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Abstract

Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21

(C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in

young adult animals. The mechanisms of this neuroprotective action are varied, and may

include direct and indirect effects of AT2R activation. Our objectives were to assess the

long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of

stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain

of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg)

after ischemic stroke induced by transient monofilament middle cerebral artery occlusion

resulted in protective effects that were sustained for up to at least 3-weeks post-stroke.

These included improved neurological function across multiple assessments and a signifi-

cant reduction in infarct volume as assessed by magnetic resonance imaging. We also

found AT2R expression to be on neurons, not astrocytes or microglia, in normal female

and male mouse brains. Stroke did not induce altered cellular localization of AT2R when

assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotec-

tion previously characterized only during earlier time points using stroke models in young

animals is sustained long-term in aged rats, implying even greater clinical relevance for the

study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Fur-

ther, it appears that this sustained neuroprotection is likely due to a mix of both direct and

indirect effects stemming from selective activation of AT2Rs on neurons or other cells

besides astrocytes and microglia.
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Introduction

Targeting of angiotensin type 2 receptors (AT2R) in ischemic stroke by pharmacological activa-

tion has reproducibly induced decreases in infarct size and improvements in neurological func-

tion in young adult rodents when measured at early (� 7 days post-stroke) time points [1–9].

For example, our group was the first to report that post-stroke activation of AT2Rs with a selec-

tive agonist, Compound 21 (C21), was effective at reducing stroke-induced brain damage when

administered systemically to 8–10 week old rats [4]. The mechanisms for these neuroprotective

actions of AT2R in stroke appear to be multiple, and potentially include neurotrophic, anti-

inflammatory, anti-chemotactic and anti-oxidant actions, as well as increasing neurogenesis,

angiogenesis and cerebral blood flow [10, 11]. In addition to this, AT2R expression may be

increased in ischemic brain regions after stroke [12–15] and contribute to the protective effects

of AT2R agonists.

Despite these advances in demonstrating the protective role of AT2R agonists and the

mechanisms involved, questions remain regarding the protective actions of AT2R in ischemic

stroke. First, if AT2R agonists are to be considered as a potential novel therapeutic for ischemic

stroke, it is essential to verify that the protective actions of these agents are sustained beyond

the initial days after stroke. Second, it is also critical that these beneficial actions of AT2R ago-

nists are demonstrated to occur in aged rats as more clinically-relevant model of human dis-

ease. Third, to better understand the mechanisms of action of AT2R agonists in stroke, it is

important to assess the actual cellular localization of AT2R in the brain following ischemic

stroke. This would help with understanding which brain cells display an increase in AT2R

after stroke and which of the above-listed actions of AT2R are direct. However, progress in

this area has been hampered by limitations of the available immunostaining and autoradiogra-

phy techniques.

To address these points, in the present study, we have investigated the potential sustained

neuroprotective effects of systemically administered C21 at reducing infarct volume and

improving neurological function in aged Sprague Dawley rats using a transient middle cere-

bral artery occlusion (MCAO) model of ischemic stroke. We have also used a BAC-transgenic

AT2R reporter mouse, an animal in which in every cell containing AT2R exhibits green fluo-

rescence [16], to determine the cellular localization of AT2R within the cerebral infarct zone

after ischemic stroke.

Materials and methods

Ethical approval

These experiments were approved by the Institutional Animal Care and Use Committee of the

University of Florida and conducted according to the National Institutes of Health Guide for

the Care and Use of Laboratory Animals, 8th Ed. (2011). We have additionally adhered to the

ARRIVE guidelines [17] in experiment conduct and reporting.

Animals and housing

Rats (1 per cage) were housed in specific pathogen-free, temperature-controlled facilities

(24 ± 1˚C; 12–12 hour light–dark cycle) with ad libitum access to standard chow and water.

