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Abstract

Using MRI for radiotherapy treatment planning and image guidance is appealing as it provides 

superior soft tissue information over CT scans and avoids possible systematic errors introduced by 

aligning MR to CT images. This study presents a method that generates Synthetic CT (MRCT) 

volumes by performing probabilistic tissue classification of voxels from MRI data using a single 

imaging sequence (T1 Dixon). The intensity overlap between different tissues on MR images, a 

major challenge for voxel-based MRCT generation methods, is addressed by adding bone shape 

information to an intensity-based classification scheme. A simple pelvic bone shape model, built 

from principal component analysis of pelvis shape from 30 CT image volumes, is fitted to the MR 

volumes. The shape model generates a rough bone mask that excludes air and covers bone along 

with some surrounding soft tissues. Air regions are identified and masked out from the tissue 

classification process by intensity thresholding outside the bone mask. A regularization term is 

added to the fuzzy c-means classification scheme that constrains voxels outside the bone mask 

from being assigned memberships in the bone class. MRCT image volumes are generated by 

multiplying the probability of each voxel being represented in each class with assigned attenuation 

values of the corresponding class and summing the result across all classes. The MRCT images 

presented intensity distributions similar to CT images with a mean absolute error of 13.7 HU for 

muscle, 15.9 HU for fat, 49.1 HU for intra-pelvic soft tissues, 129.1 HU for marrow and 274.4 HU 

for bony tissues across 9 patients. Volumetric modulated arc therapy (VMAT) plans were 

optimized using MRCT-derived electron densities, and doses were recalculated using 

corresponding CT-derived density grids. Dose differences to planning target volumes were small 

with mean/standard deviation of 0.21/0.42 Gy for D0.5cc and 0.29/0.33 Gy for D99%. The results 

demonstrate the accuracy of the method and its potential in supporting MRI only radiotherapy 

treatment planning.
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1. Introduction

Interest is emerging to use magnetic resonance imaging (MRI) without CT to support 

radiation dose calculation, attenuation correction of positron emission tomography (PET) in 

a PET-MRI system and some aspects of image guidance in radiation therapy. Synthetic CT 

(MRCT) volumes generated from MRI scans help support these roles.

Various techniques have been proposed for MRCT generation. These include atlas based 

methods, where electron density maps are generated by aligning an atlas derived from 

reference CT images with target MR images (Lambert et al 2011, Dowling et al 2012, Uh et 
al 2014, Siversson et al 2015). However, such methods are somewhat limited in their ability 

to adapt to patient anatomical variations, a problem that is exacerbated in the female pelvis 

as compared to the male pelvis (Oh et al 2014). Other algorithms apply a relation between 

the attenuation properties and image intensities of one or more MRI scans to generate 

MRCT images (Johansson et al 2011, Kim et al 2012, Hsu et al 2013, Juttukonda et al 2015, 

Zheng et al 2015). The major challenge of such methods is the ambiguity in the 

correspondence between attenuation properties and image intensities. For example, bony 

tissues have low signal intensities in MR images due to their short T2/T2* and air has low 

signal due to extremely low proton density, yet the attenuation properties of bone and air are 

significantly different. Imaging artifacts, partial volume effects and noise in MRI further 

complicate the intensity distribution of different tissues, resulting in misclassifications of 

tissue types, and thus wrong attenuation assignments in MRCT images.

Ultrashort echo time scanning techniques, such as ultrashort echo time (UTE, Robson et al 
2006) and pointwise encoding time reduction with radial acquisition (PETRA, Grodzki et al 
2012) are able to yield signals from tissues with short T2* and have been used in MRCT 

generation for the head to improve the separation of bone from air. However, the success of 

such methods in the pelvis is hindered due to the mobility of air over short time periods as 

air regions estimated from UTE may not align with the same air pockets in other MR 

volumes from the same scanning session. This potential spatial mismatch could lead to 

misclassification of air as bone in the pelvis. Several investigators (Chen et al 2007, 

Kapanen et al 2013, Korhonen et al 2014, Kim et al 2015) manually contoured the bony part 

in pelvis before MRCT generation to avoid this issue, a process which can be time-

consuming and non-repeatable.

