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Abstract

Observers with normal color vision vary widely in their judgments of color appearance, such as 

the specific spectral stimuli they perceive as pure or unique hues. We examined the basis of these 

individual differences by using factor analysis to examine the variations in hue-scaling functions 

from both new and previously published data. Observers reported the perceived proportion of red, 

green, blue or yellow in chromatic stimuli sampling angles at fixed intervals within the LM and S 

cone-opponent plane. These proportions were converted to hue angles in a perceptual-opponent 

space defined by red vs. green and blue vs. yellow axes. Factors were then extracted from the 

correlation matrix using PCA and Varimax rotation. These analyses revealed that inter-observer 

differences depend on seven or more narrowly-tuned factors. Moreover, although the task required 

observers to decompose the stimuli into four primary colors, there was no evidence for factors 

corresponding to these four primaries, or for opponent relationships between primaries. 

Perceptions of “redness” in orange, red, and purple, for instance, involved separate factors rather 

than one shared process for red. This pattern was compared to factor analyses of Monte Carlo 

simulations of the individual differences in scaling predicted by variations in standard opponent 

mechanisms, such as their spectral tuning or relative sensitivity. The observed factor pattern is 

inconsistent with these models and thus with conventional accounts of color appearance based on 

the Hering primaries. Instead, our analysis points to a perceptual representation of color in terms 

of multiple mechanisms or decision rules that each influence the perception of only a relatively 

narrow range of hues, potentially consistent with a population code for color suggested by cortical 

physiology.
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1. Introduction

Conventional explanations of human color vision are dominated by two fundamental 

theories. One describes the initial absorption of light by the three classes of cones 
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(trichromacy), and the second the subsequent processing of the cone signals within opponent 

mechanisms that represent color in terms of red-green, blue-yellow, and black-white 

dimensions (opponent processing) [e.g. (Hurvich & Jameson, 1957)]. The spectral 

sensitivities of the opponent processes were first characterized by hue-cancelation 

experiments, in which the intensity of a fixed primary hue (e.g. red) was added to null the 

opponent color (e.g. green) in the stimulus (Hurvich & Jameson, 1955). Subsequently, 

Jameson and Hurvich also developed a hue-scaling task, in which observers directly judged 

the strength of the chromatic responses by reporting the proportion of each primary in the 

stimulus (e.g. the proportion of red and yellow perceived in an orange hue) (Jameson & 

Hurvich, 1959). Both techniques supported many of the basic premises of opponent-process 

theory (Hering, 1964): that all hues can be described as a combination of two of the four hue 

primaries; that red and green, and blue and yellow, are mutually exclusive sensations; and 

that the four Hering primaries appear pure or unique in that they cannot as easily be 

perceived as a mixture of other hues (e.g. seeing red as a combination of orange and purple). 

Both cancellation and hue-scaling experiments have also been widely used to quantify the 

opponent processes under a variety of conditions, including how color varies with the 

parameters of the stimulus (e.g. (Abramov & Gordon, 2005, Abramov, Gordon & Chan, 

1991, Jameson & Hurvich, 1956) or as a function of eccentricity (e.g. (Boynton, Schafer & 

Neun, 1964, Hibino, 1992). The spectral sensitivities of the red-green and blue-yellow 

processes can be modeled in terms of the cone sensitivities, thus showing how the cone 

signals are combined to form the opponent channels (De Valois & De Valois, 1993, Wooten 

& Werner, 1979, Wuerger, Atkinson & Cropper, 2005). Such analyses led to a standard two-

stage model of color vision [e.g. (Hurvich & Jameson, 1957)] where hue percepts arise 

directly from the responses in the underlying red-green and blue-yellow mechanisms.

However, while this scheme remains a dominant account of color perception, the neural 

substrate predicted by opponent-process theory remains elusive. The spectral sensitivities of 

the primary cell types in the retina and geniculate do not have the tuning required to account 

for the stimuli that appear unique or pure (De Valois, Abramov & Jacobs, 1966, Derrington, 

Krauskopf & Lennie, 1984). Moreover, color tuning in the visual cortex appears too variable 

to be consistent with only two discrete chromatic dimensions (Kuriki, Sun, Ueno, Tanaka & 

Cheng, 2015, Lennie, Krauskopf & Sclar, 1990, Shapley & Hawken, 2011, Xiao, Wang & 

Felleman, 2003, Zaidi, Marshall, Thoen & Conway, 2014). Such results have led to 

suggestions that cells with the appropriate responses may arise later in the system and that 

chromatic representations undergo transformations at multiple stages, with the neural 

organization mediating color appearance arising at later stages (Brouwer & Heeger, 2009, 

De Valois & De Valois, 1993, Stoughton & Conway, 2008). It has also led to proposals that 

color percepts may be mediated by specialized neural pathways that arise as early as the 

retina (Schmidt, Neitz & Neitz, 2014). The failure to find a clear neural basis for red-green 

and blue-yellow responses has also raised the possibility that these percepts do not reflect 

special states in the brain but rather special characteristics of the environment. For example, 

the blue-yellow axis falls close to the daylight locus, and thus might correspond to a learned 

property of the world (Lee, 1990, Mollon, 2006, Panorgias, Kulikowski, Parry, McKeefry & 

Murray, 2012, Shepard, 1992). By this account, the perceptual null implied by unique hues 

need not reflect a null in the corresponding neural response, for the percept could in 
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principle be tied to an arbitrary pattern of neural activity (Mollon & Jordan, 1997). However, 

many still hold that the phenomenal experience of color revealed by tasks like hue scaling 

ultimately depends on neural processes that directly signal pure hue sensations, and that 

these processes signal only a small number of sensations corresponding to red-green and 

blue-yellow qualia.

In the present study we explored the mechanisms of color appearance by analyzing 

individual differences in hue-scaling functions, using the methods of factor analysis to 

extract the underlying dimensions of variation in hue-scaling judgments. Factor analysis is a 

standard statistical technique for identifying the latent variables or factors contributing to 

variations in a set of measurements or observed variables, based on the correlations among 

the observed variables. For example, an individual who reports a higher than average 

proportion of red at a particular chromaticity is more likely to report more red in nearby 

chromaticities. Thus, the measurements for these stimuli will covary, presumably because 

they both depend on the influence of a common process. Factor analytic techniques have 

been widely used to explore properties of the visual system [e.g.; (de-Wit & Wagemans, 

2016, Jones, 1948, Peterzell, 2016, Thurstone, 1944, Wilmer, 2008)], and in particular, to 

examine the mechanisms of color vision and chromatic processing (Burt, 1946, Dobkins, 

Gunther & Peterzell, 2000, Gunther & Dobkins, 2003, Peterzell, Chang & Teller, 2000, 

Peterzell & Teller, 2000, Pickford, 1946, Webster & MacLeod, 1988). In some cases this 

approach can provide precise quantitative information about the mechanisms and how they 

vary across individuals. For example, individual differences in color matching result from 

several well-characterized processes that influence spectral sensitivity, including the 

densities of inert screening pigments and the absorption spectra of the photopigments, and 

factor analysis can be used to identify and parcel out these different sources of sensitivity 

variation and specify their relative contributions to color matching as well as their values for 

individual observers (MacLeod & Webster, 1988, Webster & MacLeod, 1988). In many 

other cases we know much less about the processes limiting perception and performance. 