Aged male Sprague-Dawley rats (n = 28, 18–20 months, 600-800g) were purchased from Hill-

top Laboratories (Scottdale, PA, USA). Adult male AT2R reporter mice (n = 17, 6–8 months,

25-35g) were bred in the laboratory of Eric Krause (Department of Pharmacodynamics, Uni-

versity of Florida). This transgenic mouse model was generated to express green fluorescence
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protein (GFP) driven by AT2R regulatory sequences, with the result that all AT2R+ cells fluo-

resce green [16]. All animals were drug- and test- naïve prior to inclusion in this study.

Assessments of neurological function

Bederson and garcia exams. Post-stroke neurological function was assessed using modi-

fied Bederson and Garcia scoring scales as we have described previously [4, 18–20].

Paw adhesive test. Functional sensorimotor deficits after stroke were sensitively assessed

by applying a 1 cm diameter adhesive tape to the contralateral impaired paw and recording the

latency to touch and removal [21]. Times that exceeded two minutes were recorded as 120 sec-

onds. Each session included three trials, and measurements were recorded as the average of

the two best trial times per session. Rats underwent two paw adhesive sessions of training

before stroke followed by serial post-stroke assessments.

Rotarod test. Rats also underwent rotarod testing, each session of which consisted of 3–5

trials in which rotations accelerated from 4 per minute to 40 rotations per minute over several

minutes. The average of the two best times per time point were normalized to the baseline

scores to obtain a percentage of baseline. Rats were given two sessions of pre-training followed

by serial post-stroke assessments.

Intraluminal transient MCAO

Mice underwent transient MCAO using the intraluminal filament method as described previ-

ously [22]. This procedure was performed under isoflurane anesthesia. Through a ventral mid-

line neck incision, the right common carotid artery (CCA), external carotid artery (ECA), and

internal carotid artery (ICA) were carefully isolated. Silk suture, size 4–0, was used to perma-

nently ligate the common carotid artery and the ECA was temporarily blocked using a vascular

clip. A second silk suture was then loosely tied around the bifurcation of the CCA, followed by

a small incision in the CCA approximately 2 mm proximal to the carotid bifurcation. Through

this incision, a 7–0 silicone-coated filament was inserted and gently directed distally (normally

8–9 mm for mice and 18–20 mm for rats) along the ICA until a mild resistance was encoun-

tered indicating the branching of the anterior and middle cerebral artery. This occluding fila-

ment was tied in place for 45 minutes, during which time the animal could recover from

anesthesia under close monitoring in a temperature controlled environment. Several minutes

prior to the end of the occlusion period, animals were re-anesthetized, and the filament was

removed to allow reperfusion of the MCA territory, followed by permanent ligation just proxi-

mal to the bifurcation of the ECA and the ICA from the CCA using the previously placed silk

suture. Sham surgeries consisted of isolation of the CCA and permanent suture ligation with-

out monofilament insertion.

Experimental protocols

Experiment 1. To evaluate the long-term effects of post-stroke systemic administration of

C21 in aged animals, rats (n = 28) were randomly assigned to receive intraperitoneal injections

of sterile saline (0.9%) or C21 (0.03mg/kg) at 90 minutes, 1 day, and 2 days following intralum-

inal transient MCAO. The outcome measures were neurological function, assessed at 4 hours,

and 1, 3, 7, 14, 21, and 28 days after stroke, and infarct volume as assessed by magnetic reso-

nance imaging (MRI) at three-weeks post-stroke. MRI was chosen for infarct volume analyses

because using TTC staining (as in our previous work [4]) was not possible in the current

study, as we wanted to examine sustained behavioral protection elicited by C21 over 4 weeks

after MCAO.
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Experiment 2. Non-stroke brains from male (n = 3) and female (n = 5) AT2R reporter

mice [16] were used to assess cellular localization of AT2R under control conditions. Addi-

tional male AT2R reporter mice were subjected to sham surgery or 45 minutes of intraluminal

transient MCAO followed by euthanasia and tissue fixation by cardiac perfusion with saline

followed by 4% paraformaldehyde (~50mL each) at 7 days post-stroke (n = 6 stroke and n = 3

sham) or 14 days post-stroke (n = 5 stroke and n = 3 sham). Brains were harvested and post-

fixed in 4% paraformaldehyde overnight followed by 30% sucrose until sectioning.