In our previous work (Liu et al 2015), we developed a pelvic bone shape model to assist 

bone identification in MRI, as the first step towards pelvic MRCT generation. In this study, 

we first extend the pelvic bone shape model to cover spinal and femoral bones attached to 

the pelvis. Then we present a complete MRCT generation algorithm that incorporates this 

shape model for female pelvic radiotherapy patients, and evaluate its efficacy in supporting 

external beam radiation therapy treatment planning. By jointly analyzing the intensity and 
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shape features, our method is able to generate MRCT images using a single MR imaging 

pulse sequence, which reduces the scanning time and avoids problems induced by tissue 

mobility in the pelvis confounding correspondence across successive scans.

2. Methods and materials

2.1. Image acquisition

Under institution review board approval, CT image volumes from 30 female patients who 

underwent simulation for external beam radiotherapy, as used in the previous work (Liu et al 
2015), were selected for constructing a pelvic bone shape model. Of these patients, 17 also 

had corresponding MR scans acquired under a prospective review board-approved 

investigation. 7 of the MR scans were excluded from this investigation due to the incomplete 

coverage of patient volumes in the axial plane. MR scans were acquired using a 3D gradient 

echo sequence (VIBE Dixon, where VIBE stands for volumetric interpolated breath-hold 

examination (Rofsky et al 1999)) with echo times (TEs) 2.46 (in-phase)/1.23 (out-of-phase) 

ms and repetition time (TR) 4.1 ms. This imaging sequence results in multi-contrast MRI 

datasets that consist of 3 image volumes of interest: T1-weighted (in-phase) image, fat 

image and water image calculated from in-phase and out-of-phase T1-weighted images. 

Details of imaging parameters and patient set up, as well as example images of study 

subjects can be found in our previous work (Liu et al 2015).

We preprocessed MR and CT image volumes using previously described methods (Liu et al 
2015). Here we briefly review the preprocessing steps. First we applied intensity 

inhomogeneity correction to MR images using the N4ITK algorithm (Tustison et al 2010). 

Then we rigidly aligned MR images to CT images with the aim of aligning bone structures 

accurately without considering soft tissues, as soft tissues can deform across scanning 

sessions. All image volumes were reformatted to axial cuts with voxel size interpolated to 1 

× 1 × 1 mm3. Finally we normalized the intensity of each MRI dataset with a scale factor 

that sets the mean intensity of the corresponding T1-weighted image volume to 1000.

2.2. Shape model construction for bone identification

To separate bone from air without using ultra-short TE imaging, we used the fact that bones 

have a somewhat predictable shape and built a bone shape model to facilitate bone 

identification. We extended our recently published pelvic bone shape model (Liu et al 2015) 

to cover the spinal processes superior to the pelvis as well as to include a femur model based 

on connected component analysis. Figure 1 labels various bony structures that are of interest 

in this study. Figure 2 shows the flow chart for applying the bone shape model for bone 

identification and figure 3 shows the corresponding example image of each step. First a 

rough mask (referred as the ‘threshold mask’) was generated by intensity thresholding, as 

described in section 2.2.1. The pelvic bone shape model was next applied to separate pelvic 

bone and lumbar spine from other voxels that fall below the threshold, as described in 

section 2.2.2. Finally, in section 2.2.3 we incorporated a femur identification model to 

separate different tissues in the thighs. Each of these steps is detailed next.
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2.2.1. Generate the initial mask by thresholding—First, we applied intensity 

thresholds to the multi-contrast MRI data. Experimentally determined thresholds of 300, 300 

and 150 were applied to normalized T1-weighted, fat and water images respectively. The 

intersection of masks from the three image volumes yielded a ‘threshold mask’ (figures 3(a) 

and (b)). Both bone and air voxels were selected by this thresholding process as they both 

appear dark on MRI images, as shown in figure 3(a). In addition, some soft tissue voxels in 

the thighs were also found to fall below the threshold due to imaging artifacts (e.g. image 

noise, peripheral signal loss), as shown in figure 3(b). A vaginal marker used on some 

patients for clinical care was also selected by this thresholding process due to low image 

intensity.

