceptibility maps of four different head orientations in a 

human subject together with SSIM maps referenced to the COSMOS, where tilting angles of 

each orientation are noted in the term of (x, y, z) angles in degree in the figure heading. It is 

observed that fine structures, including small vessels, cerebral gyrus and tiny textures of the 

gray matter and white matter are reconstructed well and consistent in location in all 

positions. As expected, the susceptibility maps are similar to each other, but also exhibit 

distinguishable orientation dependence in regions with high fiber density [33–35], such as 

the posterior limb of the internal capsule, the splenium of corpus callosum and posterior 

thalamic radiation, which are clearly visible in SSIM maps (voxels in green and blue colors). 

More interestingly, there is an asymmetry between left and right hemispheres in the head 

positions of right and left. Besides the susceptibility intensity difference for GP, the volume 
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of the right GP in the right position and the volume of the left GP in the left position are 

increased. These types of orientation variations are also observed in the region of SN. 

Meanwhile, the susceptibility intensities of SN in the left and right hemispheres are almost 

symmetric in the supine and back positions, but the intensity of back position is lower than 

the supine.

In Fig. 7 the mean susceptibility (MS) values and their standard deviations of five ROIs in 

the deep gray matter are compared between four orientations reconstructed by SFCR and 

COSMOS for the same subject in Fig. 6. The ROI contours are shown in axial, coronal and 

sagittal views. We find that the MS values of CN and PU in four orientations are almost 

equal to COSMOS, while the MS values of GP, SN and RN present obvious orientation 

related differences. The susceptibility values of RN in supine and back position are larger 

than the left and right position. The susceptibility values for GP and SN in right, left and 

back position are lower than the supine position and COSMOS result. The susceptibility 

standard deviations of all four positions are comparable to that of the COSMOS, with those 

of SN and GP larger than PU, RN and CN. In all, the measured susceptibility of deep gray 

matter in supine position is the largest of four orientations and closest to COSMOS. This 

result is consistent with the results in Fig. 6.

Fig. 8 shows a linear regression comparison between MEDI and SFCR at different head 

orientations over COSMOS using the susceptibility values of ROIs in deep gray matter 

together with corpus callosum (CC) and thalamus (TA). The MS is the average over five 

healthy subjects. The inter-subject MS values measured in CC, TA, CN and PU are similar 

in four positions for both MEDI and SFCR, but values of RN, SN and GP show orientation 

related differences, especially SN in the back position noticeably decreased. Among four 

orientations, the MS values in the supine position are closest to those found by COSMOS 

approach. Although the correlation coefficients r for all methods are close to 1 with p values 

and the intercepts close to zero, the slope of SFCR in the supine position is 0.95, 

significantly improved with respect to 0.79 of TKD, 0.87 of MEDI, and 0.89 of HEDI. This 

result on multiple subjects is coincident with the observations in the single human subject 

shown in Fig. 6 and Fig. 7. Table III summarizes the MS values of the selected ROIs of 

every subject in the supine position of SFCR (top row) and COSMOS results (bottom row). 

The average over the five subjects is the same with p=0.99, showing no significant group 

difference.

V. Discussion and Conclusion

The main challenge for accurate QSM reconstruction is accurate reconstruction of 

quantitative susceptibility values, including artifact reduction, preservation of subtle 

susceptibility variations, and minimizing noise amplification. As a direct inverse method 

with no regularization, TKD induces streaking artifacts and suffers from underestimation of 

susceptibilities and severe noise amplification. In MEDI, a weighted l1 norm constraint 

based on a priori derived from the magnitude image is used to reduce streaking artifacts in 

the susceptibility maps [14], [15]. A modified nonlinear MEDI method has also been 

proposed in which phase noise and unwrapping errors can be properly accounted for [16]. 

Even though MEDI gives a better estimation than TKD, unexpected aliasing is induced by 
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morphological inconsistencies existing between the magnitude and susceptibility images as 

demonstrated in Fig. 2 and 4. To overcome this problem, some researchers obtain the edge a 

priori from both magnitude and phase data, but extracting structure priori from the phase 

data has shortcomings similar to those of the magnitude image.

