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Abstract

Aripiprazole was the first antipsychotic developed to possess agonist properties at dopamine D2 

autoreceptors, a groundbreaking strategy that presented a new vista for schizophrenia drug 

discovery. The dopamine D2 receptor is the crucial target of all extant antipsychotics, and all 

developed prior to aripiprazole were D2 receptor antagonists. Extensive blockade of these 

receptors, however, typically produces extrapyramidal (movement) side effects which plagued 

first-generation antipsychotics, such as haloperidol. Second-generation antipsychotics, such as 

clozapine, with unique polypharmacology and D2 receptor binding kinetics, have significantly 

lower risk of movement side effects, but can cause myriad additional ones, such as severe weight 

gain and metabolic dysfunction. Aripiprazole’s polypharmacology—characterized by its unique 

agonist activity at dopamine D2, D3 and serotonin 5-HT1A receptors as well as antagonist activity 

at serotonin 5-HT2A receptors—translates to successful reduction of positive, negative, and 

cognitive symptoms of schizophrenia, while also mitigating risk of weight gain and movement 

side effects. New observations, however, link aripiprazole to compulsive behaviors in a small 

group of patients, an unusual side effect for antipsychotics. In this review, we discuss the chemical 

synthesis, pharmacology, pharmacogenomics, drug metabolism, and adverse events of 

aripiprazole, and we present a current understanding of aripiprazole’s neurotherapeutic 

mechanisms, as well as the history and importance of aripiprazole to neuroscience.
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INTRODUCTION

Schizophrenia—characterized by positive symptoms (delusions, hallucinations, disorganized 

speech and behavior), negative symptoms (catatonia, blunted affect, apathy, and anhedonia), 
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and cognitive symptoms (deficits in executive function and working memory)—is a 

devastating psychiatric disorder that affects approximately 1% of the population.1 A key 

early finding was an association between positive symptoms of psychosis and an overactive 

striatal dopamine system,2–5 which lead to the enduring “dopamine hypothesis” of 

schizophrenia. Specifically, persons with schizophrenia show elevated baseline and 

psychostimulant-induced striatal dopamine release2, 6–7 and are hypersensitive to 

dopaminergic psychostimulants.8 Also, acutely psychotic patients, as well as patients 

prodromal for schizophrenia, display increased presynaptic striatal dopamine synthesis 

(measured by increased uptake of radiolabeled L-dihydroxyphenylalanine (L-DOPA), 

dopamine’s precursor).3, 9 Despite these associations, most studies do not observe a 

correlation between schizophrenia and the availability of the dopamine transporter 

(DAT).10–12 Also, though increases in dopamine D2 receptor density in schizophrenia are 

observed,13 interpreting the findings is often confounded by prior antipsychotic treatment, 

which itself increases D2 receptor density.14 Other alterations in the dopamine system are 

reported, such as increases in D2 receptor homodimers and D2 receptors existing in high-

affinity (active) conformations,3 but evidence regarding these observations, presently, is not 

definitive.

Most antipsychotic medications that are effective at reducing positive symptoms block D2 

receptors, which are highly expressed in the striatum, to recalibrate dopamine signaling and 

remodel dopaminergic circuits.15–17 Neuroimaging studies demonstrate that clinical 

improvement in positive symptoms using first-generation antipsychotics (FGAs), such as 

chlorpromazine and haloperidol, requires approximately 65% striatal D2 receptor 

occupancy.18–20 However, grave drawbacks of FGAs are extrapyramidal side effects (EPS)

—motor abnormalities such as rigidity, muscle spasms, tremors, restlessness, and 

involuntary movements (e.g. tardive dyskinesia)—20–24 and increased serum prolactin levels 

(hyperprolactinemia), which can lead to lactation, decreased bone density, and disturbances 

in sex hormones.25 EPS are caused by a blockade of nigrostriatal D2 receptors, and 

hyperprolactinemia is caused by blockade of tuberoinfundibular D2 receptors, which 

normally function to suppress prolactin secretion from the anterior pituitary gland.26–27 

Closely titrating the dose of FGAs is necessary to reduce the likelihood or severity of EPS,28 

whereas reducing hyperprolactinemia may require switching to a second-generation 

antipsychotic (SGA).29

SGAs, including clozapine and quetiapine, are clinically as effective as FGAs,30 and they 

are associated with a lower incidence of EPS and hyperprolactinemia.26, 31 Many hypotheses 

have been put forward to explain the neuropharmacology that underlies these characteristics. 