Anesthesia, analgesia, and euthanasia

Anesthesia for animal surgeries was induced using 100% O2/4% isoflurane and maintained

using 100% O2/2% isoflurane. Post-operative analgesia was provided using buprenorphine

(0.05 mg/kg, subcutaneously, Hospira Inc., Lake Forest, IL, USA). Euthanasia was under deep

anesthesia (5% isoflurane) by decapitation for rats or cardiac perfusion for mice.

Magnetic resonance imaging scans and image analysis

At three weeks after stroke induced by intraluminal transient MCAO, aged rats from were

taken to the University of Florida’s Advanced Magnetic Resonance Imaging and Spectroscopy

Facility (AMRIS) for MRI using methods developed by Dr. Marcelo Febo (University of Flor-

ida, Department of Psychiatry) and described here. During imaging, rats were anesthetized

under 1.5% isoflurane gas, placed in a body tube cradle, and setup in a 96 surface transmit/

receive radio frequency coil system used for high-resolution imaging on a Magnex Scientific

4.7 Tesla MR scanner. T2 relaxometry pulse sequences were run on a VnmrJ 3.1 console (Agi-

lent, Palo Alto, CA, USA). Core body temperature and respiratory rates were monitored

throughout the experiments. For T2 relaxation, the following parameters were used: echo time

(TE) = 37.5 ms, repetition time (TR) = 2000 ms, target b value = 1269.92 s/mm2, field of view

25.6 mm2 along the read and phase directions and 1.5 mm along the slice direction, and data

matrix of 96 x 96 x 8 brain slices. Signal averaging was used to increase signal to noise. Images

were imported to ImageJ (NIH) for processing of T2 maps. T2 maps were reconstructed from

a log linear regression of the multi-TE value datasets. Infarct volume was measured by an

investigator blinded to treatment conditions. Infarct area was calculated for each of the eight,

consecutive coronal MRI brain slices, and the total volume of infarct for each slice was calcu-

lated by multiplying the infarcted area by the thickness of the slice (1mm). It was clear that the

most rostral brain slice (# 1) and the two most caudal brain slices (#’s 7 and 8) displayed either

no or minimal infarct in both the control and C21-treated groups, and so were excluded from

the analysis. Thus, total hemispheric infarct volume was assessed by averaging data from MRI

brain slices 2, 3, 4, 5 and 6 in both the control and C21-treated groups; slices 2, 3 and 4 are

equivalent to the brain area analyzed by TTC staining in our previous studies on C21 [4]. In

T2 images, the area of infarct appears lighter than healthy tissue due to the extra free water

content from edema.

Inclusion and exclusion criteria

Among the 28 aged rats that underwent intraluminal transient MCAO, five died in the initial

48-hours post-stroke (4 from control and 1 from C21 group), and an additional five were

excluded (3 from control and 2 from C21 group) based on having met both the following

exclusion criteria: 1) No or very limited neurological deficits by behavioral assessments at one

day post-stroke; 2) no evidence of infarct on magnetic resonance imaging at three-weeks post-

stroke. Mouse surgeries were without mortality or exclusion.

Sustained neuroprotection in aged rats by AT2R activation with C21

PLOS ONE | https://doi.org/10.1371/journal.pone.0180738 July 3, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0180738


Randomization and allocation concealment

Animals were identified by an assigned number and randomized using the randomize func-

tion in Microsoft Excel. Neurological assessments and analyses of all samples were performed

by investigators blinded to group allocation.

Immunohistochemistry and micrograph imaging

GFP immunoreactivity (measured as a direct index of AT2R expression) and its co-localization

with neurons, microglia, or astrocytes was assessed using 30μm brain sections obtained from

AT2R reporter mice brains fixed as described above in Experimental Protocols Experiment 2.