2.2.2. Apply pelvic bone model to the ‘threshold mask’—Next, a pelvic bone shape 

model was constructed from the CT scans of the 30 subjects, using our previously published 

algorithm (Liu et al 2015). The algorithm was primarily developed for localizing pelvic bone 

without considering attached lumbar vertebrae and femurs. To generate MRCT data suitable 

for treatment planning, we need also to classify such non-pelvic bones correctly. It is 

possible to build a separate shape model for those anatomical structures. However, 

experiments demonstrated that deforming the reference image with lumbar vertebrae 

maintained (figure 4(a)) with the same parameters as in the previously published work, plus 

the suggested 5 mm dilation (Liu et al 2015), were sufficient to cover the lower lumbar 

vertebrae in MR images with reasonable specificity (figure 4(b)). Figure 3(c) shows an 

example of applying the bone mask to separate bone from air in the pelvis.

2.2.3. Identification of femoral bones—While applying the bone shape model covered 

the majority of pelvic bone and lower lumbar spine voxels, a significant volume of femoral 

voxels in the scanned volumes remained uncovered (referred as the ‘residual mask’) and 

would be mislabeled as air voxels, as shown in figure 3(d). Extension of the shape model to 

cover femurs was not considered practicable as the position variations of femurs are large 

across patients. To address this, we extended the model based on the fact that air does not 

exist in the thighs. Landmark points were placed on each of the femoral heads in the atlas 

CT image, as shown in figure 5 with positions tracked during the deformation process. 

Image volumes inferior to the deformed landmarks were considered as candidate space that 

contains potential femoral bones.

As air does not exist in the thighs, a search was done across the candidate space of the 

‘residual mask’, where voxels outside the pelvis were excluded from being identified as air. 

A voxel was defined as inside the pelvis if there were both voxels on its left and right that 

belonged to the pelvic bone mask and were in the same axial slice. Figure 3(e) shows an 

example of such voxels that are inside the pelvis. The remaining voxels in the ‘residual 
mask’ are a mixture of femur bone voxels and soft tissue voxels with low intensities. As soft 

tissue voxels in the ‘residual mask’ appear as scattered noise while femur bone voxels have a 

regular pattern, we separated femur bones from soft tissues by performing 3D connected 

component analysis on voxels in the ‘residual mask’ and identified the left/right femurs as 

the 2 largest connected components, as shown by red contours in figure 3(f). The remaining 
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small connected components were treated as soft tissue voxels, as shown by magenta 

contours in figure 3(f).

2.3. Fuzzy c-means classification with a shape prior

In a previous investigation (Hsu et al 2013), probabilistic tissue classification was performed 

on multi-contrast MR images to generate MRCT volumes of the head. Given an image 

dataset  from d MRI volumes of the same object, each containing N voxels, as 

well as the total number of tissue classes presented c, standard fuzzy c-means classification 

with a spatial constraint was performed to get the probabilistic membership uik of the kth 

voxel belonging to the ith tissue class, whose intensity centroid on the sth MR image is 

denoted by vis

(1)

where m is the fuzzy degree that takes the partial volume effect into consideration. The first 

term is a simple fuzzy c-means clustering. The second term is a spatial constraint to improve 

connectivity and suppress noise, where  denotes the median of the neighbors within a 

kernel and α controls the weight for the spatial constraint.