In contrast to FGAs, positron emission tomography indicates SGAs can be effective when 

occupying less than 60% of striatal D2 receptors—a major finding that overturned the 

seemingly ineluctable paradigm that antipsychotic efficacy is directly proportional to striatal 

D2 receptor occupancy.20, 32–36 Though, differences in ligand-receptor on/off binding 

kinetics may also be a causal factor, i.e. effective doses of SGAs and FGAs may occupy 

similar numbers of striatal D2 receptors, but SGAs may dissociate more quickly than FGAs 

from D2 receptor binding sites, as is documented with quetiapine and clozapine.37–38 A 

rapid off-rate would likely permit endogenous dopamine to maintain an adequate level of D2 

receptor signaling to prevent hyperprolactinemia and EPS. Whereas tight binding of FGAs 
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to D2 receptors may decrease endogenous D2 receptor signaling to a level that causes these 

side effects.

Additionally, it has been argued that antagonism of serotonin 5-HT2A receptors by SGAs 

contributes to their efficacy, reducing the need for relatively extensive D2 receptor 

occupancy, consequentially reducing side effects.39–40 In support of this, studies show that 

selective 5-HT2A receptor antagonism attenuates amphetamine-elicited release of dopamine 

into the striatum while also blocking amphetamine’s psychomotor effects in non-human 

primates.41 Also, the selective 5-HT2A antagonist, pimavanserin, effectively treats psychosis 

in Parkinson’s disease without causing EPS.42–43 However, FGAs such as chlorpromazine 

and haloperidol have appreciable potencies at 5-HT2A that are comparable to some SGAs, 

challenging this hypothesis.44–45 Other targets, such as muscarinic and 5-HT1A receptors 

may contribute to lower EPS risk of newer antipsychotics.40, 46–48 The pharmacology of 

amisulpiride, however, casts doubt on this hypothesis—it has very low affinity at 5-HT1A, 

and at each of the muscarinic receptors (and at 5-HT2A receptors),49 yet has low EPS 

liability.50

From a neural systems perspective, there is evidence that SGAs, like olanzapine and 

clozapine, target the mesolimbic (ventral striatum) dopamine system, sparing the 

nigrostriatal (dorsal striatum) dopamine system that is intimately involved in motor 

processing, which may underlie clozapine’s low EPS characteristics.51–52 Nevertheless, 

some SGAs also have added risk of causing obesity and metabolic dysfunction (e.g., 

diabetes, high cholesterol).50, 53–54 Exploration of the precise neurobiological and 

neuropharmacological mechanisms underlying distinct effects of individual antipsychotics 

remains vigorous.

Due in part to the aforementioned side effects and others caused by both FGAs and SGAs, 

including sedation and emotional dampening,55 approximately two-thirds of patients with a 

psychotic disorder are noncompliant with their antipsychotic medications.56–57 Finally, 

antipsychotic drugs have limited efficacy in approximately one-third of patients,58 and 

treatment of negative and cognitive symptoms in schizophrenia remains a challenge—likely 

because they involve different neural systems and mechanisms than positive symptoms. For 

example, in contrast to a hyperactive striatal dopamine system underlying positive 

symptoms, a hypoactive mesocortical dopamine system is proposed to underlie negative and 

cognitive symptoms.5, 59–61

This review discusses the prototypical third-generation antipsychotic (TGA), aripiprazole, 

distinguished by its agonist pharmacology at certain receptor targets, most notably D2 

autoreceptors.62–65 This pharmacology was the first of its kind for an approved antipsychotic 

medication. Furthermore, aripiprazole can be effective at attenuating negative and cognitive 

symptoms, in addition to positive symptoms, of schizophrenia in some patients and has 

lower EPS liability than FGAs (e.g., haloperidol), lower weight gain and metabolic liabilities 

than SGAs (e.g., clozapine), and does not cause hyperprolactinemia.50, 66–69 Though, 

aripiprazole is not a panacea, having limited effects in some patients, and new reports 

suggest a link between aripiprazole and impulse control deficits, a unique side effect for an 

antipsychotic, which we briefly discuss. Aripiprazole opened new vistas for exploration of 
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the neurobiological underpinnings of psychotic symptoms and of side-effects caused by 

antipsychotics, and it inspired a paradigm shift from an antagonist-based to an agonist-based 

approach for antipsychotic drug discovery.

CHEMICAL PROPERTIES AND CHEMICAL SYNTHESIS

Aripiprazole, 7-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy]-3,4-dihydro-1H-

quinolin-2-one, is an achiral quinolinone derivative (CAS No: [129722-12-9]; Figure 1). It 

possesses a single hydrogen bond donor and five acceptors, has a molecular weight of 448.4 

g/mol, and a Log P value of 4.55. These physicochemical properties comply with Lipinski’s 

rule of five and provide the compound with high bioavailability, protein binding, and an 

acceptable metabolic profile.70–71 Otsuka Pharmaceutical patented aripiprazole in 1988 [US 

patent 4,734,416 filed in 1979], along with many other carbostyril derivatives and salts 

thereof, as potential antihistamine and central nervous system controlling agents.72–73 

However, the patent did not explicitly mention aripiprazole by name, nor did it describe a 

synthetic procedure used for it.

