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We draw a random subset of k rows from a frame with n rows
(vectors) and m columns (dimensions), where k and m are propor-
tional to n. For a variety of important deterministic equiangular
tight frames (ETFs) and tight non-ETFs, we consider the distribu-
tion of singular values of the k-subset matrix. We observe that, for
large n, they can be precisely described by a known probability
distribution—Wachter’s MANOVA (multivariate ANOVA) spectral
distribution, a phenomenon that was previously known only for
two types of random frames. In terms of convergence to this limit,
the k-subset matrix from all of these frames is shown to be empir-
ically indistinguishable from the classical MANOVA (Jacobi) ran-
dom matrix ensemble. Thus, empirically, the MANOVA ensemble
offers a universal description of the spectra of randomly selected
k subframes, even those taken from deterministic frames. The
same universality phenomena is shown to hold for notable ran-
dom frames as well. This description enables exact calculations
of properties of solutions for systems of linear equations based
on a random choice of k frame vectors of n possible vectors
and has a variety of implications for erasure coding, compressed
sensing, and sparse recovery. When the aspect ratio m/n is
small, the MANOVA spectrum tends to the well-known Marčenko–
Pastur distribution of the singular values of a Gaussian matrix, in
agreement with previous work on highly redundant frames. Our
results are empirical, but they are exhaustive, precise, and fully
reproducible.

deterministic frames | MANOVA | analog source coding | equiangular tight
frames | restricted isometry property

Consider a frame {xi}ni=1⊂Rm or Cm , and stack the vec-
tors as rows to obtain the n-by-m frame matrix X . Assume

that ||xi ||2 = 1 (deterministic frames) or limn→∞‖xi‖= 1 almost
surely (random frames). This paper studies properties of a ran-
dom subframe {xi}i∈K , where K is chosen uniformly at random
from [n] = {1, . . . ,n} and |K |= k ≤n . We let XK denote the
k -by-m submatrix of X created by picking only the rows {xi}i∈K ;
call this object a typical k submatrix of X . We consider a collec-
tion of well-known deterministic frames, listed in Table 1, which
we denote by X . Most of the frames in X are equiangular tight
frames (ETFs), and some are near-ETFs.

This paper suggests that, for a frame in X , it is possible to
calculate quantities of the form EKΨ(λ(GK )), where λ(GK ) =
(λ1(GK ), ..., λk (GK )) is the vector of eigenvalues of the k -by-k
Gram matrix GK =XKX ′K and Ψ is a functional of these eigen-
values. As discussed below, such quantities are of considerable
interest in various applications where frames are used across a
variety of domains, including compressed sensing, sparse recov-
ery, and erasure coding.

We present a simple and explicit formula for calculating
EKΨ(λ(GK )) for a given frame in X and a given spectral func-
tional Ψ. Specifically, for the case k ≤m ,

EKΨ(λ(GK )) ≈ Ψ
(
f MANOVA
β,γ

)
,

where β= k/m , γ=m/n , and f MANOVA
β,γ is the density of

Wachter’s classical multivariate ANOVA limiting distribution

(1), which we denote here by MANOVA(β, γ). The fluctuations
about this approximate value are given exactly by

EK

∣∣Ψ(λ(GK ))−Ψ
(
f MANOVA
β,γ

) ∣∣2 = Cn−b log−a(n). [1]

Although the constant C may depend on the frame, the expo-
nents a and b are universal and depend only on Ψ and the aspect
ratios β and γ. Evidently, the precision of the MANOVA-based
approximation is good, is known, and improves as m and k both
grow proportionally to n .

Eq. 1 is based on a far-reaching universality hypothesis. For
all frames in X as well as well-known random frames also
listed in Table 1, we find that the spectrum of the typical
k -submatrix ensemble is indistinguishable from that of the clas-
sical MANOVA (Jacobi) random matrix ensemble (2) of the
same size. (Interestingly, it will be shown that, for deterministic
ETFs, this indistinguishability holds in a stronger sense than for
deterministic non-ETFs.) This universality is not asymptotic and
concerns finite n-by-m frames. However, it does imply that the
spectrum of the typical k -submatrix ensemble converges to a uni-
versal limiting distribution, which is none other than Wachter’s
MANOVA(β, γ) limiting distribution (1). It also implies that the
universal exponents a and b in Eq. 1 are previously unknown,
universal quantities corresponding to the classical MANOVA
(Jacobi) random matrix ensemble.

Significance

A frame (overcomplete set of vectors) represents an analog
coding scheme. Deterministic frame constructions offer useful
codes for communication and signal processing tasks. When
the coded signal only uses a random subset of the frame vec-
tors (for example, in compressed sensing), the coding qual-
ity is determined by the typical covariances within subsets of
frame vectors. We provide a method to calculate functions of
these typical covariances, which predict specific performance
measures of the corresponding coding scheme. Our method
uses a universality property: for many well-known determin-
istic and random frames, typical covariances within subsets of
frame vectors do not depend on the frame and are described
by the MANOVA (multivariate ANOVA) ensemble, a classical
object in statistics and random matrix theory.

Author contributions: R.Z. and M.G. designed research; M.H., R.Z., and M.G. performed
research; M.G. contributed new reagents/analytic tools; M.H. analyzed data; and M.H.,
R.Z., and M.G. wrote the paper.

Conflict of interest statement: Matan Gavish is a former student of David L. Donoho, and
they have published together, most recently in 2014.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: The code and data supplement is available online at https://purl.
stanford.edu/qg138qm8653.

1To whom correspondence should be addressed. Email: gavish@cs.huji.ac.il.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1700203114/-/DCSupplemental.

E5024–E5033 | PNAS | Published online June 13, 2017 www.pnas.org/cgi/doi/10.1073/pnas.1700203114

https://purl.stanford.edu/qg138qm8653
https://purl.stanford.edu/qg138qm8653
mailto:gavish@cs.huji.ac.il
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700203114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700203114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1700203114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1700203114&domain=pdf


PN
A

S
PL

U
S

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Table 1. Frames under study

Label Name R or C Natural γ Tight frame Equiangular Refs.

