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Abstract

Clinical evidence suggests that mood and behavioral symptoms in Premenstrual Dysphoric 

Disorder (PMDD), a common, recently recognized, psychiatric condition among women, reflect 

abnormal responsivity to ovarian steroids. This differential sensitivity could be due to an 

unrecognized aspect of hormonal signaling or a difference in cellular response. In this study, 

lymphoblastoid cell line cultures (LCLs) from women with PMDD and asymptomatic Controls 

were compared via whole transcriptome sequencing (RNA-seq) during untreated (ovarian steroid-

free) conditions and following hormone treatment. The women with PMDD manifested ovarian 

steroid-triggered behavioral sensitivity during a hormone suppression and add-back clinical trial, 

and Controls did not, leading us to hypothesize that women with PMDD might differ in their 

cellular response to ovarian steroids. In untreated LCLs, our results overall suggest a divergence 

between mRNA (e.g., gene transcription) and protein (e.g., RNA translation in proteins) for the 

same genes. Pathway analysis of the LCL transcriptome revealed, among others, over-expression 

of ESC/E(Z) complex genes (an ovarian steroid-regulated gene silencing complex) in untreated 

LCLs from women with PMDD, with more than half of these genes over-expressed as compared 

to Controls, and with significant effects for MTF2, PHF19, and SIRT1 (p<0.05). RNA and protein 

expression of the 13 ESC/E(Z) complex genes were individually quantitated. This pattern of 

increased ESC/E(Z) mRNA expression was confirmed in a larger cohort by qRT-PCR. In contrast, 

protein expression of ESC/E(Z) genes was decreased in untreated PMDD LCLs with MTF2, 
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PHF19, and SIRT1 all significantly decreased (p<0.05). Finally, mRNA expression of several 

ESC/E(Z) complex genes were increased by progesterone in Controls only, and decreased by 

estradiol in PMDD LCLs. These findings demonstrate that LCLs from women with PMDD 

manifest a cellular difference in ESC/E(Z) complex function both in the untreated condition and in 

response to ovarian hormones. Dysregulation of ESC/E(Z) complex function could contribute to 

PMDD.

Introduction

Premenstrual dysphoric disorder (PMDD) is a clinically distinct affective disorder that was 

recently included in DSM 5 [1]. Women with PMDD have recurrent and distressing mood 

and behavioral symptoms during the luteal phase of the menstrual cycle that remit within a 

few days of menses. The prevalence of PMDD is 2–5% of women of reproductive age [2–5].

PMDD symptoms are triggered by ovarian steroids, estradiol and progesterone (hereafter 

referred to as “E/P”) but peripheral E/P levels and hypothalamic-pituitary-ovarian axis 

function are normal [6]. Moreover, symptoms in PMDD are reported to occur mainly in 

ovulatory menstrual cycles [7]. When E/P production is suppressed by gonadotropin 

releasing hormone (GnRH) receptor agonists, approximately 55–70% of women with 

PMDD experience remission of symptoms [8–13], which recur when physiologic doses of 

E/P are added back [8]. In contrast, asymptomatic Controls undergoing identical hormone 

manipulations experience no changes in mood [8]. These findings indicate that PMDD may 

be a disorder of cellular response to E/P. Neuroimaging studies have identified behaviorally-

relevant brain regions that are modulated by E/P, and some are differentially responsive in 

women with PMDD, including the amygdala, striatum, medial orbitofrontal cortex, anterior 

cingulate cortex, and prefrontal cortex [14–23] (and for review see [24]. This suggests that 

the differential behavioral response to E/P in PMDD is accompanied by ovarian steroid-

related alterations in the activity of neuronal circuits underlying reward, social cognition, 

and affective states [25].

Despite these observations, a cellular basis for PMDD has not been identified. In postpartum 

depression (PPD), another form of reproductive endocrine-related depression in which 

normal physiologic levels of E/P have been reported to precipitate depressive symptoms 

[26], abnormalities in estrogen receptor (ER) signaling [27] and estrogen-mediated DNA 

methylation patterns in genes regulating hippocampal synaptic plasticity have been observed 

[28].

Cellular models involving neuronal cells and lymphoblastoid cell lines (LCLs) have many 

advantages, but also distinct limitations for the study of brain diseases [29–31]. Studies 

employing LCLs have investigated several forms of both inherited diseases [32,33] and 

neuropsychiatric conditions [29,34–36]. Cultured LCLs offer the opportunity to identify 

trait-like biochemical characteristics potentially related to disease phenotypes, and enable 

comparisons between women with and without PMDD previously studied in our clinical 

trials, which would not have been possible if we employed cultured neurons. We 

hypothesized that women with PMDD are genetically predisposed to altered cellular 

response to physiologic E/P changes. To test this, we used LCLs from women with PMDD, 
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in whom symptom remission and recurrence (i.e., E/P sensitivity) was confirmed by E/P 

manipulation, and asymptomatic Controls [8]. In this study, we addressed the following 

questions: 1) Are ovarian steroid hormone receptor mRNA and protein expressed in LCLs? 

LCLs express 35–80% of genes expressed in the CNS [37], thus we first attempted to 

demonstrate that LCLs from women with PMDD and controls express ovarian steroid 

receptors such that they would potentially be capable of responding to E and P. 2) Does the 

transcriptome of untreated (i.e., no exposure to E/P) LCLs different in those from women 

with PMDD compared to control women? and 3) Does ovarian steroid treatment of LCLs 

differentially alter Extra Sex Combs/Enhancer of Zeste (ESC/E(Z)) complex gene 

expression in cells from PMDD women compared with control women?

Materials and Methods

Participants and Cell Lines

Women between the ages of 18 and 48 years who were medication-free (at time of 

recruitment), with regular menstrual cycles (range, 21 to 35 days), not medically ill and not 

pregnant were included in the clinical study[8].

