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ABSTRACT Orientation-selective cells in the striate cortex
of higher animals are organized as a hierarchical topographic
map oftwo stimulus features: (i) position in visual space and (ii)
orientation. We show that the observed structure of the topo-
graphic map can arise from a principle of continuous mapping.
For the realization of this principle we use a mathematical
model that can be interpreted as an adaptive process changing
a set of synaptic weights, or synaptic connection strengths,
between two layers of cells. The patterns of orientation pref-
erence and selectivity generated by the model are similar to the
patterns seen in the visual cortex of macaque monkey and cat
and correspond to a neural projection that maps a more than
two-dimensional feature space onto a two-dimensional cortical
surface under the constraint that shape and position of the
receptive fields of the neurons vary smoothly over the cortical
surface.

The striate cortex of higher animals contains a topographic
representation of visual space in which are embedded neigh-
borhood-preserving maps of several variables describing
features such as position in visual space, line orientation,
movement direction, and ocularity (1-4). The representation
of the multidimensional feature space onto the two-dimen-
sional cortical sheet is achieved in a hierarchical fashion (5).
The topographic projection ofthe retina establishes a primary
order, and for each small region of the visual field there are
patches or stripes of cells with similar feature preference (1,
3). In this report we restrict our discussion to the features
position and orientation.

Distribution of orientation-selective cells within the visual
cortex of the cat, macaque monkey, and the tree shrew has
been characterized by several groups (1, 3, 5-7). Various
mechanisms have been proposed to explain the input-driven
formation and the plasticity of cortical maps, and simulations
have shown that some of these mechanisms can account for
various aspects of the observed organization (8-14). In this
article we will investigate a neural-network model for the
formation of orientation columns. The model is based on the
self-organizing feature map algorithm (15, 16), which incor-
porates several of the proposed mechanisms (9). This inves-
tigation differs from the previously published work in several
respects-the most important being that (i) the combined
formation of the retinotopic projection and the orientation
column system are studied, (ii) the interactions between both
maps are presented, and (iii) the variations in the spatial
distribution of feature-selective cells found in different spe-
cies are considered.
The Principle of Continuous Mapping. Are there general

principles that can explain the formation of these highly
ordered patterns? To investigate this question we consider a
mathematical model (based on refs. 15 and 16) that deter-

mines cell properties along the cortical surface such that the
"optimal stimuli" of the cell vary as smoothly as possible.
This constraint can be interpreted as establishing a mapping
from a higher-dimensional feature space characterizing the
stimuli onto the two-dimensional cortical surface such that
continuity is maximized. The required computations can be
interpreted as adaptive processes. Such processes have been
suggested to play an important role in the formation of
retinotopic projections (9, 11) and orientation columns (10).
Note that in the model under consideration the principle of
continuous mapping does not operate on the level of stimulus
features (see, for example, ref. 9) but on the level of optimal
stimuli, leading to the phenomenon of "fractures" in the
feature map, to be discussed below.
The Mathematical Model. The model is related to earlier

modeling efforts focusing on a single stimulus feature (10, 11)
and is based on the algorithm of self-organizing feature maps
(9, 15, 16). The model involves a two-layer system of cells
(Fig. 1). The first layer serves as an input layer in which the
randomly distributed cells encode some spatial intensity
pattern (referred to as stimulus). The activity of a cell i in this
layer is denoted by ri, i = 1, 2, . . . , NI. The stimulus
features, describing this activity pattern, are mapped onto the
cells of the (two-dimensional) second layer. For each such
second-layer cell, the model defines a best-stimulus-position
Sk1 and a best-stimulus-orientation 1k1, (where k, I represent the
two coordinates locating the cell in the network layer), by
using a set of weights Wkli, i = 1, 2 ... NO associated with the
cell (k, 1). The definition of skJ and 13k1 is motivated by an
interpretation of these weights as synaptic connection
strengths from input cells i to cells (k, l) in the network layer.
According to such interpretation the weighted sum Oki =
E iwkliri measures the external input converging at a cell (k, I).
For all activity patterns with fixed sum lid, the pattern ri =
Cwid where C = an arbitrary constant, leads to a maximum
of old and will be referred to as the optimal stimulus of that
cell (k, 1). The centroid of the optimal stimulus and the
orientation of the major principal axis of the optimal stimulus
define skj and the angle fkI, respectively.
The postulated principle of continuous mapping is not en-