Deterministic frames
DSS Difference set spectrum C Yes Yes 36
GF Grassmannian frame C 1/2 Yes Yes 37, corollary 2.6b
RealPF Real Paley’s construction R 1/2 Yes Yes 37, corollary 2.6a
ComplexPF Complex Paley’s construction C 1/2 Yes Yes 38
Alltop Quadratic Phase Chirp C 1/L Yes No 26, equation S4
SS Spikes and Sines C 1/2 Yes No 6
SH Spikes and Hadamard R 1/2 Yes No 6

Random frames
HAAR Unitary Haar frame C Yes No 3, 4
RealHAAR Orthogonal Haar frame R Yes No 4
RandDFT Random Fourier transform C Yes No 3
RandDCT Random Cosine transform R Yes No

This brief announcement tests Eq. 1 and the underlying uni-
versality hypothesis by conducting substantial computer experi-
ments, in which a large number of random k submatrices are gen-
erated. We study a large variety of deterministic frames, both real
and complex. In addition to the universal object (the MANOVA
ensemble) itself, we study difference set spectrum (DSS) frames,
Grassmannian frame (GF), real Paley (RealPF) frames, com-
plex Paley (ComplexPF) frames, quadratic phase chirp (Alltop)
frames, Spikes and Sines (SS) frames, and Spikes and Hadamard
(SH) frames.

We report compelling empirical evidence, systematically doc-
umented and analyzed, which fully supports the universality
hypothesis and Eq. 1. Our results are empirical, but they are
exhaustive, precise, and reproducible, and they meet the best
standards of empirical science.

For this purpose, we develop a natural framework for empiri-
cally testing such hypotheses regarding limiting distribution and
convergence rates of random matrix ensembles. Before turning to
deterministic frames, we validate our framework on well-known
random frames, including real orthogonal Haar frames, complex
unitary Haar frames, real random Cosine frames, and complex
random Fourier frames. Interestingly, rigorous proofs that iden-
tify the MANOVA distribution as the limiting spectral distribu-
tion of typical k submatrices can be found in the literature for
two of these random frames, namely the random Fourier frame
(3) and the unitary Haar frame (4).

Motivation
Frames can be viewed as an analog counterpart for digital cod-
ing. They provide overcomplete representation of signals, adding
redundancy and increasing immunity to noise. Indeed, they are
used in many branches of science and engineering for stable sig-
nal representation as well as error and erasure correction.

Let λ(G) denote the vector of nonzero eigenvalues of G =
X ′X , and let λmax (G) and λmin(G) denote its maximum and
minimum, respectively. Frames were traditionally designed to
achieve frame bounds λmin(G) as high as possible [λmax (G)
as low as possible]. Alternatively, they were designed to mini-
mize mutual coherence (5, 6), the maximal pairwise correlation
between any two frame vectors.

In the passing decade, it has become apparent that neither
frame bounds (a global criterion) nor coherence (a local pairwise
criterion) are sufficient to explain various phenomena related to
overcomplete representations and that one should also look at
collective behavior of k frame vectors from the frame, 2≤ k ≤n .
Although different applications focus on different properties of
the submatrix GK , most of these properties can be expressed as
a function of λ(GK ) and even just an average of a scalar function
of the eigenvalues. Here are a few notable examples.

Restricted Isometry Property. Recovery of any k/2-sparse signal
v∈Rn from its linear measurement F ′v using `1 minimization is
guaranteed if the spectral radius of GK − I [restricted isometry
property (RIP)], namely

ΨRIP (λ(GK )) = max{λmax (GK )− 1, 1− λmin(GK )}, [2]

is uniformly bounded by some δ < 0.4531 on all K ⊂ [n] (7–9).

Statistical RIP. Numerous authors have studied a relaxation of the
RIP condition suggested in ref. 10. Define

ΨStRIP,δ(λ(GK )) =

{
1 ΨRIP (λ(GK )) ≤ δ
0 otherwise . [3]

Then, EKΨStRIP,δ(λ(GK )) is the probability that the RIP condi-
tion with bound δ holds when X acts on a signal supported on a
random set of k coordinates.

Analog Coding of a Source with Erasures. In ref. 11, two of us con-
sidered a typical erasure pattern of n − k random samples known
at the transmitter but not known at the receiver. The rate distor-
tion function of the coding scheme suggested in ref. 11 is deter-
mined by EK log(βΨAC (λ(GK ))), with

ΨAC (λ(GK )) =
1
k

tr[(GK )−1](
1
k

tr[GK ]
)−1 , [4]

[i.e., ΨAC (λ(GK )) is the arithmetic-to-harmonic means ratio of
the eigenvalues (the arithmetic mean is 1 because of the nor-
malization of frames)]. This quantity is the signal amplification
responsible for the excess rate of the suggested coding scheme.
Note that β here is the inverse of β defined in ref. 11.

Shannon Transform. The quantity

ΨShannon(λ(GK )) =
1

k
log(det(I + αGK ))

=
1

k
tr(log(I + αGK )),

[5]

which was suggested in ref. 12, measures the capacity of a linear
Gaussian erasure channel. Specifically, it assumes y =XX ′x + z
(where x and y are the channel input and output) followed by
n − k random erasures. The quantity α in Eq. 5 is the signal-
to-noise ratio SNR =α≥ 0.

In this paper, we focus on typical case performance criteria
[those that seek to optimize EKΨ(λ(GK )) over random choice of
K ] rather than worse case performance criteria [those that seek to
optimize maxK⊂[n]Ψ(λ(GK )), such as RIP]. For the remainder
of this paper, K ⊂ [n] will denote a uniformly distributed random
subset of size k . Importantly, k should be allowed to be large, even
as large as m .
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For a given Ψ, one would like to design frames that optimize
EKΨ(λ(GK )). This optimization turns out to be a difficult task; in
fact, it is not even known how to calculateEKΨ(λ(GK )) for a given
frame X . Indeed, to calculate this quantity, one effectively has to
average Ψ over the spectrumλ(GK ) for all ( n

k ) subsetsK ⊂ [n]. It
is of little surprise to the information theorist that the first frame
designs, for which performance was formally bounded (and still
not calculated exactly), consisted of random vectors (8, 13–17).

Random Frames
When the frame is random, namely when X is drawn from some
ensemble of random matrices, each k submatrix XK is also a ran-
dom matrix. Given a specific Ψ, rather than seeking to bound
EKΨ(λ(GK )) for specific n and m , it can be extremely reward-
ing to study the limit of Ψ(λ(GK )) as the frame sizes n and m
grow. The reason is that tools from random matrix theory become
available, which allow exact asymptotic calculation of λ(GK ) and
Ψ(λ(GK )), and also because their limiting values are usually very
close to their corresponding values for finite n and m , even for
low values of n .

