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We propose and validate with quantum mechanics methods a
unique catalyst for electrochemical reduction of CO2 (CO2RR) in
which selectivity and activity of CO and C2 products are both
enhanced at the borders of oxidized and metallic surface regions.
This Cu metal embedded in oxidized matrix (MEOM) catalyst is
consistent with observations that Cu2O-based electrodes improve
performance. However, we show that a fully oxidized matrix
(FOM) model would not explain the experimentally observed per-
formance boost, and we show that the FOM is not stable under
CO2 reduction conditions. This electrostatic tension between the
Cu+ and Cu0 surface sites responsible for the MEOM mechanism
suggests a unique strategy for designing more efficient and selec-
tive electrocatalysts for CO2RR to valuable chemicals (HCOx), a
critical need for practical environmental and energy applications.

electrochemical reduction of CO2 | Cu metal embedded in oxidized
matrix | density functional theory | CO2 activation | CO dimerization

E lectrochemical reduction of CO2 (CO2RR) to valuable
chemicals is an essential strategy to achieve industrial-scale

reduction of the carbon footprint under mild conditions and to
provide a means of storing electrical power from intermittent
renewable sources into stable chemical forms (1). Cu is the pro-
totype electrocatalyst for CO2RR, because it is the only pure
metal that delivers appreciable amounts of methane and ethy-
lene plus minor alcohol products (2–7), but it suffers from high
overpotentials and very significant hydrogen evolution reactions
(HERs). Consequently, tremendous efforts are being made to
develop more efficient and selective electrocatalysts, for exam-
ple by surface modification (8) and by nanoparticle (9, 10) and
nanowire (11) engineering.

We examine here the mechanism by which Cu2O-based elec-
trodes are observed to improve both efficiency and selectivity for
C2 products (12–15), which also suppresses HERs by several-
fold. Because Cu2O is subject to reduction (back to Cu metal)
under CO2RR conditions, the improved performance was ini-
tially attributed to Cu metal surface morphology (8, 16). But a
more recent experiment (15) showed that Cu+ sites can survive
on the Cu surface for the course of CO2RR. Importantly, a Cu
sample that is first oxidized and then reduced using an H2 plasma
leads to performance substantially worse than that of the oxi-
dized sample, despite both having similarly roughened surfaces.
This provides solid evidence that surface Cu+ plays an essential
role in promoting the efficiency and selectivity of CO2RR. How-
ever, experiments have provided no clue about how surface Cu+

affects the mechanisms of CO2RR. Moreover, no previous theo-
retical efforts have elucidated its role.

To understand the promising results achieved with Cu2O-
based electrodes, we investigated three distinct models aimed at
unraveling the role of surface Cu+ in shaping the free energy
profiles of two key steps for CO2RR. Here we carry out quan-
tum mechanics (QM) calculations at constant potential by using
our grand canonical methodology (17, 18) that uses the charge-
asymmetric nonlocally determined local-electric (CANDLE)

implicit solvation model (19) to achieve constant electrochemical
potential (not constant number of electrons) within the frame-
work of joint density functional theory (JDFT) (20, 21) (details
in Computational Details). The three key steps we focus on are
(i) CO2 activation, which we previously showed to be the rate-
determining step (RDS) for CO production on pure Cu (22);
(ii) CO dimerization, which we previously showed to be the RDS
for forming C2 products from CO on pure Cu (17, 18); and
(iii) C1 product formation, which we find to compete with C2

products for pure Cu.
We find that the surface Cu+ by itself actually deteriorates

the performance of CO2RR. Instead we show that it is synergy
between surface Cu+ and surface Cu0 that improves significantly
the kinetics and thermodynamics of both CO2 activation and
CO dimerization, while making C1 unfavorable, thereby boosting
the efficiency and selectivity of CO2RR. These results provide a
unique concept for designing improved electrocatalysts. To illus-
trate this synergy we consider the case with an applied potential
U =−0.9 V [referenced to standard hydrogen electrode (SHE)],
which is where CO production reaches the peak and C2 produc-
tion begins on the oxide electrode (15). The free energies at any
other U can be calculated using Table S1.