The first synthetic procedure and reference to its antipsychotic activity was described by 

Oshiro et al. in Otsuka’s 1991 patent [US patent 5,006,528 filed in 1989].74 In 1998, Otsuka 

scientists described a similar synthesis for the free base, but with slightly different 

conditions (Scheme 1).75 The synthesis begins with the alkylation of 7-hydroxy-3,4-

dihydro-2(1H)-quinolinone by stirring it with 1,4-dibromobutane (3 molar equivalents (mol. 

equiv.)) in the presence of potassium carbonate (1 mol. equiv.) in dimethylformamide at 

60 °C for four hours to give 7-(4-bromobutoxy)-3,4-dihydro-2(1H)-quinolinone. The 

reaction mixture is then diluted with an equal volume of water, and the organic phase is 

extracted with ethyl acetate. After rotary evaporation, the resulting product is recrystallized 

in ethyl alcohol.74–75 The product is subsequently combined with sodium iodide (2 mol. 

equiv.) in acetonitrile and refluxed for 30 minutes before cooling to room temperature. Next, 

1-(2,3-dichlorophenyl)piperazine (1.5 mol. equiv., prepared based on76), and triethylamine 

(2 mol. equiv.) are added to the reaction mixture, and refluxed for another four hours. The 

resulting precipitate is filtered and discarded. The filtrate is evaporated in a low-pressure 

environment, and dissolved in ethyl acetate. Then, it is washed, dried, and subjected to 

rotary evaporation to yield a resin. The resin is recrystallized in ethyl alcohol to provide the 

free base of aripiprazole as a white powdery substance. The powder may then be dissolved 

in ethyl alcohol with acid to yield a variety of salts. Other compounds, such as OPC-4392 

(Figure 1), aripiprazole’s predecessor, were prepared using similar procedures by 

condensing (4-bromobutoxy)-2(1H)-quinolinone (or a structural analog) with various 

phenylpiperizines;74–75 the procedure has since been optimized.77

MANUFACTURING INFORMATION

Aripiprazole was approved by the FDA for schizophrenia on November 15th, 2002, as an 

oral tablet formulation in the dose range of 2 to 30 mg. PubMed-indexed publications with 

“aripiprazole” in their abstract rapidly increased around this time, peaking at ~300/year in 

2008, then plateauing to present day (Figure 2). Aripiprazole was originally manufactured 

by Otsuka Pharmaceutical and was co-marketed with Bristol Meyers-Squibb under the brand 
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name Abilify®. The following formulations have since been approved: orally disintegrating 

tablets, oral solution, and an aqueous solution for intramuscular injection. The original 

patent expired April, 2015, and generic 2 to 30 mg oral tablets have subsequently been 

produced by numerous manufacturers (Teva, Torrent, Hetero Labs, Alembic, and Ajanta, 

among others). Consistent annual sales figures for Abilify® are unavailable, however, global 

sales in 2013 and 2014 were approximately $7.824 and $9.285 billion, respectively,78 

illustrating the drug’s enormous financial success.

APPROVED INDICATIONS AND DOSING

Aripiprazole, oral formulation, is approved for the following indications: 1) schizophrenia in 

adults and adolescents (13–17 years); 2) bipolar I disorder (manic and mixed episodes) in 

adults and pediatric patients (10–17 years); 3) major depressive disorder in adults, as an 

adjunctive therapy; 4) irritability associated with autism spectrum disorder in pediatric 

patients (6–17 years); and 5) vocal and motor tics associated with Tourette’s syndrome in 

pediatric patients (6–18 years).70 Additionally, the intramuscular formulation is approved to 

treat agitation associated with schizophrenia or bipolar mania in adults.70 Generally, 

children are started on a 2 mg/day dose of aripiprazole, and may be titrated up to 10 mg/day, 

depending on the disorder and severity.70 Adults on the other hand are usually started on 10 

mg/day, and may be titrated up to a maximum of 30 mg/day depending on their response.70

PHARMACOKINETICS AND PHARMACOGENOMICS

Aripiprazole displays linear kinetics, with a bioavailability of 87% (independent of low-fat 

food intake).70, 79 The maximum plasma concentration occurs 3–5 hours following 

administration, and a steady-state is achieved after approximately 14 days of daily 

dosing.70, 79 At steady-state, the volume of distribution is 404 L due to extensive binding to 

plasma proteins (>99%).70, 79 In vitro studies using human liver microsomes and 

recombinant cytochrome P450 enzymes indicate that aripiprazole is metabolized 

predominantly via phase I mechanisms by both CYP3A4 and CYP2D6 to yield 

dehydrogenation and hydroxylation products, while CYP3A4 also mediates N-dealkylation 