Women with PMDD were self-referred in response to newspaper advertisements or were 

referred by their physician. The diagnosis of PMDD was confirmed prospectively prior to 

entry into this study by self-administered symptom ratings (a 100mm visual analog scale) 

completed daily over three consecutive menstrual cycles. In addition to meeting DSM IV 

criteria for PMDD [38], each woman had an increase of at least 30 percent (relative to the 

range of the scale she used) in average self-ratings of negative moods (irritability, 

depression, anxiety, and mood stability) in the seven days before menses compared with the 

ratings for the seven days after the end of menses, in at least two of the three baseline cycles, 

and as described previously [8,39]. Functional impairment was assessed through self-reports 

of distress and functional disability on the daily rating form (DRF) [40]. The DRF criteria 

for functional impairment were as follows: a DRF score of 2 (minimal) or higher on one of 4 

questions related to functional impairment (i.e., stayed at home or avoided social activities, 

had conflicts or problems with people, symptoms interfered with relationships at work or 

home, or symptoms interfered with work productivity) in at least 3 days out of 7 days pre-

menses. Finally, DRF ratings and the results of both a semi-structured interview (Menstrual 

Screening Form, unpublished) and a self-report questionnaire (Menstrual Assessment Form, 

unpublished) were employed to confirm that all women met the required number of 

symptoms specified in the DSM criteria for PMDD. Additionally, women with significant 

negative mood symptoms (on the DRF) occurring during the follicular phase of the 

menstrual cycle were excluded. These are more stringent criteria than those of DSM-IV[38].

Women without PMDD (henceforth referred to as Control women) were recruited, and 

studied, in parallel. Absence of premenstrual mood symptoms was confirmed using the same 

daily rating scales during a two-month baseline period.

Women with PMDD had no other current Axis I psychiatric diagnosis within the past two 

years per Structured Clinical Interview for DSM-IV (SCID) [41], while Control women had 

neither current nor past Axis I diagnosis as confirmed by SCID.
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All women received remuneration according to guidelines from the NIH Healthy Volunteer 

Office. The study protocol was reviewed and approved by the National Institute of Mental 

Health Institutional Review Board, and all women gave written informed consent.

Selection of participants for generation of lymphoblastoid cell lines (LCLs), 
and Hormone Manipulation Protocol—Two main sets of LCLs were created for this 

study: a focus sample (Group 1- women with PMDD and who underwent the GnRH-agonist 

hormone intervention, Group 2 – Controls, asymptomatic women who also underwent the 

GnRH-agonist hormone intervention), and a larger replication sample (Group 3 – women 

with PMDD, Group 4 – Controls; neither of whom were selected on the basis of their 

symptom response to the GnRH-agonist hormone intervention but who did meet the same 

inclusion criteria [and diagnostic evaluation] as Groups 1 and 2). All women in the focus 

sample had completed a GnRH agonist-induced hormone manipulation protocol (see Figure 

S1). Within the focus sample, Group 1 (n=10) consisted of PMDD women whose symptoms 

were suppressed by leuprolide (Lupron) and recurred during either of the E/P add-back 

conditions [8]. Thus all women with PMDD in Group 1 met criteria for response to Lupron 

and experienced a recurrence of PMDD symptoms during addback. The criteria employed to 

characterize women with PMDD as responders to Lupron and experiencing a recurrence of 

symptoms on either estradiol or progesterone addback were as follows (and for additional 

details of outcome measures and response patterns please see [8]): responders were defined 

by self-reported improvement during the last month of Lupron confirmed by the absence of 

weekly [7–day] average DRF scores of >3 for irritability, sadness or anxiety (indicating less 

than moderate severity of the particular symptom)[42,43]. Significant recurrence of PMDD 

symptoms was defined by weekly average DRF scores of greater than three for either 

irritability, anxiety, or sadness [5]. Group 2 (n=9) consisted of asymptomatic Controls with 

no PMDD and who were asymptomatic throughout the entire protocol. Controls were 

defined by absence of affective symptoms throughout the 6 month hormone manipulation 

protocol (i.e., no weekly average DRF score ≥2). Groups 1 and 2 were matched for age and 

ethnicity (see Table 1).

The replication sample consisted of a totally independent sample of women relative to those 

women included in Groups 1 and 2: Group 3 (n=24) - women with prospectively confirmed 

PMDD and Group 4 (n=24) - Controls confirmed by absence of menstrual cycle-related 

mood symptoms by two cycles of daily ratings. Although Groups 3 and 4 represent less 

restricted PMDD/Control phenotypes (i.e., PMDD not required to demonstrate symptom 

remission and recurrence under ovarian suppression and hormone add-back, respectively), 

studies indicate that approximately 70% of women with PMDD experience symptom 

remission with GnRH agonist treatment [8,44] and that 90% of controls do not develop 

clinically significant mood symptoms on leuprolide [45]. Samples from women with PMDD 

and controls were collected from 1997–2010 (mean 2003) and year of collection and 

subsequent storage did not significantly differ between the two groups. Nor did year of 

collection predict levels of gene expression in the ESC/E(Z) complex genes.
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Experimental and Technical Methods

Culturing and hormone treatments of LCLs—Epstein Barr virus (EBV)-transformed 

LCLs were made as described [46], cultured under identical conditions, and studied during 

untreated conditions or following treatment with estradiol or progesterone for 24 hours, as 

described in supplemental methods. Henceforth, the term untreated LCLs will refer to those 

cells that were not exposed to ovarian steroids and treated cells to those that were exposed to 

ovarian steroids. For generation and maintenance of LCLs (immortalized lymphoblastoid B 

cell lines), venous blood samples from PMDD and Control women were obtained at the 

same times, and cultured in the same way for similar intervals as described in more detail in 

Supplementary Material.

mRNA quantification using whole transcriptome RNA sequencing and 
quantitative reverse transcription-polymerase chain reaction (qRT-PCR)—First, 

mRNA was quantitated by qRT-PCR (see below) to demonstrate that LCLs express sex 

steroid receptor genes (and therefore express the machinery to respond to E and P. Fifteen 

cell lines each from Groups 3 and 4 were examined, thus, addressing a main mechanism by 

which ovarian steroids could alter cellular function. Results are shown in Figure 2.

Second, mRNA sequencing was performed on untreated (i.e., steroid free) PMDD and 

control LCLs from the focus set (Groups 1 and 2) [see Figure 1]. Results are in Figures 2, 3, 

S2–4, and Tables 2, S2–7, OL1, and OL2. Pathway analyses of the PMDD and control LCL 

transcriptomes were performed with Gene Set Enrichment Analysis (GSEA) and Database 

for Annotation, Visualization, and Integrated Discovery (DAVID). We used the following 

criteria to prioritize significant gene sets for further confirmation and more detailed analysis 

of physiological relevance: priority to gene sets with smaller numbers of genes, modulation 

by ovarian hormones, and published involvement in other mood disorders.