Let us consider then a sequence of dimensions mn with
mn/n = γn→ γ and a sequence of random frame matrices
X (n)⊂Rn×mn or Cn×mn . To characterize the collective behavior
of k submatrices, we choose a sequence kn with kn/mn =βn→β
and look at the spectrum λ(GKn ) of the random matrix XKn

as n→∞, where Kn ⊂ [n] is a randomly chosen subset with
|Kn |= kn . Here and below, to avoid cumbersome notation, we
omit the subscript n and write m , k , and K for mn , kn , and Kn .

A mainstay of random matrix theory is the celebrated conver-
gence of the empirical spectral distribution of random matrices,
drawn from a certain ensemble, to a limiting spectral distribution
corresponding to that ensemble. Such convergence has indeed
been established for three random frames:

1. Gaussian i.i.d. Frame. Let X (n)
normal have i.i.d. (independent and

identically distributed) normal entries with mean zero and vari-
ance 1/m . The empirical distribution of λ(GK ) famously con-
verges, almost surely in distribution, to the Marčenko–Pastur
density (18) with parameter β:

f MP
β (x ) =

√
(x − λMP

− )(λMP
+ − x )

2βπx
· I(λMP

− ,λMP
+ )(x ), [6]

supported on [λMP
− , λMP

+ ], where λMP
± = (1±

√
β)

2. Moreover,
almost surely λmax (G

(n)
normal)→λ+ and λmin(G

(n)
normal)→λ−; in

other words, the maximal and minimal empirical eigenvalues con-
verge almost surely to the edges of the support of the limiting
spectral distribution (19).

2. Random Fourier Frame. Consider the random Fourier frame, in
which the mn columns of X (n)

Fourier are drawn uniformly at random
from the columns of then-by-n discrete Fourier transform (DFT)
matrix (normalized such that the absolute value of matrix entries
is 1/
√
m). Farrell (3) has proved that the empirical distribution

of λ(GK ) converges, almost surely in distribution, as n→∞ and
m and k grow proportionally to n to the so-called MANOVA lim-
iting distribution, which we now describe briefly.

The classical MANOVA(n,m, k ,F) ensemble,∗ with F ∈
{R,C}, is the distribution of the random matrix

n

m
(AA′ + BB ′)−

1
2 BB ′(AA′ + BB ′)−

1
2 , [7]

where Ak×(n−m),Bk×m are random standard Gaussian i.i.d.
matrices with entries in F . Wachter (1) discovered that, as

∗Also known as the beta-Jacobi ensemble with beta = 1 (orthogonal) for F = R and
beta = 2 (unitary) for F = C.
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Fig. 1. Limiting MANOVA (β= 0.8, γ= 0.5) and Marčenko–Pastur (β=

0.8) density functions. (Left) Density on the interval x∈ [0, 4]. (Right) Zoom
in on the interval x∈ [0, 0.1].

k/m→β≤ 1 and m/n→ γ, the empirical spectral distribution
of the MANOVA(n,m, k ,R) ensemble converges, almost surely
in distribution, to the so-called MANOVA(β, γ) limiting spectral
distribution,† with density that is given by

f MANOVA
β,γ (x ) =

√
(x − r−)(r+ − x )

2βπx (1− γx )
· I(r−,r+)(x ) [8]

+

(
1 +

1

β
− 1

βγ

)+

· δ
(
x − 1

γ

)
,

where (x )+ = max(0, x ). The limiting MANOVA distribution is
compactly supported on [r−, r+] with

r± =

(√
β(1− γ)±

√
1− βγ

)2

. [9]

The same holds for the MANOVA(n,m, k ,C) ensemble.
Note that the support of the MANOVA(β, γ) distribution is

smaller than that of the corresponding Marčenko–Pastur law for
the same aspect ratios. Fig. 1 shows these two densities for β= 0.8
and γ= 0.5. Nevertheless, as the MANOVA dimension ratio
becomes small, its distribution tends to the Marčenko–Pastur dis-
tribution (Eq. 6) [i.e., f MANOVA

β,γ (x )→ f MP
β (x ) as γ→ 0]. Thus, a

highly redundant random Fourier frame behaves like a Gaussian
i.i.d. frame.

3. Unitary Haar Frame. Let X (n)
haar consist of the first m columns

of a Haar-distributed n-by-n unitary matrix normalized by√
n/m (the Haar distribution being the uniform distribution

over the group of n-by-n unitary matrices). Edelman and
Sutton (4) proved that the empirical spectral distribution of
λ(GK ) also converges, almost surely in distribution, to the
MANOVA limiting spectral distribution (refs. 1 and 3, closing
remarks).

The maximal and minimal eigenvalues of a matrix from the
MANOVA(n,m, k ,F) ensemble (F ∈ {R,C}) are known to

†The literature uses the term MANOVA to refer to both the random matrix ensemble,
which we denote here by MANOVA(n, m, k, F ), and the limiting spectral distribution,
which we denote here by MANOVA(β, γ).
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Fig. 2. Comparison of limiting values of EKΨ(λ(GK)) for the three functions Ψ discussed in Motivation between the Marčenko–Pastur limiting distribution
and the MANOVA distribution. (Left) ΨRIP (lower is better). (Center) ΨAC (lower is better). (Right) ΨShannon (higher is better).

converge almost surely to r+ and r−, respectively (20). Although
we are not aware of any parallel results for the random Fourier
and Haar frames, the empirical evidence in this paper shows that
it must be the case.

These random matrix phenomena have practical significance
for evaluations of functions of the form Ψ(λ(GK )), such as those
mentioned above. The functions ΨAC and ΨShannon , for exam-
ple, are called linear spectral statistics in ref. 21, namely func-
tions of λ(GK ) that may be written as an integral of a scalar func-
tion against the empirical measure of λ(GK ). Convergence of the
empirical distribution of λ(G

(n)
K ) to the limiting MANOVA dis-

tribution with density f MANOVA
β,γ implies

lim
n→∞

ΨAC (λ(G
(n)
Kn

)) =

∫
1

x
f MANOVA
β,γ (x )dx [10]

lim
n→∞

ΨShannon(λ(G
(n)
Kn

)) =

∫
log(1 + αx ) f MANOVA

β,γ (x )dx

for both the random Fourier and Haar frames; the integrals on
the right-hand side may be evaluated explicitly. Similarly, con-
vergence of λmax (GK ) and λmin(GK ) to r+ and r− implies, for
example, that

lim
n→∞

ΨRIP (λ(G
(n)
K )) = max(r+ − 1, 1− r−). [11]

To show why such calculations are significant, we note that
Eqs. 10 and 11 immediately allow us to compare the Gaus-
sian i.i.d. frame with the random Fourier and Haar frames in
terms of their limiting value of functions of interest. Fig. 2 com-
pares the limiting value of ΨRIP , ΨAC , and ΨShannon over vary-
ing values of β= limn→∞ k/m . The plots clearly show that
frames with a typical k submatrix that exhibits a MANOVA
spectrum are superior to frames with a typical k submatrix that
exhibits a Marčenko–Pastur spectrum across the performance
measures.