The intensity distributions of pelvic MRI data however, present challenges for this 

classification scheme. Firstly, volumes of different tissue types are highly unbalanced in the 

pelvis. For example, the volume of fat far exceeds that of pelvic bone. Standard fuzzy c-

means will favor large clusters over small clusters (Noordam et al 2002). The estimation of 

the bone class will be negatively affected by the soft tissue class, resulting in inaccurate bone 

classification. Secondly, the limited spatial resolution and large field of view lead to 

significant partial volume effects that cause the intensity distributions at the interface 

between fat and other soft tissues to be different from soft tissues, and overlapped 

significantly with bone marrow. Figure 6 shows example ROIs of fat interface and bone 

marrow as well as their intensity histograms (normalized to have the same peak). The 

intensities of the fat interface and bone marrow appear to be non-separable. Therefore, 

intensity information alone will not suffice to accurately classify different tissue types from 

pelvic MRI data, and standard fuzzy c-means classification needs to be modified to 

incorporate shape information.

We added shape information to the standard fuzzy c-means classification formula by 

introducing a regularization term based on the pelvic bone shape model we constructed. As 

our bone shape model covers the majority of bone voxels (Liu et al 2015), we discouraged 

voxels outside the bone mask generated by the model from being classified as bone. 

Mathematically, assuming the bone class is the lth class, we regularized the classification on 

bony tissue ulk k = 1, …, N with the binary bone mask b as
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(2)

where bk = 0 indicates voxel k is not covered by the bone mask and we modified the fuzzy c-

means classification with the regularization term as

(3)

where λ controls the impact of the regularization term on the entire classification process. 

Basically, the regularization term penalizes voxels to have membership in the bone class (ulk 

> 0) outside the bone mask (bk = 0). Since our bone mask covers a major portion of bony 

tissues, we set λ = +∞. In this way, we enforced a hard constraint on the classification 

scheme where any voxel outside the bone mask will have zero probability of belonging to 

the bone class, which will also prevent the estimation of the intensity centroid of bone class 

from being affected by non-bone voxels.

To solve for (3), we first initialized a rough estimation of intensity centroids of each class 

vis. The corresponding optimal estimation of uik, without the regularization term, is given by

(4)

With the hard constraint on the bone class, the bony membership ulk is adjusted by

(5)

to make sure u is a valid probability distribution, we need  Here 

we do not assume any prior knowledge on other tissue classes and distribute the residual 

probability  evenly to all remaining tissue classes

(6)

after calculating , we updated the centroid of each tissue class by
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(7)

We performed the above calculations (4) through (7) iteratively until a convergence criteria 

was met. In our implementation, we terminated iterations when the decrease of the objective 

function (3) value was below a threshold. Roughly 200 iterations were needed for 

convergence across patients.

2.4. MRCT generation

We generated MRCT image volumes for 9 of the 10 patients who had MRI scans (except for 

the one whose CT-extracted data was used as the reference image for bone model 

construction). First, the skin surface was extracted by thresholding the normalized T1-

weighted images at 300. This surface was then cleaned up using morphologic operations (3 

mm dilation, filling holes and 3 mm erosion). Next, air masks and bone masks were 

generated using the thresholding scheme together with the shape model and the identified air 

voxels were excluded from tissue classification. Next, the fuzzy c-means classification with 

a shape prior was performed on the multi-contrast MRI data. Optimization was performed 

over 5 classes including compact bone, fat, muscle and the combination of fat interfaces and 

bone marrow (which were assigned two classes during optimization). Bone marrow and fat 

interfaces were separated retrospectively after the fuzzy c-means classification using the 

shape model, where voxels presenting bone marrow/fat interfaces were treated as bone 

marrow if inside the bone mask and fat interfaces otherwise. The fuzzy degree m was 1.5 

and the weight for the spatial constraint term α was 3.8, the same as used previously in the 

head (Hsu et al 2013). After the fuzzy c-means classification, MRCT volumes were 

generated by assigning each tissue class a CT number, multiplying the probability of each 

voxel belonging to each tissue class (uik) with the assigned CT number of that class and 

summing over all classes. To decide CT numbers of each tissue class, we drew ROIs that 

contained primarily the corresponding tissue on the reference atlas CT image. Rounding the 

mean intensity of each ROI to the nearest ten yielded the CT number of the class. The CT 

numbers assigned to fat, muscle, bone marrow and bone were −100 HU, 30 HU, 150 HU 

and 800 HU respectively. Fat interfaces were assigned the same CT number as fat. The CT 

number assigned to the identified air regions was −1000 HU.