Third, LCLs from Groups 1 and 2 were exposed 24 hours in vitro to either estradiol or 

progesterone (100 nmol each). RNA-seq analyses were performed in hormone-treated and 

untreated LCLs from women with PMDD and Controls. Experimental results are in Figures 

3, S5 and S7. Thus whole transcriptome mRNA-sequencing was performed in the focus 

sample under untreated conditions and after E/P exposures.

Finally, qRT-PCR assays were used in the replication samples (Groups 3, 4) for validation 

and replication of differences in mRNA expression of the 13 ESC/E(Z) complex genes 

identified in the initial pathway analyses of mRNA expression in untreated LCLs. qRT-PCR 

was performed in these groups during untreated conditions only.. In the replication study, 

which targeted 13 genes implicated in gene set analysis, we elected to measure these 

transcripts in a larger, independent sample, and via an independent method. The estimated 

sample size for the replication sample was based on the effect sizes observed in the 

differences in mRNA expression between PMDD and controls in untreated cells (see 

Statistics section below).

Total RNA of high quality (A260/A280 ratio in the range of 1.8–2.0) and high integrity 

(RIN>9.0), as measured by an Agilent® 2100 Bioanalyzer, was isolated from LCLs as 

described in supplemental methods. Transcriptome analysis was performed on cDNA 
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libraries from ribosomal RNA-depleted total RNA, using an Illumina Genome Analyzer 

(GAIIx). An average of 17.7 million 36 bp RNA-seq reads for each sample were retrieved 

and parsed. Sequence read mapping and quantification was performed with the Illumina 

pipeline CASAVA_v1.8.1 and CLC Genomics Workbench (version 6.5) as described in 

supplemental methods. TaqMan qRT-PCR assays of 4 hormone receptor genes and 13 ESC/

E(Z) genes were performed on a 7900HT Real-Time PCR System as described in 

supplemental methods.

Pathway analysis of transcriptome data—GSEA was performed on transformed 

mRNA-expression (reads per kilobase of transcript per million mapped reads [RPKM]) 

values using gene ontologies (GO) database in the CLC Genomics Workbench (version 6.5) 

program; results were sorted by enrichment score. Additionally, the genes identified as 

differentially expressed by RNA sequencing were independently analyzed using DAVID, 

version 6.7. For gene set analyses, reflecting gene pathways or networks, and as described in 

more detail in Supplementary Methods, we used two different tools, GSEA and DAVID, that 

access pre-annotated gene ontology terms and calculate significance based on over-

representation of transcripts within pre-defined gene sets, and is corrected for multiple 

testing using the False Discovery Rate (FDR, Benjamini Hochberg) method. [47].

Interaction network of ESC/E(Z) complex genes and hormone receptors—A 

gene network was generated using GeneMANIA (genemania.org) by inputting genes of the 

ESC/E(Z) complex and 4 ovarian steroid receptor genes identified as expressed in LCLs. 

Weights of interactions between input and edge genes were determined by linear regression. 

The gene network analyses were not based on the present data, but on existing data bases, 

using the current data only for selecting the genes included in these network analyses. The 

search was performed in September, 2015, and reflects all published works in the 

GeneMANIA database at that time.

Protein quantification using ProteinSimple© western analysis—Protein levels 

were quantitated both to confirm the presence of sex steroid receptor proteins in LCLs from 

women with PMDD and controls, and to measure differences in protein products between 

untreated cells from women with PMDD and those from controls (Groups 1 and 2) in the 

ESC/E(Z) complex genes identified by pathway analysis (see Figure 1). Protein was 

extracted from LCLs with radio-immunoprecipitation buffer, and total protein from each 

sample was measured by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., CA, cat # 

500-0006). Target protein levels were quantified using an automated capillary-based size 

sorting system “WES” from ProteinSimple© [48]. All procedures were performed with 

manufacturer’s reagents according to the user manual (primary antibody information is in 

Table S1); any changes from standard protocol also are noted in Table S1.

Statistical Analyses

The sample size estimates for the replication sample were based on the effect sizes (Cohen’s 

d = 1.6 – 1.7) for MTF2 and SIRT1 in the case/control RNA-seq comparisons.
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For RNA-seq, multiple comparisons were corrected using the False Discovery Rate (FDR, 

Benjamini Hochberg) method. RNA-seq was analyzed using normalized RPKM values. 

CLC Genomics Workbench (version 6.5) was used for statistical analyses including pathway 

analyses described earlier.

After identifying significant case/control differences in expression of ESC/E(Z) complex 

genes through pathway analyses, differences between RNA expression (i.e., RNA-seq and 

qRT-PCR) in untreated LCLs from both the focus sample (Groups 1 and 2) and the 

replication sample (Groups 3 and 4), were compared by Student’s t-test (two-tailed) with a 

nominal uncorrected p value of < 0.05. Similarly, diagnosis-related differences in both RNA 

expression (qRT-PCR) and protein levels of sex steroid receptor genes were compared by 

Student’s t-test (two-tailed) with a nominal uncorrected p value of < 0.05. Protein levels of 

ESC/E(Z) complex genes in untreated LCLs were compared between PMDD and controls in 

an identical manner in the focus sample.

Finally, comparisons of RNAseq results between untreated and hormone-treated cell cultures 

for the 13 genes of the ESC/E(Z) complex, two-way ANOVAs were performed for each gene 

of interest, followed by Sidak’s multiple comparisons post-hoc test in cases of a significant 

interaction, with hormone condition (i.e., untreated versus hormone exposure) as the within-

groups factor and diagnostic group (i.e., PMDD versus Control) as the between-groups 

factor. Analyses were performed using Prism6 software (GraphPad, Inc.).

RESULTS

Cultured LCLs express ovarian steroid receptors

Ovarian steroid receptors, which represent important components of E/P cellular response, 

were present in LCLs. Using qRT-PCR we found mRNA expression for ER alpha (ESR1) 

and ER beta (ESR2), and the progesterone membrane component receptors, PGRMC1 and 

PGRMC2 (Figure 2A). We did not detect mRNA for the progesterone nuclear receptor (PR). 

We confirmed presence of proteins for these four genes using ProteinSimple© western 

analysis (Figure 2C–F).

Global differences in mRNA expression between untreated (no hormone treatment) PMDD 
and Control LCLs

Whole transcriptome (RNA-seq) analysis of untreated Control and PMDD LCLs was used to 

identify genes whose mRNA expression differed between the two groups. Pooling 

sequencing reads from all samples, mRNA expression was detected for 15,055 RefSeq 

genes. The total number of mapped reads in PMDD and Control LCLs was 13,552 and 

13,488, respectively (Table S2). The scatter and volcano plots of levels of all gene transcripts 

in untreated PMDD versus Control LCLs are shown in Figure S2.