Deterministic Frames: Universality Hypothesis
Deterministic frames, namely frames with design that involves no
randomness, have so far eluded this kind of asymptotically exact
analysis. Although there are results regarding RIP (22, 23) and
statistical RIP (10, 24, 25), for example, of deterministic frame
designs, they are mostly focused on highly redundant frames
(γ→ 0) and the wide submatrix (β→ 0) case, where the spectrum
tends to the Marčenko–Pastur distribution. Furthermore, noth-
ing analogous, say, to the precise comparisons of Fig. 2 exists in
the literature to the best of our knowledge. Specifically, no results

analogous to Eqs. 10 and 11 are known for deterministic frames,
let alone the associated convergence rates, if any.

To subject deterministic frames to an asymptotic analysis, we
shift our focus from a single frame X to a family of deter-
ministic frames {X (n)} created by a common construction. The
frame matrix X (n) is n-by-m . Each frame family determines
allowable subsequences (n,m); to simplify notation, we leave
the subsequence implicit and index the frame sequence simply
by n . The frame family also determines the aspect ratio limit
γ= limn→∞m/n . In what follows, we also fix a sequence k with
β= limn→∞ k/m and let K ⊂ [n] denote a uniformly distributed
random subset.

Frames Under Study. The different frames that we studied are
listed in Table 1 in a manner inspired by ref. 26. In addition
to our deterministic frames of interest (the set X ), Table 1
also contains two examples of random frames (real and com-
plex variants for each) for validation and convergence analysis
purposes.

Functionals Under Study. We studied the functionals ΨStRIP from
Eq. 3, ΨAC from Eq. 4, and ΨShannon from Eq. 5. In addition,
we studied the maximal and minimal eigenvalues of GK and its
condition number:
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Fig. 3. KS distance of random DFT subframe: β= 0.8, γ= 0.5, and n = 100.
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Ψmax (λ(GK )) = λmax (GK )

Ψmin(λ(GK )) = λmin(GK )

Ψcond(λ(GK )) =
λmax (GK )

λmin(GK )
.

Measuring the Rate of Convergence. To quantify the rate of con-
vergence of the entire spectrum of the k -by-m matrix XK , which
is a k submatrix of an n-by-m frame matrix X , to a limit-
ing distribution, we let F [XK ] denote the empirical cumula-
tive distribution function (CDF) of λ(GK ) and FMANOVA

β,γ (x ) =∫ x

r−
f MANOVA
β,γ (z )dz denote the CDF of the MANOVA(β, γ) lim-

iting distribution. The quantity

∆KS (XK ) =
∣∣∣∣∣∣F [XK ]− FMANOVA

βn ,γn

∣∣∣∣∣∣
KS
,

where ||·||KS is the Kolmogorov–Smirnov (KS) distance between
CDFs, measures the distance to the hypothesized limit. Here,
βn = k/m and γn =m/n are the actual aspect ratios for the
matrix XK at hand. As a baseline, we use ∆KS (Yn,m,k,F ), where
Yn,m,k,F is a matrix from the MANOVA(n,m, k ,F) ensemble,
with F =R if XK is real and F =C if XK is complex. Fig. 3 illus-
trates the KS distance between an empirical CDF and the limiting
MANOVA CDF.

Similarly, to quantify the rate of convergence of a functional Ψ,
the quantity

∆Ψ(XK ;n,m, k) =
∣∣Ψ(λ(GK ))−Ψ(f MANOVA

βn ,γn )
∣∣

is the distance between the measured value of Ψ on a given k
submatrix XK and its hypothesized limiting value. For a base-
line, we can use ∆Ψ(Yn,m,k,F ), with F =R if XK is real and
F =C if XK is complex. For linear spectral functionals, like ΨAC

and ΨShannon , which may be written as Ψ(λ(GK )) =
∫
ψdF [XK ]

for some kernel ψ, we have Ψ(f MANOVA
β,γ ) =

∫
ψdFMANOVA

β,γ .
For ΨRIP that depends on λmax (GK ) and λmin(GK ), we have
ΨRIP (f MANOVA

β,γ ) = max {r+ − 1, 1− r−}.

Universality Hypothesis. The contributions of this paper are based
on the following assertions on the typical k -submatrix ensemble
XK corresponding to a frame family X (n). This family may be
random or deterministic, real or complex.
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Fig. 4. Test 1 for γ= 0.5 and β= 0.8. The plot shows −1/2 ln
VarK(∆KS(X(n)

K )) over ln(n).

Table 2. Results of test 1 for γ = 0.5 and β = 0.8

P value
Frame R2 b̂ SE(b̂) b = bMANOVA

MANOVA 0.99828 0.92505 0.00690 1
DSS 0.99858 0.93652 0.00911 0.32089
GF 0.99921 0.92474 0.02608 0.99082
ComplexPF 0.99950 0.92454 0.00535 0.95390
Alltop 0.98906 0.49660 0.00883 9.4651e-47
SS 0.98767 0.47354 0.00950 5.8136e-45

HAAR 0.99736 0.94421 0.00873 0.09019
RandDFT 0.99544 0.94127 0.01644 0.36788

RealMANOVA 0.99873 0.95610 0.00613 1
RealPF 0.99871 0.91244 0.00821 9.7174e-05
SH 0.99989 0.46822 0.00492 6.3109e-35

RealHAAR 0.99596 0.94456 0.01081 0.35675
RandDCT 0.99773 0.93859 0.01156 0.18737

H1. Existence of a Limiting Spectral Distribution. The empirical
spectral distribution of X (n)

K , namely the distribution of λ(G
(n)
K ),

converges, as n→∞, to a compactly supported limiting distribu-
tion; furthermore, λmax (G

(n)
K ) and λmin(G

(n)
K ) converge to the

edges of that compact support.

H2. Universality of the Limiting Spectral Distribution. The limiting
spectral distribution of X (n)

K is the MANOVA(β, γ) distribution
(1) with density that is shown in Eq. 8. Also, λmax (G

(n)
K )→ r+

and λmin(G
(n)
K )→ r−, where r± is given by Eq. 9.