However, factor analysis can still provide a valuable tool for constraining the possible 

models of these processes.

Here we used factor analysis to explore the basis for inter-observer variations in hue scaling. 

We reasoned that if these scaling functions did reflect the activity of two processes signaling 

red-green and blue-yellow sensations, then these processes should be evident in the patterns 

of variation revealed by the factor analysis. That is, the analysis should reveal a small set of 

general factors corresponding to the opponent primaries. To test this, we analyzed two 

datasets, one from a previous study that measured hue scaling functions for 59 observers 

(Malkoc, Kay & Webster, 2005), and a second that was collected for the present study. The 

latter was added to provide a finer sampling of both the stimulus set and the scaled 

responses, and because we were also interested in relating the percepts of the observers (as 

measured by the scaling) to measurements of how they verbally labeled the hues. We report 

the relationship between hue scaling and color naming in the accompanying paper (Emery, 

Volbrecht, Peterzell & Webster, submitted). Here we focus on the hue scaling functions and 

how they differ across observers, and what those differences imply about the visual 

representation of color.
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2. Materials and Methods

2.1 Participants

The participants included 26 graduate and undergraduate students from the University of 

Nevada, Reno ranging from ages 18 to 47. A 27th observer was excluded based on the high 

variability of their settings. Sixteen of the observers were female. Undergraduate students 

were provided extra credit in exchange for their participation. All observers had normal 

color vision as assessed by the Cambridge Colour Test, as well as a contrast threshold task, 

and all had normal or corrected-to-normal visual acuity. Each observer participated with 

informed consent, and all procedures followed protocols approved by the University of 

Nevada, Reno's Institutional Review Board, and were conducted in accordance with the

2.2 Stimuli

Stimuli were presented on a SONY Multiscan 500PS Trinitron CRT monitor controlled with 

a Cambridge Research Systems ViSaGe Stimulus Generator, providing 12-bit resolution per 

gun. The monitor was calibrated with a Photo Research PR 655 spectroradiometer with gun 

outputs linearized with a gamma correction. The stimuli had a constant luminance of 20 

cd/m2 and were shown on an 11.3 by 8.5 gray background that had the same luminance as 

the test stimuli and the chromaticity of Illuminant C (CIE 1931 x,y = 0.31, 0.316). 

Luminance was based on photometric measurements and thus stimuli were not adjusted to 

be equiluminant for individual observers. The test chromaticities were based on a variant of 

the MacLeod-Boynton (MacLeod & Boynton, 1979) chromaticity diagram, scaled based on 

previous studies (Webster, Miyahara, Malkoc & Raker, 2000) to roughly equate sensitivity 

along the L vs. M and S vs. LM axes:

LvsM and SvsLM are the chromatic contrasts along the cardinal axes, and lmb and smb are 

the l and s (or r and b) coordinates in the MacLeod-Boynton space. The contrasts are relative 

to the chosen achromatic point in the space (0.6568, 0.01825, the MacLeod-Boynton 

coordinates for illuminant C), and are scaled to roughly reflect equivalent multiples of 

threshold.

Stimuli within this space were defined by a vector with a direction corresponding to the 

chromatic angle, and a length corresponding to chromatic contrast. Contrast was fixed at a 

value of 60, and stimulus angle was varied in 10-deg steps to define 36 test chromaticities. 

These chromaticities were shown foveally in 2-deg uniform squares pulsing for 500 ms, with 

1-s intervals of the gray background between each pulse. The same stimulus was repeated 

until the observer recorded their setting. Observers viewed the display binocularly from a 

distance of 200 centimeters in an otherwise dark room.

2.3 Hue scaling

The hue-scaling task involved judging each hue as a relative percentage of red, green, blue 

or yellow, by using a handheld keypad to vary the percentages displayed for each primary at 
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the bottom of the screen. Values could be varied in increments of 5% and were restricted 

such that for each hue the sum of the percentages had to total 100%, and percentages could 

not be assigned to both red and green or both blue and yellow at the same time (Abramov et 

al., 1991). The percentages were converted into a corresponding angle within a perceptual 

red-green (0-180 degrees) versus blue-yellow (90-270 degrees) opponent space:

For example, if an observer responded that a stimulus appeared 50% red and 50% blue, then 

the corresponding hue angle was 45 deg. Note that throughout the paper the term stimulus 
angle refers to the physical stimulus in terms of its angle within the LM vs S chromatic 

plane and hue angle denotes the observer's response in terms of the angle within the red-

green vs. blue-yellow perceptual color space. An advantage of the hue angle is that it allows 

the scaling functions to be represented by a single dependent measure. A second advantage 

is that the conversion to an angle tends to normalize for the variance differences inherent in 

proportions, obviating the need for corrections such as the arcsine transform (Warton & Hui, 

2011).

2.4 Procedure

Observers participated in three sessions each lasting less than 1 hr. The first session involved 

assessments of color vision, measurements of contrast thresholds, and measurements of 

color naming. (The latter is discussed in the accompanying paper, Emery et al. submitted) 

The remaining two sessions each involved scaling the hue of each stimulus two times, for a 

total of four measurements. Results are based on the analysis of the hue angles averaged 

across the four repeated settings. The first scaling session included practice trials prior to the 

start of the actual experiment. These trials consisted of making settings for six hue angles 

spanning the color space in 60-deg steps. The observer then adapted for two min to the 

background before scaling the complete stimulus set. The stimulus angles were shown in 

random order and each continued to pulse until the observer pressed a key to accept his/her 

setting. The duration for each setting could thus vary and was not recorded. After the last 

setting, an intermission was provided during which the screen remained gray. The observer 

then initiated the start of the second set of trials when s/he was ready.