Sections were primary labeled with mouse anti-HuC/D (human neuronal protein, 1:500) or

mouse anti-NeuN (neuronal nuclear antigen, 1:500), rabbit anti-Iba-1 (ionized calcium bind-

ing adaptor molecule 1, 1:1000), rabbit anti-GFAP (glial fibrillary acidic protein, 1:1000), or

chicken anti-GFP (green fluorescence protein, 1:500), and secondary labeled with Alexa

Fluor1 donkey anti-mouse 488 or donkey anti-rabbit Cy3 before mounting in polyvinyl alco-

hol or Vectashield with DAPI (4’,6-diamidino-2-phenylindole) followed by fluorescence imag-

ing using either an Olympus BX41 fluorescence microscope or a Zeiss AxioImager fluorescent

Apotome Microscope with Axiovision 4.8.2 software.

Chemicals

Chicken anti-GFP and mouse anti-HuC/D were purchased from ThermoFisher Scientific Life

Technologies (Grand Island, NY), mouse anti-NeuN from Millipore (Bedford, MA, USA), rab-

bit anti-Iba-1 from Wako (Osaka, Japan), and rabbit anti-GFAP from Sigma-Aldrich

(St. Louis, MO). (Alexa Fluor1 donkey anti-rabbit 594 and anti-mouse 488 were from Molec-

ular Probes, Invitrogen (Carlsbad, CA, USA). Alexa Fluor1 donkey anti-rabbit Cy3, donkey

anti-mouse Cy3, and donkey anti-chicken 488 were from Jackson ImmunoResearch Laborato-

ries, Inc. (West Grove, PA, USA). Vectashield mounting medium with DAPI was from Vector

Laboratories (Burlingame, CA, USA). All other chemicals were purchased from Fisher Scien-

tific (Pittsburgh, PA, USA).

Compound 21

Compound 21 (C21; MW 497.6) is a selective agonist for the AT2R (Ki of ~0.4 nM for the

AT2R, and >10 μM for the angiotensin type 1 receptor) [23]. C21 was prepared freshly for

each experiment. It was dissolved in 0.9% saline at a concentration of 1.0 mg/ml, and was then

diluted in the same solvent to a concentration of 0.03 mg/ml. It was stored on ice until ready

for use. C21 was injected intraperitoneally at a dose of 0.03 mg/kg, i.e. a 600g rat was injected

with 0.6 ml of 0.03mg/ml C21 solution.

Data analyses

Data are expressed as means ± SEM. Sample size calculations assumed a standard deviation of

15%, an effect size of 15%, power of 0.8, and alpha< 0.05. Statistical significance was evaluated

with the use the Mann-Whitney test.

Results and discussion

Sustained neuroprotection by post-stroke AT2R agonist C21 in aged rats

To assess the long-term efficacy of post-stroke injections of C21in aged rats, experiments were

performed as described in Experiment 1 of the Experimental Protocols section of the Methods.

Sustained neuroprotection in aged rats by AT2R activation with C21
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This experiment was designed to test whether AT2R-dependent neuroprotection that has been

reported in young animals during the initial days after stroke could be durably induced in a

model that more closely approximates the population of aged stroke patients. Intraperitoneal

injections of C21 (0.03mg/kg) starting at reperfusion after 90 minutes of intraluminal transient

MCAO, resulted in sustained improvement in neurological function as assessed by Bederson

and Garcia exams (Fig 1A and 1B), paw adhesive testing (Fig 1C and 1D), and rotarod perfor-

mance (Fig 1E), beginning in the first 24 hours after stroke and persisting through at least 3

weeks post-stroke.

Analysis of total hemispheric infarct volume, as assessed by volumetric analysis of magnetic

resonance images of MRI brain slices 2, 3, 4, 5 and 6 at 3-weeks post-stroke, demonstrated that

C21-treatment elicited a significant (p = 0.019) decrease in cerebral infarct volume (Fig 2A–

2C). Shown in Fig 2B and 2C are representative MRI images taken from 0.9% saline and

C21-treated rats, illustrating a greater level of edematous tissue (white area) within the slices

from the saline group.

The AT2R is a promising new target for neuroprotective treatments in ischemic stroke.

We demonstrated in these experiments that among aged rats, post-stroke administration of

C21, an AT2R agonist, results in sustained significant reductions in infarct volume and

improvements in neurological function. It is also noteworthy that of the five aged rats that

died during the initial 48-hours post-stroke, 4 were from the control group, with only 1

from the C21 group, a further indication of the protective action of this AT2R agonist.