H3. Exact Power Law Rate of Convergence for the Entire Spectrum.
The spectrum of X (n)

K converges to the limiting MANOVA(β, γ)
distribution (

EKn

(
∆KS (X

(n)
K )

))2

↘ 0,

and in fact, its fluctuations are given by the law

VarK (∆KS (X
(n)
K )) = Cn−2b [12]

for some constants C , b, which may depend on the frame family.

H4. Universality of the Rate of Convergence for the Entire Spectrum
of ETFs. For an ETF family, the exponent b in Eq. 12 is univer-
sal and does not depend on the frame. Furthermore, Eq. 12 also
holds, with the same universal exponent, replacing G

(n)
K with a

same-sized matrix from the MANOVA(n,m, k ,F) distribution
defined in Eq. 7 with F =R if X (n) is a real frame family and
F =C if X (n) is a complex frame family. In other words, the
universal exponent b for ETFs is a property of the MANOVA
(Jacobi) random matrix ensemble.

H5. Exact Power Law Rate of Convergence for Functionals. For
a “nice” functional Ψ, the value of Ψ(λ(G

(n)
K )) converges to

Ψ(f MANOVA
β,γ ) according to the law

EK (∆Ψ(X
(n)
K )

2
) = Cn−b log−a(n) [13]

for some constants C , b, a .

H6. Universality of the Rate of Convergence for Functionals.
Although the constant C in Eq. 13 may depend on the frame,
the exponents a, b are universal. Eq. 13 also holds, with the same
universal exponents, replacing G

(n)
K with a same-sized matrix

from the MANOVA(n,m, k ,F) ensemble defined in Eq. 7, with
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Fig. 5. Test 1 for γ= 0.5 and β= 0.6. The plot shows −1/2 ln
VarK(∆KS(X(n)

K )) over ln(n).

F =R if X (n) is a real frame family and F =C if X (n) is a com-
plex frame family. In other words, the universal exponents a, b are
a property of the MANOVA (Jacobi) random matrix ensemble.

Nonstandard Aspect Ratioβ> 1. Although the classical MANOVA
ensemble and limiting density are not defined for β > 1, in our
case, it is certainly possible to sample k >m vectors from the
n possible frame vectors, resulting in a situation with β > 1. In
this situation, the hypotheses above require slight modifications.
Specifically, the limiting spectral distribution of X (n)

K for β > 1 is(
1− 1

β

)
δ(x ) + f MANOVA

β,γ (x ), [14]

where f MANOVA
β,γ (x ) is the function (no longer a density) defined

in Eq. 8. The rate of convergence of the distribution of non-
zero eigenvalues to the limiting density 1/βf MANOVA

1/β,βγ (1/βx ) =

βf MANOVA
β,γ (x ) is compared with the baseline β ·Yn,k,m,F , where

Yn,k,m,F is a matrix from the MANOVA(n, k ,m,F) ensemble
(i.e., with reversed order of k and m).

Methods
The software that we developed has been permanently deposited in
the data and code supplement (https://purl.stanford.edu/qg138qm8653).
Because many of the deterministic frames under study are only defined
for γ= 0.5, we primarily studied the aspect ratios (γ= 0.5, β) with β ∈
{0.3, 0.5, 0.6, 0.7, 0.8, 0.9}. In addition, we inspected all frames under
study that are defined for the aspect ratios (γ= 0.25, β= 0.6) and (γ=

0.25, β= 0.8) (all random frames as well as DSS and Alltop). We also
studied nonstandard aspect ratios β > 1 as described in SI Appendix
(https://purl.stanford.edu/qg138qm8653). For deterministic frames, n took
allowed values in the ranges (240, 2,000), (25, 212) for Grassmannian and
SH frames, and (600, 4,000) for DSS frame with γ= 0.25. For random
frames and MANOVA ensemble, we used dense grid of values in the range
(240, 2,000). Hypothesis testing as discussed below was based on a subset of
these values, where n≥ 1,000. For each of the frame families under study
and each value of β and γ under study, we selected a sequence (n, m, k).
The values n and m were selected so that m/n will be as close as pos-
sible to γ; however, because of different aspect ratio constraints by the
different frames, occasionally, we had m/n close but not equal to γ. We
then determined k, such that k/m will be as close as possible to β. For
each n, we generated a single n-by-m frame matrix X(n). We then pro-
duced T independent samples from the uniform distribution on kn sub-
sets, K[1], . . . , K[T]⊂ [n], and generated their corresponding k submatrices
X(n)

K[i] (1≤ i≤ T). Importantly, all of these are submatrices of the same frame

matrix X(n). We calculated ∆
Var
KS (X(n)

K ) = ∆2
KS(X(n)

K )−∆
2
KS(X(n)

K ), the empirical

variance of ∆KS(X(n)
K[i]), and ∆2

KS(X(n)
K ), the average value of ∆2

KS(X(n)
K[i]) on

1≤ i≤ T as a Monte Carlo approximation to the left-hand side of Eq. 12,
variance and MSE (mean square error), respectively. For each of the func-
tionals under study, we also calculated ∆2

Ψ(X(n)
K[i]), the average value of

∆2
Ψ(X(n)

K[i]) on 1≤ i≤ T , as a Monte Carlo approximation to the left-hand
size of Eq. 13.

Separately, for each triplet (n, m, k) and F ∈{R, C}, we have per-
formed T independent draws from the MANOVA(n, m, k, F ) ensembles [7]
and calculated analogous quantities ∆

Var
KS (Yn, m, k,F ), ∆2

KS(Yn, m, k,F ), and
∆2

Ψ(Yn, m, k,F ).

Test 1: Testing H1–H4. For each of the frames under study and each
value of (β, γ), we computed the KS distance for T = 104 submatrices

and performed simple linear regression of −1/2 log
(

∆
Var
KS (X(n)

K )
)

on log(n)

with an intercept. We obtained the estimated linear coefficient b̂ as
an estimate for the exponent b and its SE σ(b̂). Similarly, we regressed

−1/2 log
(

∆
Var
KS (Yn, m, k,F )

)
on log(n) to obtain b̂MANOVA and σ(b̂MANOVA).

We performed Student’s t test to test the null hypotheses b = bMANOVA

using the test statistic

t =
b̂− bMANOVA√

σ(b̂)
2

+ σ(b̂MANOVA)
2
.