3. Results

3.1 Hue scaling

Figure 1a plots the mean hue-scaling functions for the 27 observers. These functions are 

based on the cosine (red-green) and sine (blue-yellow) of the hue angle (Figure 1b) and thus 

reflect the putative red-green and blue-yellow responses rather than the raw rated proportion 

of red, green, blue or yellow in the stimulus. To visualize the relationship between the hue 

angles and stimulus angles, Figure 1c plots the stimulus angles corresponding to the four 

unique hues or four binary hues. These were estimated by fitting an 8th-order polynomial to 

each observer's scaling function (to reduce variations owing to noise), and then calculating 

the values of the fitted function for hue angles at 45 deg intervals. The loci of the hues 

replicate several previously reported properties of color appearance (Krauskopf, Williams & 
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Heeley, 1982, Malkoc et al., 2005, Webster et al., 2000, Wuerger et al., 2005). First, the 

average blue and yellow values (137 and 308 deg) are roughly complementary and nearly 

equidistant from the two cardinal axes. In contrast, red and green do not lie along a common 

axis in the cone-opponent space (averaging 13 and 227 deg). The loci for three of the binary 

hues (purple, blue-green, and yellow-green) tend to cluster along the cardinal axes. Thus, the 

blue-green boundary tends to separate S-cone increments from decrements, while the purple 

and yellow-green loci tend to separate +L(−M) from −L(+M) deviations from the neutral 

background. The exception is the binary color orange, which is not aligned to one of the 

cardinal axes. Instead, the final cardinal-axis pole is closer to the average value for unique 

red.

Another feature of the hue loci is that they vary markedly across individual observers, with 

an average standard deviation of 14 deg. Such individual differences are a prominent 

characteristic of the unique hues (Kuehni, 2004). Overall, variance was greatest in the 

purplish region of the color space. However, the range of loci was similar for the unique 

versus binary hues, such that the overall variance did not differ between them (F(1,95)=1.22, 

p =.17). Finally, these variations were largely uncorrelated across the different color 

categories. For example, Table 1 shows the correlation matrix for the unique and binary 

hues. When corrected for multiple comparisons, the only pairs to show a statistically 

significant relationship were green with yellow-green and orange with red (Table 1).

3.2 Factor analysis

As noted, factor analysis is a widely-used dimension-reduction technique that seeks to 

identify the underlying sources of variation in a set of observations. A typical analysis 

involves multiple steps, each with various options (Costello & Osborne, 2005). The factors 

were computed from the correlation matrix and initially extracted with principal component 

analysis (a technique closely related to conventional factor analysis, which differs in that the 

variance is not partitioned into shared and unique components; the correlation matrix for the 

data was not positive definite, precluding standard factor analysis). The extracted factors are 

represented by their factor loadings, which specify the correlation between the factor and 

each variable. The square of the factor loading thus gives the proportion of variance in the 

variable attributable to the factor. PCA extracts components in decreasing order of the total 

variance each accounts for, and with the factors orthogonal to each other. The total variance 

is given by the eigenvalue, or the sum of the squared loadings. A second major step in factor 

analysis is to rotate these components with the goal of creating a simpler structure or pattern 

of loadings, or to identify more meaningful or interpretable factors (e.g, in terms of the 

nature of their influence on the variables). We used the standard Varimax rotation which 

again constrains the factors to be independent, but which repartitions the variance between 

them in order to maximize the variance in the loadings within each factor (thus favoring 

solutions in which the loadings tend to be either very high or very low). This seeks a sparser 

structure in which the variations in each variable are primarily associated with only one of 

the factors (and so that the number of near-zero loadings is maximized). Note that the 

polarity of the loadings is arbitrary, since negative or positive loadings could correspond to 

either more or less of the underlying process (e.g. more or less red in the scaling). A final 

issue is with regard to the number of factors. Generally there must be as many factors as 

Emery et al. Page 6

Vision Res. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variables to represent all of the variance, but only some of these are assumed to account for 

real variations as opposed to noise. A common practice is to use a scree plot of the ordered 

eigenvalues to search for a sudden drop in the variance accounted for, or to limit the number 

of factors to those that account for at least the equivalent of one of the observed variables (an 

eigenvalue of 1). However, in this case we departed from standard procedures by taking 

advantage of the fact that our variables were defined by metrical variations in the stimulus 

dimension. The number of factors to extract was determined by examining their loadings to 

identify the factors that exhibited systematic tuning, or specifically, moderate to high 

loadings on two or more adjacent variables. This non-random pattern is indicative of “real” 

structure in the data rather than random noise, so that the factors with systematic loadings 

are likely to correspond to meaningful variations in the settings, and is an approach that has 

been applied previously and often in factor analyses of continuous stimulus dimensions in 

visual data [e.g. (Dobkins et al., 2000, Gunther & Dobkins, 2003, Peterzell et al., 2000, 

Peterzell & Teller, 2000, Peterzell, Werner & Kaplan, 1993, Peterzell, Werner & Kaplan, 

1995, Webster & MacLeod, 1988)]. While we did not impose a specific criterion, we note 

that the factors retained for the hue scaling (Figure 2) all had adjacent loadings of 0.6 or 

higher.

Figure 2 plots the loadings for seven of the first eight extracted factors, which all met the 

criterion for systematic variation. Together, these accounted for 77.4 percent of the total 

variance. Each of these factors has high positive loadings for a relatively narrow range of 

contiguous stimulus angles. Thus the underlying factors are largely monopolar and band-

limited, and appear to more or less uniformly tile the color space, with each accounting for 

the variations only over a narrow range of stimulus angles. The general pattern remained 

similar when we excluded two observers who exhibited the highest variability (more than 

1.5 times the average standard deviation) in their repeated settings. Factors obtained for an 

oblique rotation (Direct Oblimin) were also similar, with little correlation evident among the 

factors. This supports the use of Varimax as the appropriate criterion for the rotation. Thus 

the analysis suggests that individual differences in the scaling depend on multiple sources 

(i.e. factors) that vary independently and which each influence settings only over a restricted 

range of chromatic angles (i.e. high loadings on a small number of neighboring angles). 

Finally, we also added variables in the analysis corresponding to the observer's gender, age, 

and relative sensitivity (as measured by preliminary contrast thresholds). However, none of 

these observer variables were systematically related to the hue scaling.