forced for the values skd and 13d directly but is enforced for the
weights wkdi. A set ofstimulus patterns drives the model to adapt
its weight values such that (a) the variation of wk1i as a function
of cell position (k, 1) in the second layer is as continuous as
possible (index i is considered as fixed); (b) the range of the
resulting best positions and best orientations for all cells
matches the range over which these feature combinations vary
in the set of stimulus patterns. These are two complementary
requirements: condition a favors uniformity, whereas condition
b demands diversity for the weight values wkdi (9).
To satisfy conditions a and b we use a variant of the

self-organizing feature map algorithm (9, 15, 16). According
to this algorithm, a set of initial weight values is iteratively
refined by a sequence of discrete steps. For each step, a
stimulus pattern is selected at random from a given ensemble,
and the weights are updated according to the equation:
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FIG. 1. Two-layered model network. The activity pattern from
cells in the input layer gives rise to a map of the stimulus features in
the network layer as is described in text.

Wkli(t + 1) = Ckl(t)(wkOI(t) + E(t)hkl;rsri). [1]

Prefactors Ck,(t) and E(t) serve to keep the sum Yiw2 constant
and to scale the size of the weight change, respectively.
Indices (r, s) denote the cell where input 0rs is a global
maximum. The function hrs;kl has a maximum at (r, s) = (k,
l) and decays rapidly to zero for distances above a-, where oy

denotes the length scale below which one assumes that
intracortical mechanisms keep the response properties of the
cells correlated (9, 10). The continuity requirement condition
a is realized by the accumulation of local smoothing opera-
tions on the spatial variation of the weights wki (second term
in Eq. 1). Because each smoothing operation is always
limited to an area of approximate radius oa, the competition
between patterns ofchange weights in their favor (affected by
the normalization prefactor CkI) leads to the diversity re-
quired by condition b.

This realization of the principle of continuous mapping
allows one to interpret the iterative computation procedure,
Eq. 1, in terms of a Hebbian rule: ri is the "presynaptic
activity" delivered from input cell i, whereas intracortical
mechanisms would be required to adjust the postsynaptic
activity of cell (k, 1) to a value proportional to hkl;,s (9).

Stimulus Patterns and Model Parameters. A pattern of
elliptic shape is defined by three independent random num-
bers, each chosen from a uniform distribution: A pair of
coordinates xstim = (xwtim, xtim)T in the unit square (stimulus
center) and an angle a E [0, 1800] (stimulus orientation). Cell
activities ri were then defined by

ri = exp[ -- ((xi - xltim)cos a - (x,`2 Xm)sin a)

tim I)O )

2 il )sin a + (xv-i2 At'' ) [21
2

where xi = (xi1, x,2)T denote the position of cell i in the input
layer. Parameters o-1 and o72 are fixed and specify the length
of the major and the minor axis of the ellipsoidal intensity
distribution.
The parameter e(t) decreases linearly from an initial value

e, to a final value EF. Function hrs;kl is assumed as a Gaussian

[31hrs;kl(t) = exp [(r2- -) (s -1)]

Parameters aoh and Oah2 can be used to specify an anisotropy
of the intracortical connectivity. In the present simulation ahl
and 0h2 were changed from larger initial values hll and 0-h2,1
to smaller, final values O'hlF and Oh2,F (15, 16).

RESULTS AND DISCUSSION
Formation of Orientation Columns. Fig. 2A shows the final

spatial distribution of orientation preference (color) and se-
lectivity (saturation) for cells initially unspecific both to stim-
ulus orientation and position. The presence of only very small
"dark" areas indicates that almost all cells have become
orientation specific. These cells form domains ofcontinuously
changing orientation, in which iso-orientation regions are
organized as parallel slabs. The slabs start and end at foci
containing orientationally unspecific cells (dark spots). Orien-
tation preference changes by 180° in a clockwise or counter-
clockwise fashion around these foci. Neighboring domains
have similar slab orientations but, on a larger-length scale, the
directions of the domains are distributed isotropically. Fig. 2B
displays the distribution of cells tuned to a small interval of
orientation values and closely resembles the 2-deoxyglucose
patterns found after exposing the animal to a global visual
pattern of parallel stripes. The simulation results closely
resemble the maps found experimentally in the macaque
monkey (e.g., refs. 1 and 4). Fig. 3 simulates an electrode
penetration tangentially to the cell layer and shows smooth
change of orientation preference, smooth change with rever-
sals of orientation shifts, and interruptions by sudden breaks,
all very similar to variations found in experiments (5).
To differentiate the regions ofsmooth and rapid orientation