Under the null hypothesis, the test statistic is distributed t(N+NMANOVA−4),
where N and NMANOVA are the numbers of different values of n for which
we have collected the data for a frame and the MANOVA ensemble, respec-
tively. We report the R2 of the linear fit, the slope coefficient b̂ and its SE,

and the P value of the above t test. We next regressed − log
(

∆2
KS

)
on

log(n). Because ∆2
KS =

(
∆KS

)2
+∆

Var
KS , a linear fit verifies that

(
∆KS

)2
↘ 0.

Test 2: Testing H5–H6. For each of the frames under study, each of the func-
tionals Ψ under study, and each value of (β, γ), we computed the empir-
ical value of the functionals on T = 103 submatrices. We first performed

linear regression of − log
(

∆2
Ψ(Yn, m, k,F )

)
on log(n) and log(log(n))

with an intercept for F ∈ {R, C}. Let a0 denote the fitted coefficient
for log(n), and let b0 denote the fitted coefficient for log(log(n)). This
step was based on triplets (n, m, k), yielding accurate aspect ratios in
the range 240≤ n≤ 2,000. We then performed simple linear regression

of− log
(

∆2
Ψ(X(n)

K ; n, m, k)
)

on log(n)+(a0/b0)· log(log(n)). The estimated

linear regression coefficient b̂ is the estimate for the exponent b in Eq. 13,
and σ(b̂) is its SE. We used b̂ · (a0/b0) as an estimate for the exponent a in
Eq. 13. We proceeded as above to test the null hypothesis b = b0. We report

11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4
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Fig. 6. Test 2 for ΨAC , γ= 0.5, and β= 0.8. The plot shows − ln

EK(∆Ψ(X(n)
K )

2
).
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).

the R2 of the linear fit, the slope coefficient b̂ and its SE, and the P value of
the test above.

Computing. To allow the number of Monte Carlo samples to be as large
as T = 104 and n to be as large as 2,000, we used a large Matlab clus-
ter running on Amazon Web Services. We used 32 logical core machines
with 240 GB RAM (random access memory) each, which were running
several hundred hours in total. The code that we executed has been
deposited (https://purl.stanford.edu/qg138qm8653); it may easily be exe-
cuted for smaller values of T and n on smaller machines.

Results
The raw results obtained in our experiments as well as the anal-
ysis results of each experiment have been deposited with their
generating code (https://purl.stanford.edu/qg138qm8653).

For space considerations, the full documentation of our
results is deferred to SI Appendix (https://purl.stanford.edu/
qg138qm8653). To offer a few examples, Fig. 4 and Table 2 show
the linear fit to ∆

Var
KS for (γ= 0.5, β= 0.8). Fig. 5 shows the linear

fit to ∆
Var
KS for a different value of β, namely (γ= 0.5, β= 0.6).

Fig. 6 shows the linear fit to ∆ΨAC for (γ= 0.5, β= 0.8). Fig. 7
and Table 3 show the linear fit to ∆ΨShannon for (γ= 0.5, β= 0.8).
Similar figures and tables for the other values (γ, β), in par-
ticular, (β= 0.3, γ= 0.5), (β= 0.5, γ= 0.5), (β= 0.7, γ= 0.5),
(β= 0.9, γ= 0.5), (β= 0.6, γ= 0.25), and (β= 0.8, γ= 0.25),
are deferred to SI Appendix. Note that, in all coefficient tables,
both those shown here and those deferred to SI Appendix, the
upper boxes show complex frames (with t test comparison with
the complex MANOVA ensemble of the same size denoted
“MANOVA”), and the bottom boxes show real frames (with t
test comparison with the real MANOVA ensemble of the same
size denoted “RealMANOVA”). In each box, the top rows are
deterministic frames, and the bottom rows are random frames.
Furthermore, note that, in plots for test 2, the horizontal axis is
slightly different for real and complex frames, because the pre-
liminary step described above was performed separately for real
and complex frames. In the interest of space, we plot all frames
over the horizontal axis calculated for complex frames.

Validation on Random Frames. Although our primary interest
was in deterministic frames, we included in the frames under
study random frames. For the complex Haar frame and ran-

dom Fourier frame, convergence of the empirical CDF of the
spectrum to the limiting MANOVA(β, γ) distribution has been
proved in refs. 3 and 4. To our surprise, not only was our frame-
work validated on the four random frames under study, in the
sense of asymptotic empirical spectral distribution, but also, all
universality hypotheses H1–H6 were accepted (not rejected at
the 0.001 significance level, with very few exceptions).

Test Results on Deterministic Frames. A tabular summary of our
results, per hypothesis and per frame under study, is included
for convenience in SI Appendix. Universality hypotheses H1–
H3 were accepted on all deterministic frames. For H1 and
H2, convergence of the empirical spectral distribution to the
MANOVA(β, γ) limit has been observed in all cases. For H3,
the linear fit in all cases was excellent with R2 > 0.99 with-
out exception, confirming the power law in Eq. 12 and the
polynomial decrease of ∆2

KS with n . Universality hypothesis
H4 was accepted (not rejected) for deterministic ETFs at the
0.001 significance level, with few exceptions (Table 2; full results
and a summary table are in SI Appendix); it was rejected for
deterministic non-ETFs. For γ= 0.25, hypothesis H4 has also
been accepted for the Alltop frame (SI Appendix). Universal-
ity hypothesis H5 was accepted for all deterministic frames,
with excellent linear fits (R2 > 0.97 without exception), confirm-
ing the power law in Eq. 13. Universality hypothesis H6 was
accepted (not rejected) at the 0.001 significance level (and even
0.05 with few exceptions) for all deterministic frames. For the
reader’s convenience, Table 4 summarizes the universal expo-
nents for convergence of the entire spectrum (H4) and the
universal exponents for convergence of the functionals under
study (H6) for (β, γ) = (0.8, 0.5). The framework developed in
this paper readily allows tabulation of these universal exponents
for any value of (β, γ). We have observed that the univer-
sal exponents are slightly sensitive to the random seed. How-
ever, exact evaluation of this variability requires very signifi-
cant computational resources and is beyond our scope. Similarly,
some sensitivity of the P values to random seed has been
observed.

Reproducibility Advisory. All of the figures and tables in this
paper, including those in SI Appendix, are fully reproducible from
our raw results and code deposited in the data and code supple-
ment (https://purl.stanford.edu/qg138qm8653).