3.3 Factor analysis of the Malkoc et al. hue scaling data

To verify this pattern of results, we performed a similar analysis of the hue-scaling functions 

measured by Malkoc et al. (2005) for 59 observers. The isoluminant stimuli from this study 

fell in intervals of 15 deg rather than 10 deg, and the color proportions were reported by 

pressing buttons for each primary hue rather than entering an actual percentage (e.g. 3 red 

presses and 2 yellow for an orange hue that appeared composed of roughly 60% red). Again, 

their data exhibited the same general pattern of results as described above for the settings 

collected in the present study, though the range of the hue loci were substantially more 

variable. Malkoc et al. did not perform a factor analysis of their data; however, they did 

examine the correlations in the scaled responses for their stimulus angles, and noted that 
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only nearby chromatic stimuli showed significant correlations. Thus their analysis presaged 

many of the results and conclusions reported above from the factor analyses.

For the factor analysis with Malkoc et al.'s (2005) data, we excluded one observer who 

exhibited highly variable hue angles. The analysis of the remaining 58 observers revealed 

eight factors with systematic loadings, which accounted for 84% of the variability in the 

data. The loadings for these eight factors following Varimax rotation are shown in Figure 3. 

The factor loadings for an oblique rotation were again similar, with little correlation evident 

among the factors. As in the preceding analysis, the factors appear to more or less uniformly 

tile the color space, with each influencing a narrow range of angles.

3.4 Predicted factor loadings from Monte Carlo simulations of models

In this section we compare the observed pattern of factor loadings to the loadings predicted 

from alternative accounts of color appearance. While there are various specific models of the 

mechanisms of color appearance, our aim was to evaluate more qualitative predictions for 

different classes of models, particularly with regard to the number and nature of the 

processes mediating color appearance. We first show that conventional models of opponency 

are inconsistent with the factor pattern from this and Malkoc et al.'s (2005) studies, and then 

propose different variants on these models that could give rise to the general pattern of 

results observed.

3.4.1. Pre-opponent sensitivity differences—Before considering models of color 

appearance, we note that color-normal observers vary widely in the cone spectral 

sensitivities because of factors arising early in the eye. These include differences in: 1) the 

densities of the inert screening pigments (lens and macular pigment), 2) the optical densities 

and spectral peaks of the cone photopigments, and 3) the relative numbers of different cone 

classes (Asano, Fairchild & Blonde, 2016, Hofer, Carroll, Neitz, Neitz & Williams, 2005, 

Webster & MacLeod, 1988). These differences have large effects on chromatic sensitivity 

and color matching, and have in some cases been associated with individual differences in 

color appearance (Hibino, 1992, Jordan & Mollon, 1995, Schmidt et al., 2014, Welbourne, 

Thompson, Wade & Morland, 2013). However, color perception mostly compensates for 

these spectral sensitivity differences (Webster, 2015a), such that achromatic loci or unique 

hues show very little dependence on factors such as lens (Delahunt, Webster, Ma & Werner, 

2004, Schefrin & Werner, 1990, Werner & Schefrin, 1993) or macular pigment density 

(Webster, Halen, Meyers, Winkler & Werner, 2010, Webster & Leonard, 2008), or cone 

ratios (Brainard, Roorda, Yamauchi, Calderone, Metha, Neitz, Neitz, Williams & Jacobs, 

2000). Moreover, because these factors tend to impact fairly broad regions of the visible 

spectrum, their predicted influences span a wide range of hues, and cannot readily account 

for the frequent finding that variations in the different unique hues are independent (Webster 

et al., 2000). Thus we ignore these differences in the following analyses and focus instead on 

how color might be represented in mechanisms that are already normalized to discount for 

much of the inherent spectral sensitivity differences among observers.

3.4.2 Opponent Processes—As noted, color-opponent theory is based on the premise 

that hue sensations are directly mediated by responses in two opponent channels that signal 
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red vs. green or blue vs. yellow sensations. The simplest accounts of these channels are that 

they are formed by different linear combinations of the cone signals, with spectral 

sensitivities anchored by the loci of the unique hues. For our analyses the specific 

sensitivities are not critical. To very roughly approximate the unique hues, we defined the 

channels as:

blue-yellow = S – L+M; which varies as a cosine of the stimulus angle with peak 

response along the 90-270 deg axis and a null (unique red and green), along the 

0-180 axis, and

red-green = L – M+S; which peaks along the 45-225 deg axis and has a null 

(unique blue and yellow) along the 135-315 deg axis

These modal channels might vary across individuals in various ways, thereby differentially 

affecting the variance in the hue scaling at different stimulus angles.

Predicted factor loadings: One way we examined these potential variations was to directly 

calculate predicted factor loadings for a given source of variation. The square of the factor 

loading represents the proportion of variance owing to a given factor. Predicted loadings can 

thus be generated by comparing the variation in the settings produced by changes in the 

factor, relative to the total observed variation (Webster & MacLeod, 1988):

where αji is the predicted loading of factor i for stimulus angle j, and σj is the observed 

standard deviation of the settings. The predicted standard deviation is given by the variation 

in the level of the factor (σx) times the change in the setting (∂ps) for a unit change in the 

factor (∂xi).

Monte Carlo Simulations: As a second approach, we also simulated hue-scaling functions 

for a set of observers who varied in specified ways, and then factor analyzed the simulated 

data set. Monte Carlo simulations have also been used in various studies to generate 

predicted factors (Peterzell et al., 1993, Peterzell et al., 1995, Sekuler, Wilson & Owsley, 

1984). The first approach has the advantage that the pattern of predictions for a single factor 

can be directly visualized, while the second better illustrates the impact of the factor on the 

hue scaling, and also allows the predictions to be extracted and rotated in the same way as 

the observed measurements.

Figure 4 shows the pattern of loadings for several potential sources of variation in the 

opponent mechanisms. For this analysis, we constructed predicted factors based both on the 

variability in the individual items, σj (in order to incorporate the actual structure in the data); 

and also held σj constant and equal to the average standard deviation (so that the structure 

owing to the predicted factors is more clearly illustrated). Each figure plots both sets of 

predictions. The first two sources of inter-observer variation we considered correspond to 

changing the weightings of the cone inputs, which rotates the preferred color axes of the 

opponent mechanisms. For the red-green mechanism, the loadings correspond to a standard 

deviation of 9 deg in the preferred axis, a value chosen to produce maximum loadings close 
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to 1 (Figures 4a and 4b). (An alternative would be to vary the standard deviation to try to 

find the best fit to the observed loadings. However, as we argue for all of the predictions in 

this section, the predicted pattern of loadings is unlike any of the observed factors.) For blue-

yellow, the factor shown is based on a standard deviation of 5.6 (Figures 4c and 4d). Note 

that a higher variance for either of these factors would be outside the range implied by the 

variations in the observed measurements. Not surprisingly, both variations produce a broad 

and bimodal pattern of loadings, since the red and green (or blue and yellow) sensitivities 

covary. Observers might also vary in the relative sensitivity of the red-green and blue-yellow 

channels. This effect is shown in Figures 4e and 4f for a standard deviation of 20% in the 

relative sensitivity. Again the loadings are broad and bimodal, and in this case also bipolar, 

because variations in relative sensitivity lead to both postive and negative correlations across 

different pairs of variables.