Exactly 1000 gene transcripts were differentially expressed in untreated LCLs from PMDD 

versus Control at an uncorrected p-value of <0.05 (Table OL1). Among these transcripts, the 

117 that were >2 fold different in expression are listed in Table S3. Approximately equal 

numbers were up- and down-regulated.
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Pathway analysis using GSEA of the untreated LCL transcriptome of PMDD (Group 1 vs 

Group 2) identified the ESC/E(Z) complex (Extra Sex Combs/Enhancer of Zeste complex) 

as one of the most significant pathways (lower tail permutation-based p=0.007) from among 

the top GSEA pathway hits listed in Table 2, and the full list of pathway hits in Table S4. We 

focused on genes in the ESC/E(Z) pathway, in accordance with pre-defined criteria (see 

Methods), and due to the previously reported roles for these genes in ovarian steroid 

response [49–57]Transcripts representing the ESC/E(Z) complex were upregulated in the 

LCLs from the PMDD group compared with those from the control group.

We also subjected the PMDD transcriptome data to pathway analysis using DAVID. DAVID 

returned 645 pathways significantly different between untreated PMDD and Control LCLs 

(Table OL2) and again identified the ESC/E(Z) complex as one of the more significant 

pathways (p=0.003). Additionally, two of the ESC/E(Z) genes, MTF2 (nominal p=0.001, 

fold change −1.14) and SIRT1 (nominal p=0.0039, fold change −1.2) were also present in 

the list of 1000 genes differentially expressed in untreated LCLs (Table OL1, highlighted in 

yellow).

At the individual gene level in the untreated transcriptome data for the ESC/E(Z) complex 

there was an overall pattern of up-regulation in PMDD LCLs: both MTF2 and SIRT1 were 

significantly higher in PMDD (uncorrected p=0.001 and p=0.004, respectively), and EED, 
HDAC2, and SUZ12 were higher (trend) in PMDD (uncorrected p=0.06, p=0.09, and 

p=0.05, respectively). Although not significant, AEBP2, EZH1, EZH2, RBBP4, and RBBP7 
also showed a pattern of increased mRNA expression in PMDD LCLs. Of the 13 ESC/E(Z) 

transcripts, only PHF19 and JARID2 were lower in PMDD (uncorrected p=0.09, p=0.62, 

respectively). No directional difference was observed in PHF1. Original group data are 

shown in Figure S3A and presented as percent difference between the PMDD and Control 

group means in Figure 2G.

Quantitative real-time PCR (qRT-PCR) in the larger replication set of untreated LCLs 

(Groups 3 and 4) validated many of the RNA-seq findings for the ESC/E(Z) complex. 

Overall, the pattern of up-regulation of mRNA for the ESC/E(Z) complex genes in PMDD 

LCLs was again observed. HDAC2 (p=0.012), MTF2 (p=0.001), SIRT1 (p=0.003), and 

SUZ12 (p=0.045) were significantly higher in PMDD, and RBBP7 (p=0.076) was higher at 

a trend level of significance in PMDD. Although not significant, AEBP2, EED, and RBBP4 
also showed increased mRNA expression in PMDD. In contrast to the RNA-seq results, we 

did not observe significant down-regulation of either JARID2 or PHF19 in PMDD LCLs by 

qRT-PCR. Original group data are shown in Figure S3B and presented as percent difference 

between the PMDD and Control group means in Figure 2H.

Finally, the protein levels of 7 of the 13 ESC/E(Z) complex genes in untreated LCLs (Group 

1 versus 2), were down-regulated in PMDD compared with Control LCLs (Figure 2I). MTF2 

(p=0.01), PHF19 (p=0.02), and SIRT1 (p=0.01) had significantly lower expression in 

PMDD. No significant differences were observed in AEBP2 (p=0.1), HDAC2 (p=0.1), 

RBBP7 (p=0.6), and SUZ12 (p=0.3), although expression of AEBP2, HDAC2, and SUZ12 

were lower in PMDD LCLs.
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Global changes in transcript expression in PMDD and Control LCLs in response to sex-
steroid (E/P) exposure

Scatter and volcano plots for RNA-seq comparisons of PMDD and Control LCLs (Group 1 

and Group 2) untreated or treated with either E or P after 3–5 days in hormone-free media 

are shown in Figures S4 and S6. The number of transcripts assayed and the number 

differentially expressed (at a nominal p value < 0.05) are reported in Table S2.

For the 13 genes of the ESC/E(Z) complex, RNA-seq differences and results from ANOVAs 

and post hoc comparisons for the E/P treatments are shown in Figures S5 and S7, 

respectively, with statistical results in Table S7. Significant diagnosis by treatment 

interactions emerged for 4 of the 13 ESC/E(Z) complex genes: JARID2 (Figure 3A, p<0.05) 

with decreased expression after E2-treatment in PMDD but not Control LCLs, and EED, 
EZH2, and MTF2 (Figure 3B–D, p<0.05), with increased expression after P4-treatment in 

Control but not PMDD LCLs.

Gene network analyses

We preliminarily explored connections between ER/PGRMC1/2 and the ESC/E(Z) complex 

to elucidate potential mechanisms of the differential response to hormone we had observed. 

Via GeneMANIA (genemania.org) a gene interaction network was generated from inputting 

the 13 ESC/E(Z) genes and 4 ovarian steroid receptor genes expressed in our LCLs. This 

analysis computes connection density and strength of the input genes and identifies “edge” 

genes that are also strongly connected to the network (Figure 4A) and that are potential 

candidates for future studies of mechanisms of differential E/P response in PMDD. This 

analysis revealed that HDAC2 strongly interacts with 9 of the 13 ESC/E(Z) complex genes, 

and is the only gene of the ESC/E(Z) complex whose protein also interacts with a receptor 

for both ESR1 and PGRMC2 (Figure 4B). As indicated in Figure 4B, these HDAC2 

interactions are predominantly protein/protein in nature.