(Figure 3).70 Phase II metabolism is also present, albeit to a lesser extent (FDA document 

NDA No. 21-436).80 Interestingly, the major circulating metabolite is dependent upon the 

frequency of administration. With acute dosing, the phase II product BMS-337041 is the 

most abundant circulating metabolite, whereas the phase I product dehydroaripiprazole is 

more prevalent after chronic dosing. In addition to compounds provided in Figure 3, 

McEnvoy et al. report a motley of aripiprazole metabolites from LC-MS/MS analysis of 

human urine, including iminium ion, epoxide, and glutathione species.80

Aripiprazole is metabolized almost equally along both CYP3A4 and CYP2D6 pathways 

(1:1) in extensive metabolizers, however, this ratio approaches 3:1 in intermediate 

metabolizers.81–82 At steady-state the average elimination half-life of aripiprazole is 

approximately 75 hours, and the primary metabolite, dehydroaripiprazole, is 95 hours.70 

Considering that dehydroaripiprazole is pharmacologically active at D2 receptors and exists 

at a concentration that is ~40% of the plasma concentration of aripiprazole, it likely 

contributes to the sustained pharmacologic effects of aripiprazole.70, 83
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Serum concentrations of aripiprazole at therapeutic doses range between 150–300 ng/mL,83 

but they can vary substantially between patients administered equivalent doses. This is likely 

due to polymorphisms in the CYP2D6 gene. For example, in individuals with little to no 

CYP2D6 activity, the elimination half-life of aripiprazole extends from ~95 to 146 

hours.70, 81–83 Also, psychiatric patients are often poly-medicated, which likely impacts 

aripiprazole concentrations. In particular, aripiprazole is often prescribed as an adjunctive 

antidepressant; since many antidepressants are also metabolized by CYP2D6 and CYP3A4 

(e.g., paroxetine, fluvoxamine, fluoxetine), the potential for increased serum concentrations 

of these drugs is inherent.70, 83 Patients also taking medications that are inhibitors or 

inducers of CYP3A4 and/or CYP2D684 should undergo close therapeutic drug monitoring.

Genetic association studies show that polymorphisms in several genes impact antipsychotic 

efficacy.85–87 For example, the Taq1A (rs1800497) polymorphism, a transition mutation 

(C→T) that generates the A1 allele of D2DR, is associated with an increased therapeutic 

response to aripiprazole in Asian patients.88 This association, however, is not observed in 

other ethnicities.85, 89 Multiple neuroimaging studies show that healthy volunteers, of 

European descent, who are either homozygous or heterozygous for the A1 allele exhibit less 

striatal D2 receptor availability.90–92 Two other D2DR polymorphisms, Ser311Cys 

(rs1801028) and –141C Ins/Del (rs1799732), also appear to affect antipsychotic drug 

response. The Ser311Cys polymorphism associates with a favorable response to risperidone 

in Han Chinese populations.93 Conversely, some studies show that-141 Del carriers tend to 

have a poorer response to several antipsychotics, but not aripiprazole.85–86, 94 Also, the 

C-1019G polymorphism in HTR1A, and A-1438G-T102C (rs6311/rs6313) in HTR2A 
(genes encoding the 5-HT1A and 5-HT2A receptors, respectively) associate with decreased 

efficacy of aripiprazole to treat negative and cognitive symptoms in schizophrenic patients of 

Han Chinese descent.95–96 Furthermore, other polymorphisms in HTR2A and DRD2 may 

interact to facilitate aripiprazole’s antipsychotic efficacy.97 Unfortunately, many of these 

experiments have small effect sizes, and results depend upon the ethnic population studied 

and how “clinical response” is defined. Thus, pharmacogenomics currently provides 

insufficient data to guide personalized medicine for schizophrenia.

PHARMACOLOGY AND ADVERSE EVENTS

Like other antipsychotics, aripiprazole’s pharmacology is complex (Table 1),62, 98 and is 

representative of the polypharmacology—many targets—approach to treat psychotic 

disorders. Aripiprazole has high affinity (defined here as Ki < 30 nM) at serotonin 5-HT1A, 

5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7, dopamine D2 and D3, adrenergic α1a, and histamine 

H1 receptors. Aripiprazole is distinguished from earlier antipsychotics by its partial agonist 

activity at D2, D3, 5-HT1A, and 5-HT2C receptor targets62, 64, 98–101. In vitro, aripiprazole is 

a neutral antagonist or very weak partial agonist at 5-HT2A and 5-HT7, and is an inverse 

agonist at 5-HT2B receptors.62 According to the prescribing information for Abilify®, 

aripiprazole is an “α1 antagonist.” Its functional effects at H1 receptor have not been 

reported in scientific literature, to our knowledge. Though, since histamine activation effects 

are not typically reported, and since aripiprazole was part of a series of compounds designed 

to be antihistamines, it is likely an H1 antagonist.
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At effective doses, aripiprazole occupies up to 90% of D2 receptors, and also occupies 5-