The final two examples illustrate potential nonlinearities in the opponent responses, which 

have been explored in a variety of studies of color appearance (Ayama, Nakatsue & Kaiser, 

1987, Burns, Elsner, Pokorny & Smith, 1984, Larimer, Krantz & Cicerone, 1975, Mizokami, 

Werner, Crognale & Webster, 2006). We did not attempt to quantitively model the specific 

nonlinearities revealed by these studies, but instead considered two generic types of 

nonlinear responses. One way a nonlinearity could manifest is in the response functions for 

the mechanisms. In Figures 4g and h this was simulated by raising the cosine tuning to 

different exponents to broaden or narrow the tuning (with the same exponents applied to red-

green and blue-yellow) (De Valois, De Valois & Mahon, 2000). The predicted factor is based 

on a standard deviation of 0.25 and predicts large effects on any stimulus angles that are not 

aligned to the unique or binary axes. A second potential nonlinearity that has been a focus of 

several studies could be in the degree of categorical coding, such that observers give more 

weight to the dominant hue component when judging the proportions (Regier & Kay, 2009). 

Following Webster and Kay (Webster & Kay, 2012), we modeled this as a relative weighting 

of the pure categorical response [the unique hue angle of the dominant component (Θc)], and 

the linear response (Θl):

Figures 4i and 4j show the predictions for a standard deviation of 0.15 in the value for the 

bias (b) [somewhat weaker than the the biases estimated by Webster and Kay (2012) for the 

Malkoc et al. (2005) hue-scaling functions]. As with the response nonlinearity, the bias 

systematically alters all hues between the unique and binary axes and thus again leads to a 

broad pattern of loadings.

Figure 5 shows Monte Carlo simulations of the hue-scaling functions when the five 

hypothetical sources of variation shown in Figure 4 were all included. This produced four 

extracted factors (Figure 5b), presumably because the separate nonlinearities were absorbed 

by a single factor. The loadings for each of these factors remain bimodal and thus are 

incompatible with the multiple unimodal factors derived from the observed data. Thus, a 

conventional model based on opponent red-green and blue-yellow mechanisms, along with 

plausible ways these mechanisms might vary, provides a poor account of the hue scaling.

Emery et al. Page 10

Vision Res. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4.3 Models based on independent, monopolar hue mechanisms

Four independent, monopolar hue mechanisms: In fact, this failure of the opponent 

model was already evident from the relative independence of the unique hues, as described 

above. Several lines of evidence suggest that red and green, and blue and yellow, are instead 

encoded by separate mechanisms. For example, the red and green responses show partial 

independence with adaptation (Krauskopf et al., 1982), the size of a peripheral “perceptive” 

field at which saturation stabilizes differs for the four unique hues (Abramov & Gordon, 

1994), and as noted, opposite unique hues are often not complementary colors, and thus do 

not reflect opposite cone combinations (Webster et al., 2000, Wuerger et al., 2005). The 

splitting of the opponent axis has also been argued on theoretical grounds (MacLeod, 2003), 

and as well on physiological grounds in that cortical cells have low spontaneous activity and 

therefore cannot signal opposite responses (excitation and inhibition) as readily as retinal or 

geniculate cells (De Valois & De Valois, 1993). Such observations have led several authors 

to propose that cortical color coding is mediated by four hue mechanisms rather than the two 

opponent channels (e.g. (Abramov & Gordon, 1994, De Valois & De Valois, 1993). Some 

have also reported the existence of “forbidden colors” (i.e., reddish-green, bluish-yellow), 

and concluded that opponency is “soft wired” and can be disabled such that four chromatic 

processes operate independently (Billock, Gleason & Tsou, 2001).

To evaluate this class of models, we generated predictions based on a set of monopolar hue 

mechanisms, in which each hue (e.g. red or green) was signaled by a different underlying 

channel. Note that simply splitting a linear red-green opponent mechanism into two half-

rectified responses (as suggested in some models of cortical color coding) does not on its 

own solve the problem that the two poles vary independently, for in this case the two 

opponent responses remain yoked. A further problem is that for linear mechanisms, 

sensitivity again varies as the cosine of the preferred stimulus angle, and thus falls to zero in 

the plane orthogonal to the preferred axis. If red and green are modeled in this way and 

allowed to vary independently, then this creates some chromatic directions where both 

mechanisms respond and some where neither does. In actual measurements, the opponent 

hue pairs together fill the color space, but do so asymmetrically, so that for example more 

stimulus angles are perceived as blue than yellow (De Valois, De Valois, Switkes & Mahon, 

1997). We therefore simulated a case where the hue mechanisms were each allowed to vary 

over arbitrary arcs of the color circle and in which the opponent pair fully spanned the space 

while remaining mutually exclusive. For this, each mechanism was modeled as a half-

rectified cosine with a frequency scaled so that the response fell to zero at the bounding 

unique hues, and with a phase equidistant from the two unique hues. For example, the green 

mechanism ranged from unique blue to unique yellow and peaked midway between. The 

loci of the four unique hues varied independently across the simulated observers, and the 

sensitivity of each mechanism also varied randomly over a 20% range. An example of these 

hue mechanisms is shown in Figure 6a. The perceived hue was assumed to correspond to the 

relative responses across the set of channels. Thus, this model was similar to the opponent-

channel model in assuming that the perception of red directly reflected the activity of an 

underlying “red” mechanism, but differed in that the spectral sensitivities of the hue 

mechanisms were more tailored to capture the asymmetries in the observed measurements, 

and thus less to a specific mechanistic basis for these sensitivities based on their cone inputs.
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Figure 6b plots the predicted factor loadings for a simulated set of 50 observers. Four of 

these factors reflect the variations in each primary hue. They are now unimodal like the 

observed loadings, but are again broadly tuned and thus inconsistent with the observed 

pattern. The fifth factor (open symbols) corresponds to the variations in relative sensitivity 

and is also unlike the empirical factors.