2.5. MRCT evaluation

To evaluate the usefulness of the MRCT volumes for treatment planning, both their intensity 

correlations with corresponding CT image volumes as well as accuracy for supporting 

treatment planning dose calculations were evaluated. The mean absolute error (MAE) in 

intensity between MRCT and CT images was calculated on various ROIs drawn at different 

locations of the pelvis. ROIs encompassing solid bone and marrow were generated from CT 

images by first thresholding the images at 150 HU, followed by morphologic operations (3 

mm dilation, filling holes and 3 mm erosion). Bone voxels were defined as voxels within the 

ROIs whose intensities were above 250 HU and marrow voxels were defined as those below 
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250 HU. Before evaluating MAEs for soft tissues, deformable registration was performed 

using commercial software (Velocity) to align the MRCT with CT images, to attempt to 

resolve the natural variations in patient position and internal anatomic configuration between 

CT and MR imaging sessions. ROIs for soft tissues (muscle, external fat and intra-pelvic 

soft tissues) were then manually drawn on regions where the overlap between MRCT and 

CT image volumes was reasonably sufficient through visual evaluation. Figure 7 shows 

example ROIs.

Both the deformably aligned MRCT and their corresponding CT image volumes were 

imported into a commercial treatment planning system (Eclipse 11.0, Varian, Palo Alto CA). 

Each patient’s clinically defined structures from their actual treatment plans were used for 

treatment planning. Volumetric modulated arc therapy (VMAT) plans were then optimized 

using density grids derived from each MRCT image set. Similar to previous investigations 

(Paradis et al 2015), beam fluences from each of the MRCT-optimized plans were 

transferred to the associated CT-derived density grids, and the dose subsequently 

recalculated. These transposed MRCT (tMRCT) dose distributions were used to more 

directly evaluate the impact of density grid selection on dose calculation. For each patient, 

calculated dose and volume metrics were compared between MRCT optimizations and 

tMRCT calculations for planning target volumes (PTVs) and comparable structures 

including bowel, pelvis, rectum, sacrum and femur.

3. Results

3.1. Tissue classification with a shape prior

Figure 8 compares probability maps of voxels belonging to the bone class from fuzzy c-

means without and with a shape prior, overlapped with the corresponding T1-weighted 

image. Without the bone mask, not only were air voxels classified as bone, certain soft tissue 

voxels were also assigned bone memberships, which would have caused large errors in 

MRCT images generated.

3.2. MRCT generation and accuracy evaluation

Figure 9 shows example MRCT images and their corresponding CT images. MRCT image 

volumes present contrast similar with CT image volumes with the exception of the superior 

region of the lumbar spine, which was classified as soft tissue. This is due to the limited 

coverage of the atlas image, as has been discussed in section 2.2.2. Table 1 summarizes the 

statistics of MAE of the 9 patients. The average/standard deviation of MAE across 9 patients 

was 13.7/1.8 HU for muscle, 15.9/2.8 HU for fat, 49.1/17.8 HU for intra-pelvic soft tissues, 

129.1/29.2 HU for marrow and 274.4/26.9 HU for bones.

Table 2 presents the mean and standard deviation of differences between treatment planning 

objectives evaluated using doses calculated on MRCT and tMRCT plans across all patients. 

Figure 10 shows statistics of dose differences of PTVs and organs at risk (OARs) across 

patients. Both absolute and relative dose differences between MRCT and tMRCT 

calculations are small compared to the prescribed doses (45–58.25 Gy), with a maximal 

mean difference smaller than 0.3 Gy/0.5%. Figure 11 shows statistics of volume differences 
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of OARs for clinically relevant dose values. The volume differences are small for all OARs 

with a noted exception of the rectum (V45Gy), where the mean volume difference is 2.5%. 