Fig. 1 shows the three surface models we used to probe the
role of surface Cu+ in CO2RR. Fig. 1A shows the metallic matrix
(MM), where the pristine Cu(111) surface serves as a reference
model for pure MM that has only Cu0 on the surface Fig. 1B
shows the fully oxidized matrix (FOM), where the stoichiometric
nonpolar Cu2O(111) surface serves as a model for a FOM with
only Cu+ on the surface. Here we find two types of Cu+ surface
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Fig. 1. Top and side views of the three surface models. (A) A 4 × 4 Cu(111) surface, the model for a metallic matrix (MM). (B) A 2 × 2 Cu2O(111) surface,
the model for fully oxidized matrix (FOM). (C) Metal embedded in oxidized matrix (MEOM) derived by reducing one-quarter of a 2 × 2 Cu2O(111) surface.
Here Cu is dark blue, with the active (Cu+)CUS marked light blue, and red is O. Purple dashes mark the border between Cu0 and Cu+ regions. (Please refer
to Fig. S7 for Bader charge analysis of surface Cu sites on FOM and MEOM models.)

sites: (Cu+)CSS, a coordinatively saturated Cu+ site that is
bonded to two O atoms, and (Cu+)CUS, a coordinatively unsat-
urated site that is bonded to only the one O atom directly below
it (examples are marked in Fig. 1B). The (Cu+)CUS is believed
to be the active site (ref. 23 and references therein). However,
it has been suggested by both theory (24) and experiment (25)
that such (Cu+)CUS sites are likely missing under oxygen-rich
conditions (e.g., oxygen plasma treatment). More recent theoret-
ical work (26) has shown that (Cu+)CUS sites are favored under
CO2RR conditions at neutral pH. Here we focus on the role of
active surface Cu+ in shaping the energetics and mechanisms of
CO2RR, rather than stability. Fig. 1C shows metal embedded in
oxidized matrix (MEOM), a partially reduced Cu2O(111) sur-
face in which one-quarter of the surface is reduced. This serves
as a conceptual model for our MEOM in which both Cu0 and
Cu+ are present on the surface. We find that this leads to active
(Cu+)CUS sites at the edge of metallic Cu0 regions that play an
essential role in the enhanced activity. Our MEOM catalyst site
mimics the case for CO2RR operation, where the majority of
surface stays oxidized but some reduced regions are created.

We focus here on the (111) surface orientation, because it is
the most stable among Cu2O surfaces (27) and has the fastest
kinetics for Cu surface oxidation (28) (thus the most likely oxide
surface orientation from oxidation of Cu foil). In the experiment
that directly compared the metal with oxide surfaces (15), the
measured onset potentials for C2H4 production on Cu metal
surfaces are −1.2 V to −1.1 V (this is the value for both elec-
tropolished and roughened surfaces obtained by first oxidizing
and then reducing the Cu foil with hydrogen plasma), which are
the same as the onset potentials measured on a Cu(111) single
crystal electrode (−1.2 V to −1.1 V), but very different from the
value of −0.8 V to −0.6 V measured on Cu(100) (29, 30).

CO2 Activation
MM Model. We find that physisorption of CO2 (CO2,phys) on
the MM model leads to a noncovalent bond distance of 3.84 Å
between the C atom of linear CO2 and the Cu surface (C-Cus;
Fig. S1A), which is similar to our previous study (22). Forming
chemisorbed bent CO2 (CO2,chem) from this CO2,phys involves a

transition state (TS) that bends CO2 with C-Cus = 2.36 Å, and
the resulting CO2,chem is asymmetrically adsorbed, with a surface
CuO = 2.04 Å, whereas the second O atom pointing away from
the surface to form a hydrogen bond (1.52 Å) to a surface H2O
bonded to a nearby Cu0 (Fig. S1C and Fig. 2). On the MM model
the activation free energy barrier is∆G 6= = 0.49 eV at 298 K, sim-
ilar to the value (0.43 eV) for Cu(100) in our previous study (22).

FOM Model. It was proposed (23) that in the FOM model CO2

can adsorb at the (Cu+)CUS site with a 2.09-Å bond of one O
to (Cu+)CUS. However, exposed to the electrolyte, the (Cu+)CUS
sites are mostly occupied by H2O molecules [strong electronic
binding energy of ∆E =−0.98 eV, much larger than that for
CO2 (∆E =−0.31 eV)]. Thus, the initial structure for CO2 acti-
vation on the FOM model is still physisorption of CO2 with a
4.07-Å distance between the C atom of linear CO2 and Os, the
closest surface O atom (Fig. S2A). We find a ∆G 6= = 0.56 eV to
convert this CO2,phys to a surface carbonate (Fig. 2), which can
subsequently be released into the electrolyte, thereby reducing
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Fig. 2. Free energy profiles (at U =−0.9 V) for CO2 activation on the MM
(blue), FOM (red), and MEOM (green) models, including the resulting chemi-
sorbed CO2 structures. Note that FOM leads to a surface carbonate product.
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the FOM surface. Therefore, CO2 activation in the FOM model
has a barrier 0.07 eV higher than the MM model and involves a
different mechanism that does not lead to the key intermediate
(chemisorbed CO2) for CO production. This indicates that the
experimentally observed promotion of CO production using oxi-
dized electrodes (12, 13, 15) cannot be explained with the pres-
ence only of surface Cu+.