For improving the QSM quality, two strategies are presented in the HEIDI [17]: applying 

different solution strategies in three different sub-domains of the Fourier space; combining 

magnitude with phase image to determine a priori information about the susceptibility 

distribution. A priori smoothness information  was obtained by combining three binary 

masks using point-wise multiplication as , where  and 

are defined by thresholding the gradient and laplacian of the background-field corrected 

GRE phase, and  is derived by thresholding the GRE magnitude image. In this way, 

 is similar to the mask of most zero values, which is the gradient of phase image  in 

practice. Although the background field was eliminated from the unwrapped phase image, 

there are still some unreliable phase data in the regions with high susceptibility variations, 

e.g. the straight sinus, internal cerebral vein, superior cerebral vein, interpeduncular vein, 

and basal vein in the in vivo human brain. The authors said that voxels with unreliable phase 

value were identified with an empirically established absolute value greater than π/8 [18], 

and then were set to zero in the processed phase data. Therefore, the structure features in the 

unreliable phase region are not able to be represented in . The reconstruction quality of 

HEIDI is also dominated by subdomains dividing parameters (till, twell, ttrans) and inherent 

artifacts associated with the reconstruction of three sub-domains. Practical choice of the 

domain definition parameters principally depends on the accuracy of the a priori 

information, the amount of noise in phase data, and the performance of the denoising 

algorithm. HEIDI employed a simple unregularized algorithm for reconstructing the well-

conditioned sub-domain to illustrate that streaking artifacts can be reduced without 

regularization in the well posed subdomain. However, they also said in the Discussion 

section that the QSM problem is often underdetermined inside and adjacent to lesions 

requiring a priori information also for the inversion of the well posed subdomain. A MEDI-

like approach with prior information on critical spatial regions instead of the unregularized 

algorithm used in HEIDI should be a promising approach [17]. Based on our above analysis, 

we implemented HEDI instead by extracting gradient from the field shift map with MEDI 

solver in the experiment.

In our method, we apply a collaborative reconstruction framework composed of two-step 

procedures, one using the compressed sensing model in k-space and the other using a 

weighted fidelity item in the spatial domain. Since a priori structural information based on 

the initial susceptibility map is believed to be better, a susceptibility structure based a priori 

term in the S-step is introduced. As shown in Fig. 3 and 5, the experimental results for 

MEDI and HEDI usually exhibit over smoothing in local regions accompanied with obvious 

artifacts and noise, which are caused by missing edges in the magnitude image or redundant 

structures in the field map shown in Fig. 2 and 4. When we use the intermediate estimation 

of the susceptibility to constitute the weighting matrix, the reconstruction errors caused by 

morphology differences are corrected, and it shows improvement over these previous 
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approaches. The structure regularization constraint is used mainly to preserve structure 

edges in the susceptibility map. However, such a reconstruction model is not stable enough 

to achieve an accurate solution without considering other artifacts.

The susceptibility artifact around the abrupt susceptibility change could cause unreliable 

phase data, which may affect the susceptibility value in the reconstruction if we have no 

special solution to deal with it, for instance around the regions of veins. In general, there is a 

trade-off between the artifact suppression and structure preservation. The large γ1 

determines a high restriction on data fidelity but a relative loose restriction on artifacts, 

while a small γ1 enforces to suppress the artifact but prone to be over smoothing or decrease 

the contrast. However, the map of in vivo human brain contains a lot of fine structure 

features. In that case, the regularization parameters should not be set too small only for 

suppressing artifacts but regardless of the over smoothing problem. Thus, we introduce 

another constraint term into the reconstruction model based on a fidelity mask R2, which is 

generated by thresholding the three dimensional gradient of the susceptibility maps obtained 

in the M-step. For the noticeable susceptibility artifacts around the regions of large vessels in 

Fig. 5, The constraint term based on fidelity mask can effectively reduce this susceptibility 

artifacts, while protect high SNR voxels from underestimation. In this way, we can facilitate 

the artifacts suppression while preserving the structure features with no need to set γ1 too 

small. As experimentally demonstrated, the combination of the structure regularization 

constraint and a fidelity based constraint allowed both the structure edges and tiny features 

to be well recovered, whereas the noise and artifacts could be effectively reduced. More 

detail is in the supplementary material with a comparison on γ2=0 and 20 to demonstrate the 

different roles of the two constraint terms.