Discussion
The Hypotheses. Our universality hypotheses may be surprising
in several aspects. First, the frames examined were designed

Table 3. Results of test 2 for ΨShannon, γ = 0.5, and β = 0.8

P value
Frame R2 b̂ SE(b̂) b = bMANOVA

MANOVA 0.98721 1.79936 0.03678 1
DSS 0.99110 1.88674 0.04615 0.14551
GF 0.99997 1.88548 0.01073 0.03161
ComplexPF 0.99977 1.77783 0.00701 0.56808
Alltop 0.93841 1.70618 0.07388 0.26297
SS 0.95539 1.89501 0.07355 0.24922

HAAR 0.97971 1.87082 0.04836 0.24400
RandDFT 0.96928 1.77454 0.08157 0.78270

RealMANOVA 0.99202 2.05451 0.03309 1
RealPF 0.99834 2.00345 0.02045 0.19576
SH 0.97850 1.81297 0.26874 0.37904

RealHAAR 0.98287 2.09078 0.04958 0.54503
RandDCT 0.98364 1.99663 0.06648 0.43977
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Table 4. Summary of universal exponents for convergence: γ = 0.5, β = 0.8, and (ΨS = ΨShannon)

Frame bspectrum bΨRIP aΨRIP bΨAC aΨAC bΨS aΨS bΨmax aΨmax bΨmin aΨmin bΨcond aΨcond

MANOVA 0.93 1.15 2.21 1.44 3.48 1.80 0.99 1.13 2.48 1.00 3.09 1.87 −4.55
DSS 0.94 1.14 2.18 1.40 3.40 1.89 1.04 1.10 2.41 1.00 3.11 1.87 −4.56
GF 0.92 1.17 2.23 1.53 3.70 1.89 1.03 1.13 2.48 1.04 3.22 1.95 −4.76
ComplexPF 0.92 1.13 2.17 1.44 3.49 1.78 0.98 1.10 2.41 1.00 3.12 1.87 −4.56
Alltop 0.50 1.14 2.18 1.46 3.53 1.71 0.94 1.11 2.42 1.01 3.13 1.86 −4.54
SS 0.47 1.11 2.13 1.50 3.63 1.90 1.04 1.08 2.36 0.98 3.06 1.83 −4.47
HAAR 0.94 1.10 2.11 1.52 3.69 1.87 1.03 1.09 2.37 1.01 3.13 1.88 −4.59
RandDFT 0.94 1.21 2.32 1.47 3.56 1.77 0.97 1.11 2.42 1.03 3.18 1.93 −4.70

RealMANOVA 0.96 0.87 3.58 1.26 5.21 1.27 5.26 0.90 3.73 0.87 3.58 0.77 3.17
RealPF 0.91 0.92 3.82 1.32 5.46 1.24 5.12 0.94 3.88 0.94 3.88 0.81 3.36
SH 0.47 0.93 3.82 1.34 5.53 1.14 4.71 0.93 3.82 0.93 3.82 0.85 3.51
RealHAAR 0.94 0.86 3.54 1.23 5.07 1.29 5.35 0.89 3.68 0.90 3.73 0.79 3.28
RandDCT 0.94 0.99 4.08 1.30 5.38 1.24 5.10 0.94 3.89 0.95 3.93 0.82 3.40

to minimize frame bounds and worse case pairwise correla-
tions. Still, it seems that they perform well when the perfor-
mance criterion is based on spectrum of the typical selection of
k frame vectors. Second, under the universality hypotheses, all
of these deterministic frames perform exactly as well as random
frame designs, such as the random Fourier frame. Inasmuch as
frames are continuous codes, we find deterministic codes match-
ing the performance of random codes. Third, the hypotheses
suggest an extremely broad universality property: many different
ensembles of random matrices asymptotically exhibit the limiting
MANOVA spectrum.

All of the deterministic frames under study satisfy the univer-
sality hypotheses (with hypothesis H4 satisfied only for ETFs).
This finding should not give the impression that any deterministic
frame satisfies these hypotheses! First, the empirical measures of
an arbitrary sequence of frames rarely converge (thus violating
hypothesis H1). Second, even if they converge, a too simplistic
frame design often leads to concentration of the lower edge of
the empirical spectrum near zero, resulting in a non-MANOVA
spectrum and poor performance. For example, if the frame is
sparse, say, consisting of some m columns of the n-by-n iden-
tity matrix, then a fraction (n −m)/n of the singular values of a
typical submatrix is exactly zero.

The frames under study are all ETFs or near-ETFs, all with
favorable frame properties. To make this point, we have included
in SI Appendix (https://purl.stanford.edu/qg138qm8653) study of
a low-pass frame, in which the Fourier frequencies included in
the frame are the lowest ones. This construction is in contrast
with the clever choice of frequencies leading to the DSS frame.
Indeed, the low-pass frame does not have appealing frame prop-
erties. It is quite obvious from the results in SI Appendix as well as
the results regarding the closely related random Vandermonde
ensemble (27) that such frames do not satisfy any of the univer-
sality hypotheses H2–H6.

We note that convergence rates of the form Eqs. 12 and 13 are
known for other classical random matrix ensembles (28–31).

We further note that hypotheses H1–H4 do not imply hypothe-
ses H5 and H6. Even if the empirical CDF converges in the KS
metric to the limiting MANOVA(β, γ) distribution, functionals
that are not continuous in the KS metric do not necessarily con-
verge, and moreover, no uniform rate of convergence is a priori
implied.

Table 5. Root mean square error Ψ(fMANOVA
β,γ ) ±

√
∆Ψ(X(n)

K )
2

for ΨAC and DSS frame, m = (n − 1)/2 and k =β · m

n 1,031 1,151 1,291 1,451 1,571 1,811 1,951

β = 0.8 3 ± 0.0281 3 ± 0.0253 3 ± 0.0227 3 ± 0.0204 3 ± 0.0189 3 ± 0.0166 3 ± 0.0155
β = 0.6 1.75 ± 0.0073 1.75 ± 0.0065 1.75 ± 0.0058 1.75 ± 0.0051 1.75 ± 0.0048 1.75 ± 0.0041 1.75 ± 0.0038

Our Contributions. This paper presents a simple method for ap-
proximate computation (with known and good approximation
error) of spectral functionals of k -submatrix ensemble for a vari-
ety of random and deterministic frames using Eq. 1. Our results
make it possible to tabulate these approximate values, creat-
ing a useful resource for scientists. As an example, we include
Table 5, a lookup table for the value of the functional ΨAC on
the DSS deterministic frame family, listing by values of n and k
the asymptotic (approximate) value calculated analytically from
the limiting f MANOVA

β,γ distribution, and the standard approxima-
tion error.