These data represent an important step on the pathway to translating this experimental

treatment toward clinical application. The Stroke Treatment Academic Industry Roundta-

ble (STAIR) criteria recommend that preclinical testing of neuroprotective compounds

include experiments in aged animals, be replicated in multiple stroke models, and assess

multiple outcome measures over a sustained period of weeks, among other criteria [24].

The design of our study addresses several of these criteria for the first time regarding com-

pounds targeting AT2Rs in preclinical studies. Until now, studies were performed in young

adult rats, both healthy [4, 7, 9] and hypertensive [1, 3, 6], and in mice [2, 5, 8] with assess-

ments typically taken out to only several days post-stroke. Here, we found that the neuro-

protective effects observed in these studies in young animals were reproduced in aged rats

(18–20 months), which are also highly likely to suffer from metabolic syndrome and related

disorders (unpublished assessments), and that the benefits of C21 treatment were sustained

for at least 3 weeks after stroke (Figs 1 and 2).

Our analysis was complicated by the unexpectedly high variability in infarct volumes

among the control animals in this study, which may have resulted at least in part from dif-

fering levels of resolution of the stroke-induced edema as measured by MRI at 21-days post

MCAO. We suspect that the repair mechanisms activated in the aged rat brain lead to a

highly variable degree of recovery of the cerebral vasculature and accompanying edema

that may not fully reflect the degree of neuronal loss and recovery that is evidenced by the

functional data (Fig 1). It is also possible that variability in recovery is greater in the control

rats versus the C21 treated rats, where protection has occurred. Addition of an earlier mea-

surement of infarct volume (e.g. 1 week) could likely have provided more clarity on this

question, but the fragile health of these aged animals has been found in our hands to pro-

hibit the use of prolonged general anesthesia too close to the time of stroke surgery. Having

now been reproducibly demonstrated in a broad variety of relevant preclinical conditions

to induce neuroprotective effects, this protective axis of the renin angiotensin system sta-

nds as an especially promising target for clinical testing toward a new and efficacious treat-

ment for ischemic stroke.

Sustained neuroprotection in aged rats by AT2R activation with C21
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Fig 1. Post-stroke intraperitoneal-injected C21 results in sustained improvements in neurological

function in aged rats. Behavioral tests were performed at the time points indicated after stroke (black arrow)

in rats treated with intraperitoneal injections of saline (n = 8, grey triangles) or C21 (0.03mg/kg, n = 11, black

circles), and included the Bederson exam (A), Garcia exam (B), paw adhesive time to touch (C) or removal

(D) of paw adhesive, and rotarod performance time (E). Note: n = 3 saline and 4 C21-treated rats for the

rotarod test. Data are mean ± SEM; *p<0.05 versus control for respective time points by Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0180738.g001
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Effect of stroke on distribution and cellular localization of brain AT2Rs in

reporter mice

To characterize the cellular location of AT2R, we imaged brain sections from middle-aged (6–

8 month old) AT2R reporter mice as described in Experiment 2 of the Experimental Protocols

section of the Methods. Immunostaining of coronal brain sections from non-stroke AT2R

reporter mice revealed that the cellular location of AT2R in the cerebral cortex did not differ

between female and male mice (Fig 3). Specifically, in mice from both genders, AT2R were

localized to NeuN–positive cells (neurons, Fig 3E and 3F), but were absent from GFAP-posi-

tive cells (astrocytes, Fig 3A and 3B) and Iba-1 positive cells (microglia, Fig 3C and 3D).

To determine whether glia express AT2R following ischemic stroke, we performed intra-

luminal transient MCAO in AT2R reporter mice followed by assessments of AT2R co-localiza-

tion with astrocytes (GFAP), microglia (Iba-1), and neurons (HuC/D). We did not find any

co-localization of AT2R with the astrocytic marker GFAP (Fig 4A–4D) or the microglial

marker Iba-1 (Fig 4E–4H) in any brain regions either ipsilateral or contralateral to the stroke

at 7- or 14-days post-insult. Higher power micrographs showed no overlap of staining even in

instances of close proximity of GFAP+ (Fig 4D) or Iba-1+ (Fig 4H) cells to the AT2R+ cells. By

contrast, co-localization with neuronal marker HuC/D was clear in these AT2R+ cells (Fig 4I).