Four independent, monopolar hue mechanisms, with local nonlinearities: There are 

again various ways these hue mechanisms might vary that could potentially increase the 

dimensions of inter-observer variation in the hue scaling. Global nonlinearities, of the type 

considered above, again predicted factor loadings that were too broad to replicate the 

observed factor pattern. However, another possibility we explored were local nonlinearities 

in the response functions. This was simulated by allowing the tuning functions on either side 

of the peak sensitivity to vary independently. Figures 6c and 6d show that this manipulation, 

combined with variations in the mechanism peaks, now generates a pattern of multiple 

factors reminiscent of the observations. While these asymmetric tuning curves might better 

emulate how the hue-scaling functions differ, it is not obvious how they could arise from 

simple nonlinearities in the neural responses (e.g. in the form of a transducer function 

following the linear filter). However, local variations might also occur if observers apply 

different rules, e.g. in the categorical biases they exhibit, for different subsets of colors 

(Komarova & Jameson, 2013).

Eight independent, monopolar hue mechanisms: As an alternative, we next considered an 

elaborated model with eight hue mechanisms, corresponding to the four unique hues and the 

four binary hues. The responses in each were again coded as a half-rectified cosine that fell 

to zero at the adjacent bounding hues. Thus in this case the red mechanism varied from the 

blue-red to the yellow-red category boundaries correspondng to “unique” purple and orange. 

One possible rule for combining these channels to form the red-green and and blue-yellow 

components would be to sum the channel responses weighted by each mechanism's 

contribution to a given hue. For example, red sensations might correspond to the sum of the 

red, purple and orange mechanisms that all signal redness but in different proportions. 

However, this effectively reintroduces a broad bandwidth for each component hue, leading 

to broad factors that again fail to predict the data

A second pooling rule we evaluated was to treat each of the eight colors as a pure category 

(corresponding to hue angles at 45 deg intervals in the perceptual color space). The hue 

angle of any stimulus could then be estimated from the pooled and normalized responses 

across the eight mechanisms:

where ai is the hue angle signaled by the ith mechanism and ri is the response of the 

mechanism. This results in only the two nearest mechanisms contributing to each hue 

response, and leads to a set of eight narrowly tuned factors that again capture the general 

characteristics of the observed loadings. By this account, rather than the four primary hue 

dimensions of Hering, at least eight distinct hue mechanisms are necessary to explain the 
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variability in hue scaling. Moreover, this account suggests that even though these eight hues 

can be conceptually decomposed into the opponent dimensions, the “redness” present in 

orange or purple is in fact a different and independent attribute of the representation.

3.4.4 Population coding (continuum of channels): The final model we explored 

abandoned the idea that specific hues are directly signaled by an underyling mechanism, and 

was instead based on a population code for color. In this case information about color might 

be represented by the responses within an effectively continuous distribution of channels, 

each tuned to a different angle within the LM vs S chromatic plane, but none of which 

necessarily generates a specific sensation. Instead, different hues correspond to different 

responses within the population, such as the mode or peak of the response distribution. Thus 

by this account there are no explicit “hue” mechanisms (such as an underlying “red” channel 

whose response signals redness). Rather, hues are coded as different patterns in the 

population response, similar to how different spatial orientations might be represented by a 

continuum of channels tuned to different orientations. Individual differences could reflect 

how these channels are interpreted or labeled, so that two observers assign different percepts 

to the channel responses.

The specific question, then, is “how many independently-variable labels or assignments 

observers might make; or in other words, how many distinct ‘primaries’ observers might use 

to represent the continuum of hues. If there were only a small number, such as the four 

unique hues, then these should anchor the interpretation of intermediate hues – as graded 

variations in the primary responses - and the influence of these anchors should span broad 

regions of the hue circle. Alternatively, if observers variably assign hue percepts to many 

different chromatic directions, then there should be many anchors each with a narrowly 

circumscribed influence on the appearance of neighboring directions. Thus we asked how 

many anchors are needed to be consistent with the number and chromatic bandwidth of the 

observed factors.

To assess this, we did not consider the underlying channels (since similar effects could be 

explained by few or many channels depending on how the channel responses are coded), but 

instead simply modeled the hue scaling curves, again asking how many points of 

independent variation are required to approximate the observed factors. Curves were 

generated by anchoring them relative to the mean unique hue settings for the group, with the 

unique hues for each individual again generated from random normal deviates. Intermediate 

hues were based on a spline interpolation between the anchors, with the only restriction that 

the interpolated values increased monotonically (so that predicted hue percepts varied 

progressively around the color circle).

Models based on 4-, 8-, and 16 independently-varying anchors: Figure 7a shows the hue 

scaling curves for 50 simulated observers who were defined by the differences in the loci of 

the four unique hues, while Figure 7b shows the resulting factor pattern. Not surprisingly, 

the four variable anchors give rise to four broadly tuned factors which are again too broad to 

account for the observed loadings. In Figures 7c and 7d, we added four additional 

individually-varying anchors, with mean values close to the observed binary hues. As in the 

hue mechanism model with added binary mechanisms, this again results in eight factors that 
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approximate the number and bandwidths of the observed loadings. The predicted factors 

exhibit weak negative tails that are not readily evident in the observed pattern. However, 

when a modest degree of noise is added to the predicted curves to simulate measurement 

error, these tails are largely obscured, leaving narrow, unimodal factors spanning the 

stimulus angles (Figures 7e and 7f). This analysis illustrates that within-observer noise may 

have obscured more subtle features of the derived factors, but leaves intact the essential 

characteristic of multiple, narrowly factors. Finally, Figures 7g and 7h show the curves and 

loadings based on sixteen independently varying anchors. These were created by adding 

eight further anchors intermediate to adjacent unique and binary hues. Here the sixteen 

factors are now too narrowly tuned to predict the observed loadings. Thus like the preceding 

model, the present analysis is consistent with partitioning hues into roughly eight underlying 

dimensions that can vary across individuals.

On the one hand, demonstrating that n sources of variations lead to n factors may seem 

trivial and obvious, and the present analysis is more an exercise in regenerating the observed 

variations than predicting them. However, this simulation is nevertheless useful for 

interpreting the pattern of observed loadings from the perspective of a multichannel code for 

color, in which the percepts need not be directly tied to the responses of mechanisms that are 

themselves labeled for specific hue sensations. Within this putative code, the labeling of the 

responses is not so finely graded that the hue at each measured stimulus angle varies 

independently, but is again much more narrowly tuned than predicted by an anchoring 

associated only with the primary hues. Thus, like the explicit hue mechanisms, this analysis 

points to multiple chromatic mechanisms or decision rules that nevertheless provide only a 

fairly coarse partitioning of hue.