DISCUSSION

We examined the hypotheses that alterations in in vitro cellular function could serve as a 

substrate for the observed ovarian steroid-related behavioral sensitivity in PMDD, and 

whether cellular responses to E/P exposure distinguish women with PMDD from 

asymptomatic matched Controls. The women with PMDD not only met clinical criteria for 

the presence of PMDD, but additionally, all were behaviorally sensitive to E/P based on 

absence of behavioral symptoms (i.e., PMDD symptoms) after ovarian suppression and 

emergence of negative affective symptoms after E/P addback [8]. Controls lacked any 

significant menstrual cycle-related behavioral symptoms. Using an in vitro experimental 

strategy we attempted to detect differences in gene expression in untreated LCLs (i.e., 

absence of ovarian steroid exposure) and differences in steroid sensitivity at the cellular level 

in these highly selected clinical phenotypes. Our findings suggest that LCLs from women 

with PMDD are differentially sensitive to ovarian steroids (i.e., respond differently to 

ovarian steroids) compared with LCLs from Controls, and differ in both untreated and 

ovarian steroid-stimulated mRNA and protein expression of ESC/E(Z) complex genes that 

could mediate this difference.
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Analysis of the 13 gene members of the ESC/E(Z) complex across diagnosis and hormone 

exposure revealed a paradoxical pattern. Twelve of thirteen ESC/E(Z) gene transcripts were 

increased in expression in PMDD, several significantly. However, protein expression of 

these genes tended to be decreased in PMDD LCLs, several significantly so. Significant 

diagnosis-by-hormone effects were observed for four of the members of this gene family.

The ESC/E(Z) complex is a multimeric protein complex that can methylate lysine-27 and 

lysine-9 residues of histone H3, interacts with several noncoding RNAs [58], and is an 

essential gene silencing complex regulating transcription [59,60]. The ESC/E(Z) complex 

consists of 4 core proteins (EZH2, SUZ12, EED, and RBBP4), as well as 9 additional 

proteins (AEBP2, EZH1, HDAC2, JARID2, MTF2, PHF1, PHF19, RBBP7 and SIRT1) that 

can be included or interchanged to create the entire functioning complex. Depending on the 

target tissue or the presence of other activating genes, EZH1 can be substituted for EZH2, 

and RBBP7 can be substituted for RBBP4. The core protein assembly then interacts with a 

polycomb-like protein (PCL) which is either PHF1, PHF19, or MTF2. The four core 

proteins plus the PCL then interact with AEBP2 and/or JARID2, which both bind DNA 

directly to sit down on the target gene, and then is capable of recruiting HDAC2 and/or 

SIRT1 to aid in the ESC/E(Z) complex function of modifying histones through either 

deacetylation or methylation at H3K9 or H3K27. Interestingly, HDAC2 mRNA expression 

was significantly (qRT-PCR) or trending (RNAseq) higher in untreated LCLs from women 

with PMDD compared to Controls, and our GeneMANIA network search identified HDAC2 
as a potential hub connecting sex steroid receptors and members of the ESC/E(Z) complex. 

It is important to note that not all proteins interact all the time, but in fact variation and 

substitution of these components can allow for different tissue-specific functionalities 

[59,61], which could contribute to a differential cellular processing of steroid signaling 

within the CNS and be potentially relevant to the pathophysiology of PMDD. Thus, it will 

be important for future work to study any differences in protein interaction between women 

with PMDD and Controls, and in several different cell types. In vitro studies show that ESC/

E(Z) complex function can be both regulated by E/P [49–54] and also regulate E/P signaling 

in a range of tissues [55–57]. Therefore, the observed alterations in ESC/E(Z) complex gene 

expression potentially could translate into altered steroid signaling and cellular function 

within the CNS and contribute to differential steroid sensitivity in women with PMDD.

PMDD remains a potentially stress-related condition [62], albeit modified by ovarian 

steroids. Pathway analyses may yield some results that are of less obvious relevance than 

others. For example, spliceosomal complexes, ER Golgi compartment membrane, and 

ubiquitin ligase were among the “top hits” in our pathway analyses. Although these may be 

pursued in other “omics” studies, we chose to pursue the ESC/E(Z) complex because of the 

already converging evidence to support the role of this pathway in steroid signal regulation 

and in stress-and affective-related behaviors. A role for the ESC/E(Z) complex in differential 

behavioral responsivity to E/P is thus far indirect, being based on measures of transcript and 

protein expression in an in vitro LCL model, but is further supported by several other 

findings. First, the ESC/E(Z) complex is present in neuronal tissue, where PHF1 modifies 

GABA system function [63]. Modulation of this system by neurosteroid metabolites of 

progesterone has been suggested to be important in the pathophysiology of PMDD [64–66]. 

Second, the function of the ESC/E(Z) complex is differentially regulated in stress-related 
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conditions, in both human and animals [67–74]. Third, ESC/E(Z) complex genes (and their 

target H3K27 methylation) are implicated in depression-like behaviors, circadian function 

[75], antidepressant responsivity [68,76], neuroplasticity [77,78], and neuroprotection [79]. 

In mice, alterations in the expression of SIRT1, a member of the ESC/E(Z) complex, leads to 

changes in anxiety-related behaviors and 5HT system function [80]. In humans, genetic 

variation in SIRT1 has been associated with dimensionally measured anxiety and major 

depression in certain populations [71,80,81]. H3K27 methylation of the trkB receptor is 

increased (postmortem) within the medial orbital frontal cortex of suicide completers [70]. 

Thus, members of the ESC/E(Z) complex have been implicated, more directly in model 

organisms than in human studies, in modulation of many of the systems mediating or 

underlying the regulation of affective adaptation. Our findings in women with PMDD of 

altered ESC/E(Z) complex gene mRNA and protein relative to Controls suggest a biological 

substrate for the risk of recurrent affective destabilization in these women. Alternatively, it is 

possible that the changes in ESC/E(Z) complex we observed could reflect the long-term 

sequelae of a recurrent mood disorder experienced by these women. Finally, there is a 

growing literature documenting the relevance of inflammation in the development, course, 

and possibly treatment response characteristics of mood disorders [82–84]. Several 

epidemiologic studies have reported an association between alterations in specific 

inflammatory factors and the severity of PMS (but not PMDD) symptoms [85,86]. 

Nonetheless, the relevance of these reports to PMDD remains to be determined. LCLs are 

derived from cells of the immune system, and so may over-represent gene pathways related 

to immune response. In our dataset, however, there were no differences in immune pathways 

between control and PMDD LCLs (in neither GSEA nor DAVID analyses). Further, an 

analysis of our RNA-seq data in InnateDB.com, a pathway analysis tool that looks for 

enrichment of innate immunity interactions and pathways, no significant differences 

between groups were found. Nonetheless, our findings of altered gene expression within 

immune-based LCLs could reflect an abnormal immune cell physiology that contributes to 

the pathophysiology of PMDD.