To this end, we developed a systematic empirical framework,
which allows validation of Eq. 1 and discovery of the exponents
there. Our work is fully reproducible, and our framework is avail-
able (along with the rest of our results and code) in the code
and data supplement (https://purl.stanford.edu/qg138qm8653).
In addition, our results provide overwhelming empirical evidence
for a number of phenomena.

i) The typical k -submatrix ensemble of deterministic frames is
an object of interest. Although there is absolutely no ran-
domness involved in the submatrix XK of a deterministic
frame (other than the choice of subset K ), the typical k
submatrix seems to be an ensemble in its own right,
with properties so far attributed only to random matrix
ensembles—including a universal, compactly supported lim-
iting spectral distribution and convergence of the maximal
(minimal) singular value to the upper (lower) edges of the
limiting distribution.

ii) MANOVA(β, γ) as a universal limiting spectral distribu-
tion. Wachter’s MANOVA(β, γ) distribution is the limiting
spectral distribution of λ(GK ) as k/m→β and m/n→ γ
for the typical k -submatrix ensemble of deterministic frames
(including difference set, Grassmannian, real Paley, com-
plex Paley, quadratic chirp, SS, and SH). The same is true
for real random frames—random cosine transform and ran-
dom Haar.

iii) Convergence of the edge spectrum. For all of the deter-
ministic frames above as well as the random frames (ran-
dom cosine, random Fourier, complex Haar, and real Haar),
the maximal and minimal eigenvalues of the k -typical sub-
matrix ensemble converge to the support edges of the
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MANOVA(β, γ) limiting distribution. The convergence fol-
lows a universal power law rate.

iv) A definite power law rate of convergence for the entire
spectrum of the MANOVA(n,m, k ,F) ensemble to its
MANOVA(β, γ) limit, with different exponents in the real
and complex cases.

v) Universality of the power law exponents for the entire
spectrum. The complex deterministic ETFs (difference set,
Grassmannian, and complex Paley) share the power law
exponents with the MANOVA(n,m, k ,C) ensemble. The
same is true for the complex random frames (random
Fourier and complex Haar). The complex tight nonequian-
gular Alltop frame, which can be constructed for various
aspect ratios, also shares the power law exponents with
the MANOVA(n,m, k ,C) ensemble for γ < 0.5. The real
deterministic ETF (real Paley) shares the exponent with
the MANOVA(n,m, k ,R). The same is true for real ran-
dom frames (random cosine and real Haar). All non-ETFs
under study, with γ= 0.5, share different power law expo-
nents (slower convergence).

vi) A definite power law rate of convergence for functionals,
including ΨStRIP , ΨAC , and ΨShannon .

vii) Universality of the power law exponents for functionals.
For practically all frames under study, both random and
deterministic, the power law exponents for functionals agree
with those of the MANOVA(n,m, k ,R) (real frames) and
MANOVA(n,m, k ,C) (complex frames).

Intercepts. Our results showed a surprising categorization of the
deterministic and random frames under study according to the
constant C in Eq. 12 or equivalently, according to the intercept
(vertical shift) in the linear regression on log(n). Figs. 4 and
5 clearly show that the regression lines, while having identical
slopes (as predicated by hypothesis H3), are grouped according
to their intercepts into the following seven categories: complex
MANOVA ensemble and complex Haar (Manova and HAAR);
real MANOVA ensemble and real Haar (RealManova and
RealHAAR); complex ETFs (DSS, GF, and ComplexPF); non-
ETFs (SS, SH, and Alltop); real ETF (RealPF); complex random
Fourier (RandDFT); and real random Fourier (RandDCT).

Interestingly, intercepts of all complex frames are larger
(meaning that the linear coefficient C in Eq. 12 is smaller) than
those of all real frames. Also, the less randomness exists in the
frame, the higher the intercept: intercepts of deterministic ETFs
are higher than those of random Fourier and random cosine,
which are in turn, higher than those of Haar frames and the
MANOVA ensembles.

Related Work. Farrell (3) has conjectured that the phenomenon
of convergence of the spectrum of typical k submatrices to the
limiting MANOVA distribution is indeed much broader and
extends beyond the partial Fourier frame that he considered. A
related empirical study was conducted by Monajemi et al. (26). In

it, the authors considered the so-called sparsity-undersampling
phase transition in compressed sensing. This asymptotic quan-
tity poses a performance criterion for frames that interacts with
the typical k submatrix XK in a manner possibly more compli-
cated than the spectrum λ(GK ). The authors investigated vari-
ous deterministic frames, most of which are studied in this paper,
and brought empirical evidence that the phase transition for each
of these deterministic frames is identical to the phase transi-
tion of Gaussian frames. Gurevich and Hadani (24) proposed
certain deterministic frame construction and effectively proved
that the empirical spectral distribution of their typical k sub-
matrix converges to a semicircle, assuming k =m1−ε, a scal-
ing relation different from the one considered here. The work
in refs. 32 and 33 also considered deterministic frame designs,
chirp sensing codes, and binary linear codes, with a random sam-
pling. In their design, the aspect ratios are large (e.g., in ref. 32,
m ∼ k2 and n ∼m2), and therefore, the spectrum converges to
the Marčenko–Pastur distribution. Tropp (34) provided bounds
for λmax (GK ) and λmin(GK ) when X is a general dictionary.
Collins (35) has shown that the spectrum of a matrix model deriv-
ing from random projections has the same eigenvalue distribu-
tion of the MANOVA ensemble in finite n . Wachter (1) used a
connection between the MANOVA ensemble and submatrices
of Haar matrices to derive the asymptotic spectral distribution
MANOVA(β, γ).

Conclusions
We have observed a surprising universality property for the
k -submatrix ensemble corresponding to various well-known
deterministic frames as well as well-known random frames. The
MANOVA ensemble and the MANOVA limiting distribution
emerge as key objects in the study of frames, both random and
deterministic, in the context of sparse signals and erasure chan-
nels. We hope that our findings will invite rigorous mathematical
study of these fascinating phenomena.

In any frame where our universality hypotheses hold (includ-
ing all of the frames under study here), Fig. 2 correctly describes
the limiting values of fRIP , fAC , and fShannon and shows that
codes based on deterministic frames (involving no randomness
and allowing fast implementations) are better across perfor-
mance measures than i.i.d. random codes.

The empirical framework that we proposed in this paper may
be easily applied to new frame families X (n) and new function-
als Ψ, extending our results further and mapping the frontiers of
the universality property. In any frame family and for any func-
tional where our universality hypotheses hold, we have proposed
a simple, effective method for calculating quantities of the form
EKΨ (λ (GK )) to known approximation, which improves polyno-
mially with n .
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