There are few studies of AT2R expression, in part due to limitations of available techniques

to localize this receptor. The available data indicate a time course for early changes in AT2R

expression following stroke. Previous studies in rats found increased AT2R expression in the

Fig 2. Post-stroke intraperitoneal injections of C21 result in long-term reductions in infarct volume in aged rats. Magnetic resonance images (MRIs)

were obtained three weeks after induction of ischemic stroke by 90-minute monofilament occlusion of the middle cerebral artery followed by post-stroke

treatment with control solution (0.9% saline; n = 7) or C21 (0.03mg/kg, n = 10). Infarct volume was computed as described in the Methods. (A) Bar graphs are

the composite infarct volume for MRI slices 2, 3, 4, 5 and 6 under each treatment condition. Data are mean ± SEM; *p = 0.019 as compared to respective

control slices. Also shown are eight representative MRI slices (1 = rostral; 8 = caudal) slices from animals treated with either 0.9% saline (B) or C21 (C).

https://doi.org/10.1371/journal.pone.0180738.g002
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Fig 3. Cellular location of AT2R within the cerebral cortex is not different between female and male

AT2R reporter mice. Representative high power micrographs from cerebral cortical brain regions of naïve

female (A, C, and E) or male (B, D, and F) AT2R reporter mice with staining for cells immunopositive for

GFP-AT2R (green, left column), GFAP (red, rows A and B), Iba-1 (red, rows C and D), or NeuN (red, rows E

and F), along with DAPI co-staining (blue, right column). AT2R: angiotensin II type 2 receptor; GFAP, glial

fibrillary acidic protein; GFP: green fluorescence protein; Iba-1: ionized calcium-binding adapter molecule 1;

NeuN: neuronal nuclear antigen.

https://doi.org/10.1371/journal.pone.0180738.g003
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Fig 4. Ischemic stroke does not change the cellular localization of AT2R, which remain stably expressed on neurons.

Representative high power micrographs of GFAP (red) or GFP-AT2R (green) immunopositive cells (A-D) or of Iba-1 (red) or

GFP-AT2R (green) immunopositive cells (E-H). High power micrographs of HuC/D (red) and GFP-AT2R (green) immunopositive

cells (I-K). Areas of higher magnification (b, c and f, g) are identified by the yellow inset in panels a and e, respectively. AT2R:

Sustained neuroprotection in aged rats by AT2R activation with C21
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ipsilateral hemisphere at 24 hours following cerebral ischemia [12]. A later study found that

AT2R expression and distribution at 2-days post-stroke were increased as compared to brains

from sham operated rats [13]. Most recently, it was reported that the number of AT2R+ cells

in ischemic regions increased to a peak level at 3 days post-intraluminal MCAO and decreased

by 7 days toward sham levels [15]. Additionally, this study reported co-localization of AT2Rs

with neuron markers NeuN, a finding that is in line with our observations (Figs 3 and 4). The

absence of a change in the cell-subtype AT2R expression does not disrupt the consensus from

earlier studies that describes an early time course of AT2R expressional changes after stroke,

since our evaluation was performed as a non-quantitative assessment and at later time points,

7 days and then again at 14 days. As such, it is possible that there is early up-regulation of

AT2Rs in the initial hours and days within neurons and possibly other cell types following

stroke with subsequent down-regulation in non-neuronal cells.