HT1A and 5-HT2A receptors but to a lesser extent.22, 102 As a D2 receptor partial agonist 

with moderate intrinsic activity (as characterized in some in vitro assays), aripiprazole may 

block postsynaptic D2 receptors in neural systems with high dopaminergic tone, i.e. the 

striatal dopamine system of schizophrenic patients, which may account for its effects on 

positive symptoms. Conversely, it may activate postsynaptic D2 receptors in neural systems 

with low dopaminergic tone, i.e. the mesocortical system in schizophrenic patients, which 

may account for its effects on negative and cognitive symptoms.65, 99, 103–104 Other 

proposed pharmacological mechanisms focus on aripiprazole’s full agonism at presynaptic 

D2 autoreceptors in vivo in animal models.62, 64, 98–99, 103, 105 D2 autoreceptors modulate 

dopamine neurotransmission via a negative feedback mechanism. For example, at relatively 

high dopamine concentrations (or during phasic dopamine release), presynaptic D2 

autoreceptors are activated to decrease dopamine synthesis and release, and somatodendritic 

D2 autoreceptors decrease neuronal firing rate.106–109 Striatal dopamine neurons express 

high levels of D2 autoreceptors, whereas they are scantly expressed in the mesocortical 

dopamine pathway.110–111 Thus, aripiprazole, by acting as a D2 autoreceptor agonist, may 

decrease dopaminergic tone selectively in the striatum. Combined with antagonist activity at 

postsynaptic D2 receptors in vivo,105 this pharmacology may contribute to its unique clinical 

effects. Finally, aripiprazole’s functional effects at the D2 receptor vary depending on 

signaling pathway, cell type, and cellular context62, 64, 98, 112–113 providing evidence that it 

may be a biased agonist at the D2 receptor in vivo62, 64, 98, 112–113. How its unique 

intracellular signaling effects impact clinical symptoms is not known.

Despite extensive D2 receptor occupancy, aripiprazole exhibits a relatively low risk for EPS 

and no risk of hyperprolactinemia—both caused by chronic D2 receptor blockade.22, 114–115 

Aripiprazole may even reduce prolactin secretion in certain patients, potentially via its D2 

receptor partial agonist effects.50 Besides partial agonist activity at D2 receptors, 

aripiprazole’s agonist activity at 5-HT1A receptors, from partial to full agonist depending on 

cellular system, may also contribute to its efficacy and reduced side effects, relative to 

FGAs.46–47, 62, 101, 116–118 Aripiprazole activates somatodendritic 5-HT1A receptors, 

reducing serotonin release and subsequently increasing dopamine release in the cortex, 

which may translate to treat negative and cognitive symptoms of schizophrenia.119–120 

Similarly, SGAs, such as clozapine and ziprasidone, that can attenuate negative and 

cognitive symptoms are also 5-HT1A partial agonists121–123 and enhance central dopamine 

release via activation of 5-HT1A receptors.124–125 More recently, it was shown that the 

ability of clozapine to reverse phencyclidine-elicited cortical desynchronization—a model of 

neural activity underlying negative symptoms— requires activation of 5-HT1A receptors.126

Relative to SGAs, such as clozapine and olanzapine, aripiprazole has a lower propensity to 

induce weight gain.50, 127 SGAs are potent 5-HT2C and H1 antagonists or inverse agonists—

likely contributing to their obesity side effects.127 Aripiprazole, however, is a partial agonist 

at the 5-HT2C receptor, and the selective 5-HT2C agonist, lorcaserin (Belviq®), is effective 

at decreasing weight in humans.127–129 Nevertheless, some patients taking aripiprazole gain 

weight, and its putative antagonist activity at histamine H1 receptors (Ki ~29 nM, Table 1), 

which is associated with weight gain,45, 62 may offset beneficial effects of 5-HT2C partial 

agonism. Much less is known about the contribution of aripiprazole’s other targets—
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including 5-HT2B (which it binds with highest affinity), 5-HT7, D3, and adrenergic α1a—to 

its mechanism of action, though each of these targets warrants further investigation. For 

example, new evidence links inactivation or knockout of 5-HT2B receptors to impulsivity 

both preclinically and clinically.130–131 This is intriguing in light of recent reports of serious 

impulse control deficits and compulsive behaviors in a small group of patients taking 

aripiprazole.132 Although immediate focus moved to aripiprazole’s dopamine agonist 

activity, aripiprazole’s highly potent inverse agonist activity at 5-HT2B receptors may also 

contribute to impulsive and compulsive behavior.