MEOM Catalyst. In contrast, the MEOM surface has a metallic
Cu0 region bordered by the Cu+ oxide matrix. Here physisorbed
CO2 is favored on top of the Cu0 region (Fig. S3A), and the
activation of CO2 proceeds through a TS that bends CO2 just
as in the MM case (Fig. S3B), leading to the asymmetrically
chemisorbed CO2 on the Cu0 region. But now the free energy bar-
rier is ∆G6= = 0.27 eV, which is 0.22 eV lower than for the MM
model. Moreover, the chemisorbed CO2 is ∆G =−0.26 eV more
stable than physisorbed CO2 on the MEOM catalyst (Fig. 2).

This drastic improvement in both kinetics and thermodynam-
ics for the MEOM catalyst is due to the presence of (Cu+)CUS
sites that bind H2O molecules at the edge of the Cu0 region. This
H2O molecule on the (Cu+)CUS site forms strong hydrogen bonds
to the CO2, stabilizing both the TS and the final state (FS) (Fig.
2). This opens a channel in which the negative charge accumu-
lated on the O atom of the CO2 during activation is distributed
to the Cu+ region, thus stabilizing both the TS and the FS.

Summarizing, only this MEOM catalyst with both surface Cu0

regions (binds to activated CO2) and Cu+ (dilutes negative
charge) sites has the ability to enable promotion of CO2 activa-
tion, with favorable kinetics and thermodynamics. This explains
the experimental observation that both the onset potential and
the peak Faradaic efficiency for CO production are improved
for CO2RR on oxide-based electrodes (12, 13, 15). We propose
that our MEOM catalyst might also provide the mechanism by
which partially oxidized atomic cobalt layers improve formate
production (31).

CO Dimerization
MM Model. CO dimerization on the MM model has been thor-
oughly studied by us and others (17, 32). The initial structure
of two well-separated adsorbed CO molecules (Fig. S4A) goes
through a TS that tilts and draws the two COs close (Fig. S4B),
with ∆G 6= = 1.10 eV, to form an OCCO surface species with a
1.52-Å C-C bond (Fig. S4C).

FOM Model. In contrast, CO dimerization in the FOM model
takes a distinctly different path. A CO molecule introduced
near the FOM surface (either direct or from CO2RR) binds
to the (Cu+)CUS site by ∆E =−1.62 eV, displacing the H2O
(∆E =−0.98 eV). Thus, CO dimerization starts with two
strongly adsorbed CO molecules on neighboring (Cu+)CUS sites
(Fig. S5A), which proceeds through an asymmetric TS (Fig. S5B)
that rotates both CO molecules to have O atoms bonded to the
(Cu+)CUS sites (initially C atoms were bonded) with the C atom
of one CO molecule bonded to the (Cu+)CSS site in between. The
resulting OCCO surface species (Fig. S5C and Fig. 3) is formed
with a C=C double bond (1.30 Å) with each C atom bonded to
the middle (Cu+)CSS. This is the only stable CO dimer on the
FOM surface, but the formation barrier is ∆G 6= = 3.15 eV, and
the product has a free energy unstable by ∆G = 2.25 eV. Thus,
the presence of only Cu+ at the active surface cannot explain the
experimental observation that C2 products are promoted with
oxidation-treated electrodes (13–15).

MEOM Catalyst. On the MEOM surface, CO also adsorbs on the
(Cu+)CUS site (CO@Cu+), more stable by 0.48 eV than on the
metallic Cu0 region (CO@Cu0).With MEOM, CO dimerization
from two neighboring CO@Cu+ is the same in nature as that on
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Fig. 3. Free energy profiles (at U =−0.9 V) of CO dimerization in the MM
(blue), FOM (red), and MEOM (green) models and for CO hydrogenation
to form surface CHO species in the MEOM model (gray green) at pH 7.
Right shows resulting surface OCCO structures, whereas Left shows the ini-
tial structure on the MEOM model, which shows that the C atoms of the
two COs on the Cu+ and Cu0 regions are positively and negatively charged,
respectively, which assists the C-C coupling.