shift more clearly, a gradient filter was applied to the orien-
tation values (Fig. 2C). Foci with rapid orientation changes
(white "spots") are often connected by bands of rapid
orientation shift, where the orientation gradient can become
very large ("fractures"). Areas containing unspecific cells
coincide with the regions of rapid orientation change. This
can be understood if one observes that for almost-circular
receptive fields small changes in the field shape are sufficient
to greatly change the direction of its major principal axis.
Because even for such receptive fields, intracortical mech-
anisms are likely to greatly enhance the otherwise low
orientation specificity of the associated cells (17), fractures
between orientation domains may result from much smoother
variations in the shape of the receptive fields.
The optimal stimuli of orientation-selective cells in the

model generally reflect the shape of the presented stimuli.
Cells located within the foci, however, have circular-shaped
best stimuli, although circular stimuli have not been presented
to the network. Their presence ensures a smooth progression
of the shape of the best stimuli also between cells of orthog-
onal-orientation preference and, therefore, contributes essen-
tially to the realization ofthe principle ofcontinuous mapping.
The overall preservation of the lattice topology and the

absence of any larger discontinuities in the mapping of the
stimulus dimensions position (Fig. 2D) demonstrates that
best position plays the role of the primary-stimulus variable
and varies in a topographic fashion across the cell layer. On
length scales below the diameter of a hypercolumn, however,
numerous local distortions are visible. The regions. of rapid
position change (large meshes) correspond to regions of
smooth shift in receptive field shape and vice versa.

Analytical calculations (18) as well as earlier simulations
(9) for a low-dimensional analogue of the presented model
show that such periodic distortions appear when the-ariance
of the secondary-stimulus variable reaches a leveLc. para-
ble to the change of the primary-stimulus variable.assoiated
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FIG. 2. Spatial organization of the final feature map after 30,000 adaptive steps using an isotropic neighborhood function (ahi = oh2). The
network layer contains 65,536 cells (arranged on a 256 x 256 square lattice with periodic boundary conditions), and the input layer contains
900 randomly distributed cells. The initial connection strengths were chosen randomly from the interval (0, 1) and normalized to unity.
Parameters of the stimulation were as follows: Ah(°) = 240; '7h(15,000) = 60; oh(30,WO0) = 2; El = 0.09; EF = 0.02; c-i = 0.23; and cr2 = 0.09.
(A) Spatial pattern oforientation preference and selectivity. Each image pixel corresponds to one cell in the network layer. Orientation preference
is indicated by color (light blue -* green -. orange -. purple -. blue correspond to angles of 00 450 .° 900°. 135°0 1800 with the vertical).
The specificity of each cell was measured by the ratio of the variances of the optimal stimulus along its major and minor principal axis. Its value
is indicated by brightness (dark, unspecific; bright, specific). (B) Spatial distribution of cells in the network layer with deviations of orientation
preference near a fixed direction (600). Deviations from 600 are indicated by gray values (black, 00; white, +300 or more). (C) Gradient of the
orientation values shown in A. Bright and dark regions indicate areas of rapid and smooth change in orientation preference, respectively. (D)
Best-position map. Every second lattice position (k, I) of the network layer is projected to its best position sk, in the input layer. Points belonging
to cells that are nearest neighbors in the network layer are connected by links.

with progressing by a certain distance d* in the map.t The
distance d* is essentially the range c- of the function hrs;kl (18)
and corresponds to the distance over which response prop-

erties of cells are kept correlated. Therefore, for fixed
resolution of the primary-stimulus variable, the threshold in
the variance of the secondary-stimulus variable above which
it becomes represented in the map varies linearly with the
length scale a. The resulting periodic distortions in the
position map should be experimentally detectable in a high-
resolution-mapping study of receptive-field centroids.

Anisotropic Neighborhood Function. Fig. 4 shows the spa-
tial organization of a typical feature map obtained using an

tUsually, there is an ambiguity in comparing magnitudes of change
of different stimulus features. Here this ambiguity is absent because
from thb mathematical analysis it follows that the variances of the
two features must be compared in the natural metric of the vector
space spanned by the activity patterns ri driving the Eq. 1 process.