4. Discussion

To summarize, our results reveal that differences in how color-normal observers scale the 

hues of chromatic stimuli depend on a surprisingly large number of narrowly-tuned factors, 

demonstrating that the appearance of different circumscribed regions of the color circle are 

free to vary independently across observers. The basic pattern of multiple factors was 

confirmed across two studies of hue scaling involving different participants and procedures. 

We have shown that this multiple-factor pattern is inconsistent with conventional models of 

canonical color-opponent processes, including models where the opposing poles of these 

processes are allowed to vary independently. These findings instead reinforce the 

independence of adjacent hue categories suggested by previous studies showing that the loci 

of the unique and binary hues are largely uncorrelated across observers, so that the stimuli 

an observer selects as pure red and blue fail to predict what they describe as purple (Malkoc 

et al., 2005). However, this independence is particularly striking in the hue-scaling task, 

because this task explicitly requires observers to decompose the purple into its red and blue 

components, and thus might be expected to more readily tap into putative processes 

signaling these components. Thus, an important implication of the multiple observed factors 

is that different processes appear to operate for different stimuli that contain these 

components. That is, the varying tinges of red perceived in different hues may have different 

origins. In turn, this suggests that there may not be a small set of monolithic hue signals 

mediating color sensations, and in particular, our results reveal little evidence for an 
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influence on hue scaling of any broadly-tuned mechanisms such the Hering opponent-

processes or the cone-opponent cardinal mechanisms of precortical color coding.

As noted, it may be possible to salvage an account of color experience based on the four 

Hering primaries by allowing for local nonlinearities in hue responses. These could reflect 

not only early nonlinearities but also “higher-level” processes such as the influence of 

language or categorical biases that might differentially impact different colors (Komarova & 

Jameson, 2013). Yet an alternative is that different hues are constrained by different 

processes, such that orange and red and purple are each intrinsically free to vary. As we 

showed, one way this could arise is if different hues are each explicitly coded by different 

mechanisms, whose sensitivities could vary across observers. Alternatively, the sensitivities 

could in principle be the same, but observers might differ in how they interpret the patterns 

of activity across the channels, again such that the labeling can vary for multiple hues and 

not just the four opponent primaries. The latter case does not require multiple underlying 

channels for color. That is, individuals could vary in how they “read out” the varying levels 

of activity even within a pair of mechanisms, for example tuned to the retinogeniculate 

cardinal axes. For example, two observers might differ in how they scale “orange” hues just 

because they assign different interpretations to the relative activity of the cardinal 

mechanisms. However, several lines of evidence point to the presence of multiple higher-

order mechanisms in the cortical coding of color (though this evidence has not always gone 

unchallenged (Eskew, 2009)). This includes psychophysical studies demonstrating that 

sensitivity and appearance cannot be accounted for by a small number of separable 

mechanisms (e.g. (Krauskopf, 1999)); masking and adaptation effects that are selective for 

multiple chromatic directions (Gegenfurtner & Kiper, 1992, Krauskopf, Williams, Mandler 

& Brown, 1986, Webster & Mollon, 1994); and single-cell and neuroimaging studies 

revealing neural tuning along a variety of chromatic axes dimensions (Kuriki et al., 2015, 

Lennie et al., 1990, Shapley & Hawken, 2011, Xiao et al., 2003, Zaidi et al., 2014). A 

further theoretical rationale for encoding color by multiple mechanisms is that this 

representation is already evident for other stimulus attributes such as spatial orientation 

(Hubel & Wiesel, 1968) or motion-direction (Maunsell & Van Essen, 1983) or motor control 

(Georgopoulos, Schwartz & Kettner, 1986), which like color could be fully specificed by 

only a small number of channels tuned to the cardinal dimensions (e.g. horizontal and 

vertical) but which instead appear to be represented by populations of cells tuned to many 

different directions. There are several advantages of this population coding, including noise 

reduction and allowing cells with broadly-tuned sensitivities to represent very fine 

differences in the stimulus. It seems plausible that the visual system would exploit similar 

coding strategies for representing different properties of the world, including color (Clifford, 

2002, Webster, 2015b, Zaidi et al., 2014).

A multiple-channel representation of this kind poses fundamental challenges for opponent 

color theory, for if there are more than three distinctly tuned mechanisms encoding the 

chromatic plane, then there are no chromatic directions that isolate a single channel (Webster 

& Mollon, 1994). Thus the notion that unique hues reflect the undiluted responses of an 

underlying color process is difficult to reconcile with a distributed representation of color. 

As noted in the Introduction, the uniqueness of the unique hues has also been challenged on 

several other grounds, including that neural mechanisms with the tuning required to directly 
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mediate the unique hues have yet to be identified. Moreover, the primacy of the unique hues 

has been questioned in studies showing that these hues are no less variable than binary hues 

(Bosten & Lawrance-Owen, 2014, Malkoc et al., 2005), and may be surprisingly variable 

depending on the instructions given to the observer (Bosten & Boehm, 2014).

In many cases the evidence for multiple higher-order color mechanisms rests on 

measurements of chromatic sensitivity or visual performance, or in tasks not directly related 

to color appearance (Eskew, 2009, Krauskopf, 1999). This raises the possibility that these 

studies are tapping into processes or pathways that are not directly involved in 

suprathreshold color perception, and thus might still allow for the canonical red-green and 

blue-yellow processes in the case of color appearance. Adaptation to chromatic contrast 

results in selective response changes that overtly alter color appearance, and thus must 

directly influence the pathways and processes mediating color percepts (Webster & Mollon, 

1994). However these results have been attributed not only to multiple adaptable channels 

but also to changes in the tuning of a small number of mechanisms (Atick, Li & Redlich, 

1993, Zaidi & Shapiro, 1993).

Moreover, it remains possible that these multiple mechanisms occur at intermediate cortical 

stages, and that their responses are subsequently synthesized to form explicit red-green and 

blue-yellow responses. While the present results cannot exclude this possibility, they do 

reveal the influence of multiple processes on a task that explicitly involves judgments of 

color appearance and that are operational under a fixed state of adaptation.

Again, we considered two possible accounts of the hue scaling in terms of multiple 

mechanisms. One preserved the basic notion that hue percepts are directly generated by the 

responses in channels labeled for specific hues, but included channels for the intermediate 

hues in addition to the unique hues. The second was a more generic representation, in which 

the hue percepts could be related in more or less arbitrary ways to the underlying population 

activity. Importantly, in both accounts the basis for the unique hues are very different from 

conventional opponent theory. Instead of corresponding to a null in the channel responses, 

both predict that the stimuli we experience as “pure” hues occur at peaks in the channel 

responses, and are not more or less special than the peaks that occur for intermediate hues.