We found the AT2R to be localized to neurons (Figs 3E, 3F and 4I–4K), where its activation

by AT2R agonists in ischemic stroke models has been shown to reproducibly reduce markers

of apoptosis or increase neuron survival in vitro [1, 2] and in vivo [6, 7]. Studies have also dem-

onstrated a robust anti-oxidative effect of AT2R activation in ischemic brain tissue [1, 4, 5, 7],

with treatments resulting in lower levels of nitric oxide synthase enzymes and superoxide and

nitrative free radicals that are damaging to neurons. Activation of AT2Rs appears also to be

linked to the production/release of neurotropic factors such as BDNF [6, 7] and the anti-

inflammatory chemokine IL-10 [7], while simultaneously decreasing the expression of TNF-α
and certain potentially deleterious chemoattractant factors, such as monocyte chemoattractant

protein-1 (also known as C-C chemokine ligand 2) and C-C chemokine receptor type 2 [4, 5]

that could induce excessive inflammatory cell migration and activation in areas of vulnerable

tissue.

Regarding glial cells, AT2R activation after stroke induction does not appear to have a pro-

found effect on the activation status of astrocytes and microglia/monocytes since several stud-

ies showed no significant effects on markers of their activation [4, 6, 7]. This is in line with our

observation that astrocytes and microglia do not express AT2Rs at baseline (Fig 3A–3D) or

after stroke (Fig 4A–4H), and thus cannot be directly modulated by AT2R agonists. One study

found an increased number of activated microglia in response to pre- and post-stroke treat-

ments with an AT2R agonist, but not post-stroke only treatments [6]. An earlier study from

this group also showed that post-stroke treatments with the peptide AT2R agonist CGP42112

led to increased activation of microglia in the core, but not penumbra [3]. Activation of AT2Rs

on neurons may reduce neuroinflammation in and around this area through indirect neuronal

AT2R-driven mechanisms, such as by C21-induced decreases in C-C chemokine receptor and

ligand expression noted above, which may limit invasion into damaged areas of inflammatory

cells. We also note that due to the relatively limited distribution of brain AT2Rs to neurons

only, another possible explanation for the protective action of C21 is the non-selective activa-

tion of the Mas receptor, especially considering the potential for inhibition of C21-induced

effects by Mas receptor antagonist A-779 [25, 26].

Our analysis does not preclude an important role for vascular cells, such as endothelial

cells, pericytes, and smooth muscle cells, in the protection afforded by AT2R signaling via

effects on both perfusion and angiogenesis. AT2R activation has been found to increase cere-

bral blood flow during periods of reperfusion [2] and of recovery in the days following ische-

mia [5], although data from our group did not uncover an acute effect of AT2R activation by

angiotensin II type 2 receptor; GFAP, glial fibrillary acidic protein; GFP: green fluorescence protein; HuC/D: human neuronal

protein; Iba-1: ionized calcium-binding adapter molecule 1. Scale bars in panels A, E and I are 50 μm.

https://doi.org/10.1371/journal.pone.0180738.g004
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intraperitoneal injection of C21 on cerebral blood flow under conditions of baseline or during

endothelin-1 induced MCAO [4]. At high enough doses, C21 has been shown to induce vasor-

elaxation in isolated rat basilar arteries [6]. Treatment with C21 initiated at the time of reperfu-

sion in mice has also found to decrease the permeability of the BBB [5], although the

mechanisms remain unclear. AT2R activation by C21 in the hours after stroke may also result

in increased vessel growth in ischemic penumbral areas and subsequent tissue salvage, since

C21 increases the number of vascular profiles in the rat brain by treatment and that the migra-

tion of human cerebromicrovascular endothelial cells in a BDNF-dependent manner [7].

VEGF expression in stroke is also persistently higher following treatments with C21 [9]. It

remains to be clarified whether these vasoprotective effects of AT2R activation are due to indi-

rect signaling mediated by neuronal AT2R activation or due to direct signaling by AT2Rs that

may be expressed on vascular cells.

In summary, the sustained neuroprotection in ischemic stroke that we and others have

observed is likely driven directly by neuronal or possibly vascular AT2R signaling in combina-

tion with indirect effects on glial and inflammatory cells. Having now been reproducibly dem-

onstrated in a broad variety of relevant preclinical conditions to induce neuroprotective

effects, this protective axis of the renin angiotensin system stands as an especially promising

target for clinical testing toward a new and efficacious treatment for ischemic stroke.
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