The choice of Lagrange multipliers depend on the scale of each l1 or l2 norms in the 

reconstruction model, i.e. the scale of δB and χ, noise and artifact level, and structure 

complexity in the map. We think it’s best to determine the regularization parameters 

separately for different data, which is searching the optimal value of the regularization 

parameters in a proper range employing the L-curve method with respect to the evaluation 

metric. So we set different regularization parameters for MEDI and our methods in the 

simulation and in vivo experiment. However, if the susceptibility distributions are similar or 

once the imaging acquisition protocol for a specific organ is established, the same 

regularization parameters can be applied across subjects due to the similarity in the imaging 

content and noise level. Hence, we observed that the regularization parameters for the 

simulation data and the in vivo data are close for both methods. In Fig. 1, when 

regularization parameters λ and γ1 vary from their optimal values to 6000, the variations of 

the evaluation metrics of MEDI are larger than SFCR method. Therefore, our method also 

enables a more stable solution. Even if imaging acquisition protocol is different, it is not 

necessary to search the optimal values of the Lagrange multipliers in a wide range 

employing the L-curve method, but fine tunings are appreciative.

The thresholds of Pmag and  should be proportional to the structure complexity in the 

map, so it can be a definite value for a specific organ. H is a binary mask by thresholding 

Ck(k), where we took 0.2 as the threshold by experimental test, which is similar to other 

related papers using TKD in the scale of 0.15–0.25 [8], [9]. Such a range of variation will 
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have no effect on the final result of our method. Thus, these three threshold parameters can 

be treated as constants in the human brain QSM. As we know, the shape and intensity of the 

susceptibility artifact depend on local anatomic relationships, field strength, difference in 

susceptibilities, echo time as well as bandwidth (or readout gradient strength and direction). 

In the published papers [14], [16], [18], [29], the susceptibility scale of venous blood is 

[0.25, 0.3] ppm, with deep gray matter range of [0.03, 0.2] ppm and white matter range of 

[−0.03, −0.05] ppm using CSF as reference. In the experiment, we found there are obvious 

susceptibility artifacts around the veins and GP arising from abrupt susceptibility difference, 

despite background removing to the preprocessed phase image by SHARP. Therefore, we 

apply 0.2 ppm to thresholding the three dimensional gradient of the susceptibility map  to 

extract the voxels affected by serious susceptibility artifacts for the fidelity mask R2. This 

threshold could be a constant in the human brain QSM. However, there may be other 

adaptive way to detect the unreliable phase or susceptibility artifact, which is one focus of 

our ongoing work.

In the implementation, susceptibility initialization using the M-step is obtained at the second 

iteration, while the consecutive S-step iteration usually converges in less than eight 

iterations. Since each step contains a minimization model that combines an energy fidelity 

item with l1 norm and l2 norm constraints, it cannot be solved by a single CG algorithm 

directly. The model solution of our method is separated into two sub-procedures by 

employing the IST algorithm and CG algorithm. As a fast algorithm, IST takes advantage of 

solving the optimization problem containing the l1 norm constraint with favorable iteration 

convergence speed, which enables the computation time of SFCR a bit faster than MEDI. In 

Reference [22], Bilgic proposed a fast l1-regularized QSM and shared the matlab code on 

his homepage. Once the regularization parameters are determined, the run time of the split 

Bregman QSM is 138s for the numerical simulation data, 127s for the in vivo human brain 

data in our computer, which is a little faster than SFCR (about 180s). The computation speed 

of SFCR could be improved when incorporating split-Bregman or ADMM techniques or 

parallel computing.

At present, it is well recognized that the susceptibility anisotropy in white matter originates 

predominantly from the organized anisotropic lipid molecules in myelin [36], [37]. The 

susceptibility values of in vivo human brain data at multiple orientations in Fig. 6 show that 

the white matter anisotropy is in the range of 0.01–0.03 ppm, which is consistent with the 

conclusion in [34]. However, there is a noticeable susceptibility intensity difference related 

to the head orientation around the GP and posterior limb of the internal capsule, also over 

interpeduncular vein and the splenium of the corpus callosum in Fig. 6, and near the areas 

between the vein and SN especially an asymmetry between left and right hemispheres in the 

head position of right and left. At the same time, the susceptibility maps of the right and left 

positions differ more than those of the supine and back positions as compared to COSMOS 

results. We think this phenomenon is a consequence of susceptibility artifacts, and not due to 

intrinsic orientation anisotropy in gray matter. In the supine and back position, left and right 

hemispheres are nearly symmetric with respect to the main magnetic field B0, but this kind 

of symmetry is changed in the right and left head position. Such kind of asymmetry relative 

to the main field may consequently give different susceptibility artifacts in QSM 
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reconstruction especially in and around those areas with abrupt susceptibility variations. 