From the box plot in figure 11, there are outliers in the comparison of rectum V45Gy. Two 

patients were found to have much larger volume differences than others (9.3% and 3.9% 

respectively). After excluding these two patients, the mean differences/variances drop from 

to 2.5/3.3% to 0.4/0.2%. The large difference is mostly due to the mobility of air in the 

rectum between MR and CT scans of these two patients which could not be fully resolved 

using deformable alignment, as shown in figure 12. The CT image volumes show larger air 

pockets in the rectum while little air presents in the MR image volumes. The dose volume 

histograms however are very similar between MRCT and tMRCT for both outlier patients, 

as shown in figure 13. Volume differences of rectum at other dose levels (V20Gy, V35Gy 

and V50Gy) are marginal (less than 0.6%) for these two outlier patients.

4. Discussion

This study investigated an algorithm for pelvic MRCT generation using joint shape and 

intensity features to differentiate and classify tissues in MR images. The shape patterns of 

pelvic bones were combined with a femoral bone extraction method to assist the separation 

of bone from other tissues. A regularization term was formulated using the bone shape 

model and added to an intensity-based fuzzy classification scheme. Regularized 

classification was found to reduce the misclassification of non-bone tissues effectively. The 

resulting MRCT images presented contrast sufficiently close to CT images to support 

treatment planning in radiotherapy, as validated by both direct intensity comparison and by 

performing treatment planning using MRCT image volumes and comparing the dose 

distributions on MRCT image volumes and CT image volumes.

The presented method differs from previous studies (Lambert et al 2011, Dowling et al 2012, 

Uh et al 2014, Siversson et al 2015) in that it classifies each patient’s data individually and 

assigns each voxel attenuation values based on the probability membership of the voxel 

belonging to a specific tissue class, rather than relying on a fixed intensity atlas. By 

introducing a bone shape model to the intensity-based classification scheme, our method is 

able to classify tissues accurately without manual contouring of bones (Chen et al 2007, 

Kapanen et al 2013, Korhonen et al 2014, Kim et al 2015). The MRCT images were 

generated from MRI data using a single imaging pulse sequence without ultra-short TE 

imaging (Johansson et al 2011, Kim et al 2012, Hsu et al 2013), thus the total scan time is 

much shorter and the problem of patient motion, which is more significant in the pelvis than 

in the head, is largely avoided. Compared to Bayesian approaches based on deformable 

alignment between MR images (Gudur et al 2014) and exact bone segmentation through 

deformable registration (Paulus et al 2015), our method incorporates the shape information 

by simply defining a binary space that covers bone and excludes air, which can be found by 

a binary search algorithm (Liu et al 2015), and thus is simpler and more efficient for clinical 

implementation.

Both image intensity, as well as calculated dose comparisons between MRCT and CT image 

volumes, show acceptably small variations. Although the MAE values for bone and marrow 

appear somewhat large, the dose calculation studies demonstrated that these differences did 
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not impact dose calculation significantly. This is easily understood due to the relatively short 

path-lengths over which such intensity differences are sampled for beams traversing the 

pelvis for treatment planning. Future investigations will include possible recalibration of 

baseline intensity assignments to the bone and marrow classes to further improve agreement. 

Uncertainty in aligning MR images to CT images, which can be challenging in the pelvis 

due to the large deformation of soft tissues, variations in air distribution, and different filling 

status of organs such as bladder and rectum, complicates the direct evaluation of differences 

in intensity and dose. Also, the MRI scans used for this study had a shorter longitudinal field 

of view (FoV) than CT scans and the coverage of lumbar spine by the reference MR images 

was limited, and thus the bone model was not extended far superior to the pelvis. Further 

research will extend the FoV of MR scans as well as the coverage of lumbar spines by the 

bone shape model, as well as evaluate the usefulness of MRCT image volumes as references 

for image-guided patient positioning.