Our findings of a diagnosis-by-hormone interaction of several genes suggest that ESC/E(Z) 

complex function may be differentially expressed in the absence of ovarian steroids and 

differentially regulated in PMDD compared with Controls after short term exposures to E/P. 

These findings showing differences in cellular function, therefore, are analogous to both 

behavioral [8] and neuroimaging [16,17] observations in PMDD in that the same ovarian 

steroid hormonal stimulus elicits a different response in women with PMDD compared with 

controls: affective and behavioral symptoms in women with PMDD (but not controls), as 

well as differential activation of brain regions involved with a range of social and affective 

behaviors. However, the cellular findings represent an in vitro model in which effects of 

many extrinsic factors, such as recent nutrition, stress, or physical activity, have been 

eliminated.

In this study, we also observed differences in steroid receptor gene expression between 

LCLs from women with PMDD and control women. Specifically, cells from women with 

PMDD had significantly increased gene expression (but not protein expression) in ESR1 and 

PGRMC1 (Figure 2A). The difference in the ESC/E(Z) gene complex in PMDD women 

may be attributable to inherited differences in genes that encode ovarian steroid receptors 
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(ESR1, ESR2, PGRMC1 and PGRMC2), all of which we observed are expressed in LCLs. 

For example ESR1, variants were associated to PMDD by Huo et al, [87]. Other genes that 

can modulate ovarian steroid signaling, including genes encoding components of the ESC/

E(Z) complex may also have variants altering ESC/E(Z) function.

We employed an unbiased genome-wide approach, rather than examining changes in 

expression levels of presumed relevant genes. Nonetheless, several limitations of this study 

deserve mention. First, although gene expression of the ESC/E(Z) complex was identified to 

differ in cells from women with PMDD compared to controls in our pathway analyses, 

comparisons of expression levels from individual ESC/E(Z) complex genes between cases 

and controls resulted in only a few genes (MTF2 and SIRT1) in which diagnostic differences 

in expression would remain significant after correction for the multiple comparisons. This 

pattern was observed in both the focus and the replication samples; nonetheless, potential 

diagnostic differences in gene expression (and protein) of individual ESC/E(Z) complex 

genes should be considered preliminary. Finally, the biological relevance of these findings in 

PMDD should be interpreted cautiously until future studies have more thoroughly identified 

the role of ESC/E(Z) complex genes in this condition. Second, we used an LCL-based in 
vitro cellular model that would not be fully informative for functional consequences in 

neurons. We think that the cellular difference we found captures an important component of 

the vulnerability to PMDD. Having said that there are many important elements (both 

upstream and downstream) within the CNS that are not present in LCLs. Furthermore, 

validating these findings in a more authentic model will be a focus of future studies. Cellular 

models, including neuronal cell lines and LCLs, have many advantages, but also distinct 

limitations for the study of brain diseases [29–31]. Compared to fresh samples, for example 

peripheral blood, cultured cells offer the opportunity to identify long-lasting, trait-like, or 

“intrinsic” characteristics. This has been a cornerstone of the use of fibroblast and 

lymphoblastoid cell lines in biochemical genetics. Here, the use of LCLs enabled us to 

compare some 34 women with PMDD and 33 Control women, as would not have been 

possible if we had studied cultured commercially available human neuronal cell lines. LCLs 

have been employed to investigate several forms of neuropsychiatric illness including 

epilepsy, major depression, Alzheimer’s disease, and stress-related conditions [29,34–36]. 

However, important limitations exist in extending our findings both to neuronal cells, to the 

brain, and to our understanding of behavior (as described above). Although the percentage of 

the genes expressed in common between LCLs and neuronal cells is important, the validity 

of the model depends on the system and its functionality. Third, we have not investigated the 

paradoxical relationship between ESC/E(Z) transcript and protein levels that we observed, 

which could reflect post-transcriptional regulation of ESC/E(Z) complex genes (e.g., SIRT1 
[88,89] and MTF2 [90]), or degradation of mRNA or protein. Fourth, we did not study the 

dynamics or downstream molecular effects of the ESC/E(Z) complex itself. Fifth, the 

twenty-four hour exposure to E/P may have been too brief to adequately activate the systems 

involved in the differential expression of ESC/E(Z) complex genes. The choice of a 24-hour 

exposure time is consistent with the time course for cellular steroid signaling and previous 

cellular studies of steroid nuclear signaling [91–93]. LCLs are not intended to be models of 

behavior and there are downstream effects on behavior that could take days to weeks to 

emerge. Sixth, it is possible that women who do not meet the DSM criteria for PMDD could 
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show a similar pattern of symptom remission during ovarian suppression and symptom 

recurrence after ovarian steroid addback. Certainly, all women in this study would meet 

criteria for PMS. Nonetheless, our findings cannot be generalized to the larger group of 

women with PMS who do not meet criteria for PMDD, and it would be only a matter of 

speculation to suggest that these data could apply to women with PMS. Finally, we were 

unable to identify the nuclear PR in LCLs which also could reflect the many downstream 

elements important in brain but not present in LCLs. Nonetheless, we did identify 

expression of both PGRMC1 and PGRMC2, both of which have been identified to serve as 

important transcriptional modifiers within the central nervous system (e.g., hippocampus) to 

mediate neurosteroid signaling, the regulation of synaptic remodeling, neurogenesis, 

neuroprotection and neuroendocrine functions [94–100].