Neurobiology: Obermayer et al.
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FIG. 3. Typical graph oforientation preference vs. distance along
a straight line (electrode track) within the map shown in Fig. 2A. The
electrode penetration runs tangentially to the cell layer. At left is
shown a smooth change of orientation preference. Farther center
appear fractures and regions with smooth reversals of orientation
shifts.

anisotropic function hrs;*k (Eq. 1). In contrast to the isotropic
case (Fig. 2), a long-range order has been established, with
most of the iso-orientation slabs and distortions of the
position map running parallel to the major axis of hrs,;kl.
Consequently, changes of orientation preference are mainly
observable along the direction for which hrs;kj is of short
range, whereas along the orthogonal-direction orientation
preference tends to vary slowly. The simulation results
closely resemble the maps found experimentally in the cat (3,
6) and the tree shrew (7).
For an anisotropy, the different range of hrskJ along dif-

ferent axes gives rise to two different thresholds for the
variance of the secondary-stimulus feature necessary for its
appearance in the map. If the variance of the secondary
feature is such that the lower threshold, associated with the
short-ranged axis, is exceeded but the higher threshold,
associated with the long-ranged axis, is not exceeded, peri-
odic distortions will arise; these distortions will lead to
representation of the secondary feature in the map. There-
fore, the short-ranged direction will be associated with a

.:.

FIG. 4. Final feature map after 30,000 adaptive steps, using an
anisotropic neighborhood function (ahl(t)/Crh2(t) = 2; major axis is
horizontal). Parameters of the simulation were ohl(O) = 300;
ahl(l5,000) = 80; ahl(30,000) = 3; el = 0.09; EF = 0.02; a, = 0.23;
and 02 = 0.09. (A) Spatial pattern of orientation preference and
selectivity. (B) Spatial distribution of cells with orientation prefer-
ence near the vertical (900). (C) Projection of the network onto the
input layer. Visualization of all data is as described for Fig. 2.
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FIG. 5. Final position map, showing gradual disappearance of feature hierarchy for stimuli with eccentricity 0a1/0f2 = 1.7 (A); 2.8 (B); and
5 (C). The initial connectivity was retinotopic. Parameters of the simulation were as follows: 20,000 iterations, 16,384 units (128 x 128 lattice
with free-boundary conditions), orhl(O) = 40; ohl(10,000) = 20; oh1(20,000) = 2; el = 0.07; EF = 0.02; and o- = 0.16, 0.23, and 0.35, respectively.
The position of every second cell is shown.

variation of the secondary feature, which explains the align-
ment of the iso-orientation slabs with the major axis of hs;kI.

Origin of Feature Hierarchy. In determining the map loca-
tion of any particular feature combination the primary factor
is the feature position, and the secondary factor is the feature
orientation. Because the model does not in any obvious way
single out either position or orientation, the question about
the origin of the observed feature hierarchy arises.
A two-dimensional map admits two primary features. It has

been suggested (9) that these features can be characterized by
independence and maximal variance. Further independent
features begin to appear as secondary features when their
variance exceeds a threshold (18). If, however, their variance
becomes comparable with that ofthe former primary features,
the hierarchy breaks down and can even be reversed when the
variance of the former secondary features dominates.
For the ellipsoidal stimuli Eq. 2, the variance ofthe feature

position is independent of ar and a2 as long as both are well
below the size of the input layer. The variance of the
orientation feature is zero for circular stimuli, increases with
eccentricity, and approaches the variance of the position
feature in the limit of infinite eccentricity. This explains why
orientation cannot become a primary feature instead of one
of the two position coordinates. However, for sufficiently
elongated input patterns the variance of orientation, though
still smaller, can become comparable to the variance of
position, and the feature hierarchy disappears (Fig. 5 A-C).
The increased distortions and backtrackings that emerge in
best position show how the primary role of position gradually
gives way to a more equal representation of position and
orientation as the eccentricity of the patterns enlarges.

This relationship leads to a conclusion for the case that the
formation of the visual map employs externally or internally
(as proposed in ref. 14) generated activity patterns driving a
process of a type described by Eq. 1. The eccentricity of
those patterns would have to be within a certain range, large
enough to exceed the threshold required to express orienta-
tion in the map but still sufficiently small not to destroy the
observed feature hierarchy.

Conclusion. The close resemblance found for the maps
obtained from the process described by Eq. 1 and those
formed in the visual cortex of various animals suggests that
many aspects of cortical feature maps are a consequence of
a principle of continuous mapping. The particular realization
by Eq. 1 of this principle suggests that an adaptive process,

either pre- or postnatally driven, may help to shape the
structure of cortical maps.
Note. After completion of this work, an independent study of a
theoretical framework for cortical feature maps was published (19).
Although both approaches share important aspects, significant dif-
ferences are also present: (i) The present work avoids the use of
(low-dimensional) preprocessed feature vectors. Instead, the map-
formation process is based on the original, high-dimensional stimulus
patterns solely. (ii) Differences between the orientation map of the
monkey and of the cat are discussed and reproduced by the present
model.
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