In preclinical studies of rats and rabbits, teratogenic and developmental toxicity effects of 

aripiprazole are observed at doses 2–11 times the maximum recommended human dose 

(based on area under the curve comparisons) (FDA document NDA No. 21-436). These 

findings guided designation of aripiprazole to pregnancy risk category C. However, the 

evidence for serious adverse fetal events in humans remains weak due to a lack of well-

designed, clinical trials. A recent, prospective, cohort study assessed the risk of major 

malformations in infancy following exposure to aripiprazole in the first trimester of 

pregnancy. Results show an absolute risk of 3.13% (N = 96), not different from the risk 

associated with exposure to any SGA antipsychotic, 1.3% (N = 312), or unexposed infants, 

0.6% (N = 177).133 Though, small sample sizes and wide confidence intervals may have 

obfuscated actual differences. These data corroborate an earlier study in pregnant women 

taking aripiprazole (N = 86 vs 172 unexposed).134 Although this latter study reports a 

significantly increased rate of pre-term delivery (odds ratio = 2.30; 95% CI 0.32–16.7) and 

restricted fetal growth (odds ratio = 2.97; 95% CI 1.23–7.16) in the aripiprazole group. The 

aripiprazole dosing regimen, however, was not controlled. Furthermore, approximately one 

third of patients taking aripiprazole reported also smoking tobacco and drinking alcohol 

while pregnant, known risk factors for prematurity and restricted fetal growth.134–135 

Aripiprazole is detected in human breast milk, and women taking aripiprazole are advised 

not to breastfeed.136 Considering the increased risk of a psychiatric relapse and of adverse 

pregnancy outcomes in schizophrenic patients, (e.g. stillbirths)137 a reduction in dose or a 

postponement of treatment should be assessed on a case-by-case basis.

The most commonly reported side effects of aripiprazole are akathisia in adults and tremors 

in adolescents with schizophrenia.70, 83, 138–140 Also, adjunctive treatment with 

antidepressants carries a black box warning of an increased risk of suicidal thoughts and 

behavior in patients 24 years of age and younger.70, 141 Elderly patients treated off-label for 

dementia-related psychosis are at an increased risk of death, and a significant dose-response 

relationship exists between aripiprazole and cerebrovascular events in the elderly.70, 142–144 

Other side effects include dizziness, drowsiness, sedation, insomnia, somnolence, weight 

gain, drooling, restlessness, anxiety, and headaches.70, 138, 145

HISTORY AND IMPORTANCE TO NEUROSCIENCE

Pharmacotherapy for schizophrenia began in the early 1950s with the discovery that the 

FGA chlorpromazine produced a powerful, non-narcotic, calming effect, reducing agitation 

in hospital patients undergoing surgery. Not long afterwards it was tested in psychotic 

patients, and proved tremendously effective, so much so that it freed many from 
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institutionalization, and spawned the “psychopharmacological revolution”.146 

Chlorpromazine and later SGAs, such as clozapine, were found to be dopamine receptor 

antagonists, inspiring the dopamine hypothesis of schizophrenia. This hypothesis has 

withstood the test of time. Despite intensive research efforts to discover new drug targets for 

schizophrenia, all approved antipsychotics share activity at dopamine receptors as an 

essential part of their pharmacology. FGAs and SGAs block dopamine D2 receptors, and 

vanquish positive symptoms of schizophrenia that result from hyperactivation of the striatal 

dopamine system. They are less effective at treating negative and cognitive symptoms, 

which are believed to result from hypoactivation of the mesocortical dopamine system. 

Though, a careful clozapine treatment regimen can alleviate some negative and cognitive 

symptoms, which may be due to its unique pharmacology at serotonin receptors. [Pointedly, 

clozapine remains the most effective antipsychotic, yet because of the risk of 

agranulocytosis, a potentially fatal condition caused by suppression of white blood cells,147 

it is only approved for treatment-resistant schizophrenia and for reducing suicidal behavior 

in patients with schizophrenia or schizoaffective disorder.50, 148] FGAs and SGAs carry 

inherent serious side effect risks. Namely, FGAs are fraught with EPS and 

hyperprolactinemia issues, and many SGAs cause metabolic syndrome, obesity, and type II 

diabetes.69, 149–150

Side effect issues of FGAs and SGAs and their limited efficacy in treating negative and 

cognitive symptoms in schizophrenia provided the impetus and the opportunity for drug 

discovery targeting novel biological targets or pharmacological mechanisms, which seeded 

the discovery of aripiprazole. In the late 1970s, Otsuka scientists were exploring 2(1H)-

quinolinone derivatives for anti-histamine functionality devoid of central nervous system 

side effects when they fortuitously discovered compounds with antipsychotic activity in 

preclinical tests.151 Compounds were derivatized into a series of (4-phenyl-1-

piperazinyl)alkoxy-2(1H)-quinolinone molecules. Lead candidates, such as OPC-4392, were 

selected based on their agonist activity at presynaptic D2 autoreceptors, a then novel, 

alternative approach for reducing dopaminergic activity compared to direct blockade of 

postsynaptic D2 receptors.151–152 This rationale was based, in part, on observations that D2 

autoreceptors are predominantly expressed in the striatal dopamine system. Activation 

would reduce dopamine synthesis there, without largely impacting cortical dopamine 

activity.