Several issues require future exploration. First, the roles of ER/PR in the mediation of the 

effects of E or P on ESC/E(Z) complex genes remain to be clarified. Our GeneMANIA 

network search identified HDAC2 as the only ESC/E(Z) complex gene that has connections 

to both receptors for ESR1 and PGRMC2 as well as many ESC/E(Z) genes, suggesting 

HDAC2 could serve as the connection between hormone signaling and ESC/E(Z) complex 

function. This is further supported by our significant finding of higher HDAC2 mRNA in 

PMDD LCLs over Control LCLs. Thus the function of HDAC2 in PMDD is potentially 

relevant since HDAC2 plays a pivotal role in transcriptional regulation and is one of the 

primary features of the ESC/E(Z) complex’s operations [101,102]. It is possible that HDAC2 

acts as a hub between hormone signaling and ESC/E(Z) complex stability and/or function, 

which is disrupted in women with PMDD. Second, the apparent discrepancy between higher 

mRNA but lower protein in PMDD compared with Control LCLs may be due to differences 

in miRNA regulation of gene expression and translation, but could also be due to differences 

in assembly, trafficking, or binding of the complex to any of its interacting proteins and 

DNA. Third, the specific set of genes differentially silenced by the ESC/E(Z) complex in 

PMDD and control women were not characterized here. However, several candidate systems 

relevant to PMDD are suggested by recent studies of SIRT1 [80,81] and of enhanced 

estrogen transcriptional regulation in postpartum depression [27]. Finally, the future use of 

iPSC (induced pluripotent stem cells)-derived neurons or glia should be more informative 

about the CNS than LCLs.

It is unclear what allows ovarian steroids to trigger PMDD and why they do so in only a 

susceptible subgroup of women. Certainly, the role of a potential genetic abnormality in 

PMDD was suggested by observations that the heritability of premenstrual syndrome (a less 

severe form of PMDD, cohorts of which would contain women with PMDD) was 

approximately 56% [103]. The findings in this study offer possible explanations for a 

cellular substrate that could mediate PMDD including the following: 1) altered baseline 

expression in PMDD of factors within a major gene silencing pathway suggests a means by 

which steroid signals may be translated - as an enduring trait - into abnormal transcriptional 

events, which may underlie the genesis of pathological behavioral states; 2) although 

disturbed steroid signaling has been presumed to underlie the differential behavioral 

response to changes in ovarian steroids in PMDD, the findings from this study present for 

the first time cellular evidence for abnormal steroid signaling in cells from women with 

PMDD; and 3) as estradiol regulates transcription and translation at multiple levels, 
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previously identified structural variants in ESR1 in PMDD may combine with or contribute 

to the disturbances in the family of transcriptional regulators identified in the LCLs from 

women with PMDD. We have identified an intrinsic cellular difference and pathway that 

could be responsible for the vulnerability to ovarian steroid-triggered affective 

destabilization in women with PMDD. Our findings provide the first evidence of a plausible 

biological substrate for the differential behavioral response to E/P in women with PMDD. 

Further clarification of the role of the ESC/E(Z) complex in PMDD and other reproductive 

endocrine-related mood disorders could identify substrates of risk, and targets for 

intervention, in these prevalent conditions.
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Figure 1. LCL treatments and analyses
Flow chart of LCL experiments. Blood is collected from women with PMDD or 

asymptomatic Controls and transformed into LCLs with Epstein Barr virus. Cells are then 

left untreated or treated with hormone (estradiol or progesterone, 100 nM each) and undergo 

RNA-sequencing. Pathway analyses were applied to results, and selected genes from the 

indicated LCL groups are followed up with qRT-PCR and protein analysis via 

ProteinSimple©.
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Figure 2. mRNA and protein expression for hormone receptors and ESC/E(Z) Complex genes 
comparing untreated Control and PMDD lymphoblastoid cell lines
All graphs are presented as group mean ± SEM. (A–F) Student’s t-test was performed for 

each comparison. (A) qRT-PCR analysis of mRNA expression for hormone receptors ESR1, 
ESR2, PGRMC1, and PGRMC2 in lymphoblastoid cell lines (LCLs), n=15. Relative gene 

expression levels were calculated for ∆CT value with β-actin as the reference control for 

normalization; note a lower ∆CT value indicates higher expression. Both ESR1 and 

PGRMC1 were significantly higher in the PMDD group than the Control group (*p<0.05), 

and ESR2 was higher at a trend level of significance in the PMDD group than the Control 
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group (#p<0.1). (B) Verification of β-actin as a normalizing protein for ProteinSimple© 

western analysis of protein expression in LCLs. The chemiluminescense ratio of β-actin 

over the ProteinSimple© Loading Control (PSCon) was calculated for each group and no 

significant difference was found (n=7, t12=0.02, p=0.9). (C–F) ProteinSimple© western 

analysis of protein expression for hormone receptors ESR1, ESR2, PGRMC1, and PGRMC2 

(n=7). Target protein chemiluminescense was normalized to β-actin or PSCon if there was 

band interference with β-actin, as was the case for ESR2 and PGRMC2. There were no 

significant differences for any of the proteins. For (B–F), representative images of protein 

“bands” from the Compass software are shown below each group. (G–H) All graphs are 

calculated as percent change of values of the PMDD group from the Control group mean. 

Statistical analysis comes from Student’s t-test of the original group means (see 

Supplemental Figure 2). (G) Percent change from control of mRNA expression via RNAseq 

for the 13 genes of the ESC/E(Z) complex (n=9–10). Both MTF2 and SIRT1 were 

significantly higher in the PMDD group than the Control group (*p<0.05), and EED, 
HDAC2, and SUZ12 were higher at a trend level of significance in the PMDD group than 

the Control group (#p<0.1), while PHF19 was lower at a trend level of significance in the 

PMDD group than the control group (#p<0.1). (H) Percent change from control of mRNA 

expression via qRT-PCR for the 13 genes of the ESC/E(Z) complex (n=29–30). HDAC2 
(t43=2.6), MTF2 (t37=3.7), SIRT1 (t46=3.2), and SUZ12 (t42=2.1) were significantly higher 

in the PMDD group than the Control group (*p<0.05), and RBBP7 (t33=1.8) was trending 

higher in the PMDD group than the Control group (#p<0.1). (I) Percent change from control 

of protein expression via ProteinSimple© western analysis for select genes of the ESC/E(Z) 

complex (n=7). NT indicates that protein was not tested. MTF2 (t11=3.4), PHF19 (t12=2.5), 

and SIRT1 (t11=3.2) were significantly lower in the PMDD group than the Control group 

(*p<0.05).
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Figure 3. Selected ESC/E(Z) gene expressions from RNAseq: ANOVAs comparing untreated and 
estradiol- or progesterone-treated Control and PMDD lymphoblastoid cell lines
All graphs are presented as group mean ± SEM using RPKM values from RNA-sequencing. 