The observed variability in the hue scaling constrains the number of degrees of freedom in 

this multiple-channel structure to roughly 8 dimensions. The basis for this level of 

partitioning remains uncertain, and could reflect the bandwidths of the underlying 

mechanisms or the decision rules for how they are pooled and interpreted. However, it is 

noteworthy that eight dimensions is roughly the number required to include hues which 

observers can readily distinguish and classify as separate categories (i.e. both the unique 

hues red, green, blue, and yellow, and the binary hues orange, purple, blue-green, and 

yellow-green) while not so fine as to distinguish among different shades within a category 

(e.g. variants of orange). This suggests the possibility that the partitioning is linked to how 

observers label hues, an issue we explore in the accompanying paper (Emery et al., 

submitted).
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An obvious concern with either of these accounts is that in hue scaling observers do appear 

able to extract the red-green and blue-yellow sensations present in different colors. How is 

this possible if, as we argue, the colors they perceive are not simply the sum of these 

sensations? There are several possible answers to this question. First, we note that the ability 

to dissect the percepts in terms of some dimensions does not require that those dimensions 

are explicitly represented. For example, a line tilted 30 deg can easily be “seen” to have a 

definite vertical and horizontal extent without directly experiencing these projected 

components. In fact, according to opponent-process theory, hues like orange and purple are 

only implicitly represented by their red and yellow or blue components. However, in the 

same way, it is possible that the red in orange or purple is only implicitly available. A further 

argument for the classic opponent mechanisms is that red cannot as easily be perceptually 

decomposed into orange and purple. Yet this asymmetry may again be like asking how well 

one can perceive the 30 deg component of a horizontal edge.

A second answer to this concern is to note that the representation of color is (for most 

humans) necessarily trichromatic, because of the limitations imposed by the number of cone 

classes. As a result, three perceptual dimensions are sufficient to preserve all of the 

information available in the cones. There may be no advantage to deploying a higher-order 

perceptual representation of color, where, for example, orange bears no phenomenal 

relationship to red. Conversely, there are large potential advantages to coding this 

relationship, for it allows the representation to signal information about the relative 

similarity of different spectral stimuli. Thus coding all hues in terms of red-green and blue-

yellow dimensions that can be associated across different stimuli may relfect a powerful 

perceptual strategy, even if it reveals little about the underlying architecture by which it is 

implemented. Our results support a growing number of studies in suggesting that this 

architecture may rest on many underlying mechanisms, in which no hue sensations are 

unique or have a superordinate status. The significance of the opponent axes may therefore 

be what they reveal about the perceptual organization of color rather than the neural 

underpinnings of this organization.
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Figure 1. 
a) Mean chromatic response functions estimated from the hue scaling functions for the 26 

observers (new data set). Filled symbols plot the estimated chromatic response functions for 

red (positive) and green (negative); unfilled symbols plot the functions for blue (positive) or 

yellow (negative). Error bars correspond to the standard deviation of the settings across 

observers. b) Individual settings for the perceptual hue angles, based on converting the 

scaling responses to the corresponding angle in the RG vs BY perceptual space. c) Stimulus 

angles corresponding to the loci of unique or binary hues for each observer.
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Figure 2. 
Factor loadings for the hue scaling functions (new data set). Curves show the loadings for 

the seven systematic factors following Varimax rotation.
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Figure 3. 
Factor loadings for the hue scaling functions of Malkoc et al. (2005). Plotted are the eight 

factors showing systematic loadings following Varimax rotation.
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Figure 4. 
Simulated hue scaling functions and individual factors with loadings predicted based on the 

individual standard deviations at each stimulus angle (solid lines) or a constant standard 

deviation equal to the average across all stimulus angles (dashed lines). a) Hue scaling 

functions for a group of observers differing in the locus of the red-green axis and b) a factor 

with loadings estimated directly from variation across observers in the locus of the red-green 

axis (SD = 9°). c) Hue scaling functions and d) predicted factor loadings based on variation 

across observers in the locus of the blue-yellow mechanism (SD = 5.6°). e) Hue scaling 

functions and f) factor loadings predicted for variations in the relative sensitivity of the red-

green and blue-yellow mechanisms (SD = 20%). g) Hue scaling functions and h) a factor 

loadings predicted from varyiations in the degree of nonlinearity in the contrast response of 

the red-green and blue-yellow opponent mechanisms. The nonlinearity is modeled as a 

cosine tuning function rasied to different exponenents (SD = 0.25). i) Hue scaling functions 

and j) a factor loadings predicted for a group of observers differing in the magnitude of 

categorical bias in their responses (SD = 0.15).
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Figure 5. 
a) Simulations of hue scaling functions for observers varying in five factors corresponding to 

the tuning and relative sensitivity of the two opponent mechanisms, nonlinearities in the 

contrast response, and categorical biases. b) Factor loadings based on a factor analysis of the 

simulated dataset.
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Figure 6. 
Factor loadings predicted by unipolar hue mechanisms. a) Sensivitivities of independent red, 

green, blue and yellow mechanisms that vary their bandwidth and relative sensitvity, and b) 

predicted factor loadings based on the simulated variations. c) and d) Sensitivities and 

predicted loadings for mechanisms with varying bandwidths and asymmetric tuning 

functions. e) and f) Sensitivities and predicted loadings for eight independent hue 

mechanisms.
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Figure 7. 
Predicted scaling functions and factors based on a population code for color with varying 

anchors corresponding to the stimulus angles associated with different hues. a) and b) 

Simulated scaling functions and factor loadings based on four variable anchors centered on 

the four primary hues. c) and d) Predictions for eight anchors corresponding to the focal 

angles for the unique or binary hues. e) and f) Eight anchors with added measurement noise. 

g) and h) Sixteen anchored hues.
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Table 1

Correlations between the stimulus angles for the unique and binary hues (new data set). Shaded cells show 

siginificant correlatiations after correction for multiple comparisons.

red purple blue blue-green green yellow-green yellow orange

red 1 .210 .056 −.195 −.228 −.279 .008 .631*

purple 1 .587 −.040 −.190 −.113 −.265 −.023

blue 1 .477 .064 −.002 .209 .257

blue-green 1 .117 −.438 .015 .296

green 1 .634* .359 −.222

yellow-grn 1 .584 −.313

yellow 1 .472

orange 1
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