OPC-4392’s D2 autoreceptor agonist activity was assessed ex vivo and in vivo. Ex vivo, in 

rat striatal slices, OPC-4392 dose-dependently inhibited L-DOPA formation—an indirect 

measure of inhibition of tyrosine hydroxylase, which is the key enzyme for dopamine 

synthesis. This effect did not involve direct suppression of tyrosine hydroxylase activity, and 

it was reversed by the D2 receptor antagonist, sulpiride, suggesting a presynaptic D2 receptor 

mechanism.153 In vivo, in anesthetized rats, OPC-4392 inhibited ventral tegmental area 

(VTA) dopamine spikes elicited by nucleus accumbens stimulation (antidromic effects), an 

effect blocked by simultaneous application of a D2 receptor antagonist, providing evidence 

of D2 autoreceptor agonist effects in the ventral striatum.154 In addition to dopamine 

autoreceptor agonist effects, OPC-4392 was also purported to block postsynaptic D2 

receptors, based on observations that it inhibited behaviors in mice elicited by the D2 
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receptor agonist apomorphine and reversed the inhibitory effect of apomorphine on 

acetylcholine release in rat striatal slices.155

OPC-4392 showed efficacy in preclinical behavioral models of psychosis at doses that did 

not induce catalepsy, a model of EPS.151 For example, it attenuated jumping behavior in 

mice treated with the dopamine precursor L-DOPA and dopamine releaser, 

methamphetamine. OPC-4392 also prevented lethality caused by high dose 

methamphetamine. Despite the promising preclinical data, clinical development for 

schizophrenia was halted. “Unpublished observations” from clinical studies included an 

improvement in negative symptoms without EPS, but an aggravation of positive symptoms 

due to an “activation” effect.105 Nevertheless, these clinical studies corroborated a link 

between dopamine autoreceptor agonism and efficacy to treat negative symptoms with low 

EPS liability, found earlier using terguride.156

Beginning with OPC-4392, structure activity relationships were used to increase antagonist 

potency at postsynaptic dopamine receptors to treat positive symptoms, while maintaining 

autoreceptor agonism to treat negative symptoms.105 By replacing the –propoxy linker in 

OPC-4392 with –butoxy, the 2,3-dimethyl moiety with 2,3-dicholoro, and by changing the 

carbostyril moiety to 3,4-dihydrocarbostyril, aripiprazole (OPC-14597) was discovered. The 

approach for developing aripiprazole closely paralleled OPC-4392, which was used as a 

prototype to guide the preclinical development of aripiprazole. Relative to OPC-4392, 

aripiprazole has nearly equipotent agonist activity at presynaptic dopamine autoreceptors in 
vivo, but has increased antagonist potency at postsynaptic dopamine receptors.105

Its dopamine autoreceptor agonist activity was determined by its efficacy to block increases 

in DOPA caused by reserpine and by gamma-butyrolactone in several brain regions; effects 

that were reversed by haloperidol. Moreover, like OPC-4392, direct application of 

aripiprazole inhibited VTA dopamine neurons, an effect blocked by a D2-selective receptor 

antagonist, domperidone, but not a D1-selective receptor antagonist, SCH-23390, suggesting 

agonist activity at D2 autoreceptors.157 A recent clinical neuroimaging study, however, 

shows that aripiprazole does not affect dopamine synthesis, even at doses that occupy up to 

79% of striatal D2 receptors, challenging the conclusion that activation of D2 autoreceptors 

is a critical mechanism for its antipsychotic effects.158 The doses, 3–9 mg oral, used in this 

study are lower than the typical prescribed, starting dose for adults with schizophrenia, 10 

mg. Also, this study involved a single, acute treatment in healthy subjects, so conclusions 

should be taken with caution.

Aripiprazole’s antagonist activity at postsynaptic receptors was inferred in preclinical 

studies by its failure to induce both locomotion in mice treated with reserpine, and 

contralateral rotations in rats with striatal 6-hydroxydopamine lesions—both behaviors are 

observed after postsynaptic dopamine receptor activation. Additionally, aripiprazole 

inhibited apomorphine induced stereotypy, locomotion, and ipsilateral rotations in a kainic 

acid striatal lesion model at potencies >10-fold relative to OPC-4392, suggesting more 

potent antagonist activity at postsynaptic D2 receptors. Aripiprazole’s ED50 doses in these 

models were substantially less than its ED50 for inducing catalepsy, together suggesting 

antipsychotic activity without EPS.105
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In the same year that these preclinical results were published, Otsuka reported aripiprazole’s 

efficacy in both positive and negative symptoms of schizophrenia with a low risk of EPS, 

minor weight gain, and without significant prolactin elevation, results later 

corroborated.66, 159 As clinical data on aripiprazole’s efficacy accumulated in the following 

decades, it was found to be effective in treating numerous neuropsychiatric disorders 

(described under Approved Indications).