Two-way ANOVAs were performed for each gene of interest, followed by Sidak’s multiple 

comparisons post-hoc test in cases of a significant interaction. Untreated Control and PMDD 

lymphoblastoid cell lines compared with estradiol treatment (A) or progesterone treatment 

(B-F). (A) For JARID2 there was a significant interaction effect between diagnosis and 

estradiol treatment (F1,24=5.5, *p<0.05). Expression was significantly decreased after 

estradiol only in the PMDD group (t24=2.5, adjusted p-value<0.05). (B) For EED there was 
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a significant interaction effect between diagnosis and progesterone treatment (F1,29=6.8, 

*p<0.05). Expression was significantly increased after progesterone only in the Control 

group (t29=2.8, adjusted p-value<0.05). (C) For EZH2 there was a significant interaction 

effect between diagnosis and progesterone treatment (F1,29=4.8, *p<0.05). Expression was 

significantly increased after progesterone only in the Control group (t29=2.4, adjusted p-

value<0.05). (D) For MTF2 there was a significant interaction effect between diagnosis and 

progesterone treatment (F1,29=9.2, *p<0.05). Expression was significantly increased after 

progesterone only in the Control group (t29=2.7, adjusted p-value<0.05). Additionally, there 

was also a significant diagnosis effect (F1,29=5.5, *p<0.05) where MTF2 is more highly 

expressed in the PMDD group than the Control group (post-hoc untreated Control vs 

untreated PMDD t29=4.1, p<0.001). (E) For PHF19 there was a significant diagnosis effect 

(F1,29=16.1, *p<0.05) where expression is lower in the PMDD group compared with the 

Control group, but there was no interaction effect between diagnosis and progesterone 

treatment (F1,29=0.1, p=0.7). (E) For SIRT1 there was a significant diagnosis effect 

(F1,29=13.1, *p<0.05) where expression was higher in the PMDD group compared to the 

Control group, but there was no interaction effect between diagnosis and progesterone 

treatment (F1,29=0.5, p=0.5).
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Figure 4. GeneMANIA interaction analysis of ESC/E(Z) and steroid hormone receptor genes
GeneMANIA (genemania.org) was used to generate a gene network analysis inputting the 

13 genes of the ESC/E(Z) complex (AEBP2, EED, EZH1, EZH2, HDAC2, JARID2, MTF2, 
PHF1, PHF19, RBBP4, RBBP7, SIRT1, SUZ12) and the 4 hormone receptor genes (ESR1, 
ESR2, PGRMC1, PGRMC2), whose expression was identified in LCLs. Genes and targets 

are included in the network for the input genes based on weights of interactions with the 

input genes, determined automatically by linear regression. Black circles indicate the input 

genes. Gray circles indicate additional genes identified in the network – a larger circle 
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reflects a higher rank of connection with the input genes. Diamonds indicate miRNA or 

transcription factor targets. A thicker connecting bar between nodes reflects a stronger 

relationship between those two nodes. (A) The expanded network based on a search of these 

17 input genes (September, 2015). The strongest relationships driving this network are 

Predicted Interactions (44.22% weight) and Physical Interactions (41.35% weight). (B) 

Selection of HDAC2 and highlighting its interactions within the predicted network. HDAC2 

shows interactions with 9 of the 13 genes of the ESC/E(Z) complex (7 of them physical), as 

well as several other genes in the network. Importantly, it is the only component of the ESC/

E(Z) complex that interacts with a receptor for both estradiol (ESR1) and progesterone 

(PGRMC2).
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Table 2
Top 20 GSEA results from RNAseq comparing untreated Control and PMDD 
lymphoblastoid cell lines

Results are from the Gene Set Enrichment Analysis (GSEA) by CLC Genomics Workbench (version 6.5) on 

transformed RNA expression values from RNA sequencing of untreated Control (n=9) and PMDD (n=10) 

lymphoblastoid cell lines using gene ontologies (GO) for cellular component with 10,000 permutations. Lower 

tail values reflect a permutation-based p-value, indicating significant difference of the gene set expression 

between groups. The top 20 ranked GO categories showing enrichment in PMDD cell lines over Control cell 

lines are presented. The ESC/E(Z) complex (GO category 35098) has a significant permutation-based p-value 

(lower tail) of 0.007 and has been highlighted here in yellow. Full GSEA results are listed in Table S4.

Category Description # of
Genes

Test
statistic

Lower
tail

502
proteasome complex (GO_REF:0000037 [IEA]
UniProtKB-KW:KW-0647) 51 −9.245 0

5730 nucleolus (GO_REF:0000052 [IDA]) 1049 −19.582 0

5654 nucleoplasm (PMID:16687569 [IDA]) 709 −16.791 2.00E-05

15030 Cajal body (PMID:16687569 [IDA]) 40 −7.516 5.00E-05

22624
proteasome accessory complex (GO_REF:0000024
[ISS] UniProtKB:P62334) 15 −6.323 8.00E-05

5737 cytoplasm (GO_REF:0000052 [IDA]) 2521 −25.887 4.20E-04

5634 nucleus (GO_REF:0000052 [IDA]) 3131 −28.385 5.80E-04

5839
proteasome core complex (GO_REF:0000019 [IEA]
Ensembl:ENSMUSP00000129767) 17 −5.906 6.10E-04

5681 spliceosomal complex (PMID:7935475 [TAS]) 65 −7.412 9.80E-04

781 chromosome, telomeric region (PMID:12768206 [IDA]) 30 −5.967 1.89E-03

5669
transcription factor TFIID complex (PMID:15899866
[IDA]) 17 −5.294 2.30E-03

5813 centrosome (PMID:21399614 [IDA]) 261 −10.45 3.61E-03

19005 SCF ubiquitin ligase complex (PMID:20347421 [IDA]) 21 −5.146 5.43E-03

151
ubiquitin ligase complex (GO_REF:0000002 [IEA]
InterPro:IPR003613) 52 −6.246 6.72E-03

35098 ESC/E(Z) complex (PMID:20075857 [IDA]) 13 −4.622 6.92E-03

5720 nuclear heterochromatin (PMID:10570185 [TAS]) 14 −4.604 7.62E-03

71013 catalytic step 2 spliceosome (PMID:11991638 [IDA]) 56 −6.204 9.23E-03

31461
cullin-RING ubiquitin ligase complex
(GO_REF:0000002 [IEA] InterPro:IPR001373) 10 −4.275 9.69E-03

242 pericentriolar material (PMID:21211617 [IDA]) 15 −4.576 9.87E-03

33116
ER-Golgi intermediate compartment membrane
(GO_REF:0000039 [IEA] UniProtKB-SubCell:SL-0099) 24 −4.945 0.012
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