Usually the susceptibility variation is much steeper over GP and SN than CN and PU, it may 

induce more artifacts. Thus, we can understand that, among the selected regions, the 

orientation difference on the GP, SN and RN was more obvious than the CN and PU in Fig. 

7 and 8.

Of the four different acquisition directions we tested, the susceptibilities measured using the 

supine position are most similar to the COSMOS results. For the five volunteers, no 

statistically significant difference was found between the supine susceptibilities and their 

corresponding COSMOS values as shown in Fig. 8 and Table III. The reason might be the 

supine position is the closest to the center of the four head orientations acquired for 

COSMOS, and also due to the fact that all acquisitions were registered to the supine position 

data in order to compute the COSMOS map. Therefore, when head rotation is not practical, 

such as in clinical application, it is best to study subjects in the supine position, which 

fortunately is the most comfortable position. In addition, it should be noticed that even 

though we used COSMOS as the standard for comparing different single orientation QSM 

methods, COSMOS assumes that tissue magnetic susceptibility is isotropic and thus is 

unable to reflect susceptibility anisotropy. Instead it averages out the orientation dependence, 

which is kind of equivalent to taking the mean susceptibility values at different head 

orientations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Selection of the optimal regularization parameters for MEDI (λ) and SFCR (γ1) with 

respect to the RMSE, MSSIM and Residual error using the numerical simulation data. The 

minimal RMSE and the maximal MSSIM are in red.
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Fig. 2. 
Numerical human brain simulation data and comparisons on their corresponding a priori 

weighting matrices of (a) magnitude images, (b) field shifts, (c) initial QSMs in M-step, and 

(d) true QSMs (in ppm). Red arrows in (a) indicate regions of susceptibility structures absent 

in the magnitude image, and red arrows in (b) indicate structures nonexistent in QSM. Red 

arrows in (c-d) demonstrate the structure consistency between the initial QSM and true 

QSM.
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Fig. 3. 
Comparison on susceptibility maps reconstructed by TKD (a), MEDI (b), HEDI (c) and 

SFCR (d) of the simulation data of two slices and their error maps with zoomed views in 

blue rectangles. The error maps of MEDI and HEDI present obvious residual structures, 

while there is no noticeable error in SFCR results. (e-f) susceptibility profiles of line 1 and 

line 2 with • denoting the starting point, where arrows indicate profile differences of MEDI 

and HEDI.
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Fig. 4. In vivo
human brain data and comparisons on their corresponding a priori weighting matrices of (a) 

magnitude images, (b) field shifts, (c) initial QSMs in M-step, and (d) COSMOS QSMs (in 

ppm). Weighting matrices extracted from the initial QSM is almost consistent to the 

COSMOS, but there are obvious structural differences in magnitude and field maps as 

pointed by arrows. (e-f) the fidelity mask R2 to deal with the effect of unreliable phase data.
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Fig. 5. 
Comparison on susceptibility maps reconstructed by TKD (a), MEDI (b), HEDI (c) and 

SFCR (d) of an in vivo human brain data with two slices and their error maps with zoomed 

views in blue rectangles. (e-f) susceptibility profiles of line 1 and line 2 with • denoting the 

starting point, where arrows indicate profile differences of MEDI and HEDI.
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Fig. 6. 
Susceptibility maps similarity and orientation dependence in four head orientations 

reconstructed by SFCR with their SSIM maps referenced to the COSMOS results. Tilting 

angles of each orientation are noted in the term of (x, y, z) angles in degree in the figure 

heading.
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Fig. 7. 
(a–d) ROI contours of three dimensional volumes; (e) bar graph compares the mean 

susceptibilities and standard deviations of ROIs in deep gray matter between four 

orientations reconstructed by SFCR and COSMOS, with supine position is the closest to 

COSMOS.
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Fig. 8. 
Correlation of inter-subject averaged susceptibility values (MS) measured in the selected 

brain regions using MEDI (a) and SFCR (b) methods with those using COSMOS. The line 

regression parameters of the supine position are noted on the top left of each figure.
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