The discovery of aripiprazole broke ground, because of its novel agonist activities at D2 

autoreceptors that translated to efficacy for positive, negative, and cognitive symptoms with 

reduced side effects. Remarkably, or as if aligned with the history of antipsychotic drug 

discovery in general, it wasn’t until after clinical trials for schizophrenia that aripiprazole’s 

pharmacological activity at 5-HT1A receptors was discovered. Clozapine, a partial agonist at 

5-HT1A, shares a similar history. These discoveries were important for neuroscience, as they 

helped unveil the interaction between 5-HT1A receptors and cortical dopamine 

neurotransmission, and they guided rational antipsychotic drug discovery targeting 5-HT1A 

receptors to reduce negative and cognitive symptoms. Since aripiprazole, other 

antipsychotics designed to possess 5-HT1A agonist activity have been approved, including 

cariprazine, asenapine, and brexpiprazole.

Schizophrenia pathophysiology is more than appreciably complex, involving genetic and 

environmental factors interacting with neurodevelopmental factors, and basic science 

remains crucial for uncovering new biological targets for schizophrenia drug discovery. 

There has been much research into other neural circuits impacted in the disease, such as the 

glutamate and acetylcholine systems.160–163 Moreover, basic science has led to the 

discovery of new biological mechanisms for existing antipsychotics. For example, new 

research shows that aripiprazole inhibits microglia activation, an anti-inflammatory effect 

that may have clinical utility for schizophrenia.164–166 Aripiprazole has inspired and 

continues to inspire new questions regarding the neurobiological mechanisms of 

schizophrenia.
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Figure 1. 
Chemical structures of aripiprazole (OPC-14597, left) and its predecessor OPC-4392 (right).
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Figure 2. 
PubMed-indexed citations containing “aripiprazole” in their Abstract (1995–2016).
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Figure 3. 
Structures of phase I metabolites of aripiprazole (adapted from FDA document NDA No. 

21-436). Dehydroaripiprazole is the major metabolite after chronic dosing, and is 

pharmacologically active.
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Scheme 1. 
Synthesis of aripiprazole reported in the primary literature.
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Table 1

Aripiprazole: Receptor Affinity Profile

Receptor Target Ki, nM Radioligand and Source

“High” Affinity (Ki < 30 nM)

Serotonin 5-HT2B 0.4 [3H]LSD*

Dopamine D2 0.95 [3H]NMSP, PDSP Certified

Dopamine D3 5.4 [3H]NMSP*

Serotonin 5-HT1A 5.6 [3H]8-OH-DPAT, PDSP Certified

Serotonin 5-HT2A 8.7 [3H]Ketanserin*

Serotonin 5-HT7 10 [3H]LSD, PDSP Certified

Serotonin 5-HT2C-INI 22 [125I]DOI*

Adrenergic α1a 25 [125I]HEAT, PDSP Certified

Histamine H1 29 [3H]Pyrilamine, PDSP Certified

“Moderate” Affinity (Ki = 30–300 nM)

Adrenergic α1b 34 [125I]HEAT, PDSP Certified

Adrenergic α2c 38 [3H]Clonidine, PDSP Certified

Serotonin 5-HT1D 63 [3H]GR-125743, PDSP Certified

Adrenergic α2a 74 [3H]Clonidine, PDSP Certified

Adrenergic α2b 102 [3H]Clonidine, PDSP Certified

Adrenergic β1 141 [125I]Pindolol, PDSP Certified

Adrenergic β2 163 [125I]Pindolol, PDSP Certified

“Low” Affinity (Ki > 300 nM)

Dopamine transporter, D1, D4, D5, serotonin transporter, 5-HT1B, 5-HT1E, 5-HT3, 5-HT5a, 5-HT6, muscarinic M1, M2, M3, M4, M5, nicotinic 
α7, α1β2, α2β2, α2β4, α3β2, histamine H2, H4, norepinephrine transporter– all PDSP Certified. Δ-opioid*, β-opioid*, κ-opioid*

Ki values obtained from the NIMH Psychoactive Drug Screening Program database, http://pdsp.med.unc.edu/pdsp.php; search conducted 

02/17/2017. Affinities were determined by displacement of radioligand from human cloned receptors. *Shapiro et al., 2003
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