the FOM surface, so it would lead to the same ∆G 6= (3.15 eV) as
for the FOM. However, CO dimerization starting with CO@Cu0

and a neighboring CO@Cu+ (Fig. S6A) has a modest barrier
of ∆G 6= = 0.71 eV to form the OCCO surface species, in which
the two C atoms are still bonded to the Cu+ and Cu0 regions
(Fig. S6C), leading to ∆G = 0.12 eV (Fig. 3). The favorable ener-
getics of this C-C coupling can be understood by noting that the
C atom of CO@Cu+ is positively charged (Mulliken charge of
+0.11) whereas the C atom of CO@Cu0 is negatively charged
(Mulliken charge of −0.31) due to back donation. Thus, the
attractive electrostatics between the two Cs assists C-C bond for-
mation. It is this favorable dimerization process on the MEOM
model that improves both kinetics and thermodynamics of the
RDS for C2 products, compared with the traditional MM model
(Fig. 3). Thus, we propose that promotion of C2 products for
oxidation-treated electrodes arises from the MEOM surface via
the mechanism described above (13–15).

The major C2 products from CO2RR have been reported to
be either ethylene (13, 15) or ethanol (14), where the major dif-
ference in these experiments is the pH (neutral pH for ethylene
and basic pH for ethanol). We have shown recently (18) that the
energetics of surface water determine the selectivity of alcohol
vs. hydrocarbon products. We found that at neutral pH it is favor-
able for surface water to donate a proton for dehydroxylation to
form hydrocarbon products. Whereas in basic pH the ability of
surface water to dehydroxylate the surface species is suppressed
(because the product OH− is less favorable), favoring instead
the alcohol product (ethanol).

C1 Pathways
Next we consider the possible pathways for forming C1 with the
MEOM surface. Here we expect CO@Cu+ and H@Cu0. Inter-
estingly, the COH pathway previously proposed by us (17, 33)
is an unreasonable option, because COH@Cu+ is higher than
CHO@Cu+ by ∆G = 1.86 eV. This also eliminates the CO-
COH pathway for C2 products we previously proposed (17).
On the other hand, the CHO pathway has a reasonable free
energy barrier of ∆G 6= = 1.13 eV (Fig. 3) at neutral pH, which
is still significantly higher than the ∆G 6= = 0.71 eV for C-C cou-
pling with CO@Cu+ and CO@Cu0. Consequently the stability
of CO@Cu+ (which is more resistant to hydrogenation) blocks
the C1 products. This selectivity for C2 over C1 is intrinsic and
not due to the external local high-pH effect as speculated previ-
ously (13, 15).
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Notes on the MEOM Catalyst
The MEOM concept is in fact a synergistic metal and oxidized
matrix cocatalyst, with both ingredients directly participating in
catalysis. Thus, for the MEOM model to be effective, it is nec-
essary for the metal surface to be level with the oxidized matrix
surface so that the surface species can interact via proper geome-
tries. Therefore, a suitable scheme to generate the MEOM cata-
lyst is deriving the metal directly from the oxidized matrix surface
as in our construction of the MEOM model, which is also consis-
tent with the current experimental strategy. This scheme can be
naturally extended to starting with a mixed oxidized matrix (e.g.,
Cu2O/Ag2S) for alternative oxidized matrices.

Summary
We present the MEOM model for a partially oxidized Cu sur-
face and show that this model leads to plausible mechanisms
to explain the experimental findings that CO2RR can be made
more efficient and selective, using oxidized electrodes. How-
ever, MEOM requires that we only partially oxidize the sur-
face. This MEOM model presents a unique guideline for design
of improved CO2RR electrocatalysts. In contrast to previous

speculations, we find that the active surface Cu+ sites alone do
not improve the efficiencies of CO2RR and indeed deteriorate
the efficiency. Instead the synergy between active surface Cu+

and Cu0 regions present in the MEOM model is responsible for
improving significantly the kinetics and thermodynamics of both
CO2 activation and CO dimerization while impeding C1 path-
ways, the key steps for efficiency and selectivity of CO2RR.

Based on our MEOM model, we conclude that the oxidized
matrix (Cu2O) is unstable under CO2RR working conditions.
We find that the role of the Cu2O is mainly electrostatic in dilut-
ing the negative charge built up on the CO2 as it transitions from
physisorbed to chemisorbed structures, which in turn makes the
C atom of CO positively charged. This MEOM model suggests
alternative oxidized matrices (like Ag2S) could also deliver sim-
ilar electrostatic contributions, leading to much improved elec-
trochemical stabilities.
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