5. Conclusion

A method that generates pelvic MRCT using joint shape and intensity features from MR 

images has been presented and evaluated. Adding shape information to the intensity based 

fuzzy c-means classification scheme was shown to improve the classification accuracy 

effectively and eliminate the need for multiple imaging sequences, including the ultra-short 

TE sequence previously used for air identification in the head. The presented method has the 

potential to provide an accurate estimation of CT information and support MRI only 

radiotherapy.
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Figure 1. 
Bony structures of interest for female pelvic radiotherapy. The previous pelvic bone (cyan) 

model was extended to cover femoral bones (yellow) and vertebrae (red) in this work.
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Figure 2. 
Overall scheme of separating bone, air and soft tissue.
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Figure 3. 
Example of applying the bone separation scheme on MRI data. (left) Mask generated by 

thresholding (red contours) consists of a mixture of air and bone in the pelvis (a) as well as a 

mixture of bone, vaginal marker and soft tissue in the thighs (b). (middle) Pelvic bone mask 

generated by the pelvic bone shape model (green) separates bone from air in the pelvis (c) 

but fails to cover femoral bones in the thighs (d). (right) Applying the femur model separates 

vaginal markers (red contours in (e)), femoral bones (red contours in (f)) and soft tissue 

(magenta contours in (f)).
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Figure 4. 
Mask (contoured in red) generated by deforming the atlas image with lower lumbar 

vertebrae maintained (a) overlapped with a target image (b). The coverage of the lumbar 

spine by the atlas image is limited cranially to roughly the upper third of the L4 vertebral 

level (a).

Liu et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Landmark points (F-1 and F-2) placed on the femoral heads in the atlas CT image.
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Figure 6. 
Intensity overlap between fat and soft tissues interface and bone marrow. (top) Example 

ROIs of interfaces between fat and other soft tissues (red) and bone marrow (green) on a fat 

image. (bottom) Normalized intensity histograms of fat interfaces (red) and bone marrow 

(blue) on T1-weighted (right), water (middle) and fat (left) images from an example patient.
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Figure 7. 
Example ROIs on MRCT (top) and CT (bottom) images. (left) ROIs for solid bone (green) 

and bone marrow (red). (middle) ROIs for muscle (magenta) and external fat (blue). (right) 

ROIs for intra-pelvic soft tissues (cyan).
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Figure 8. 
Comparison of classification results of bones (a) without and (b) with a shape prior. 

Probability maps of voxels belonging to the bone class (colorwash) are overlaid in their 

corresponding T1-weighted image.
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Figure 9. 
Axial (a), coronal (b) and sagittal (c) images of a MRCT image volume and corresponding 

cuts through the same patient’s CT image volume (d)–(f).
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Figure 10. 
Box plot of absolute (left) and relative (right) dose differences of PTV and OARs. Red line 

indicates the median. Bars indicate the maximum and minimum.
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Figure 11. 
Box plot of volume difference of OARs. Red line indicates the median. Bars indicate the 

maximum and minimum and red crosses indicate outliers. (Data points are defined as 

outliers if they are greater than q3 + 1.5 × (q3 − q1) or less than q3 − 1.5 × (q3 − q1), q3 and 

q1 are the 75th and 25th percentiles of the sample data, respectively.)
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Figure 12. 
Mobility of air in the rectum (white contours) between CT scans and MR scans. (a) The CT 

image shows a larger air pocket in the rectum as compared to (b) the MR image (T1-

weighted image after applying the deformable transformation that aligned the MRCT image 

to the CT image).
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Figure 13. 
Dose volume histograms of rectum show similar results between MRCT and tMRCT plans 

for the two patients with larger rectum V45Gy variations.
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Table 1

Mean absolute HU difference between MRCT and CT images across patients.

Mean Standard deviation Range

Muscle   13.7   1.8     9.8–17.4

External fat   15.9   2.8   12.0–19.8

Intra-pelvic soft tissue   49.1 17.8   25.5–75.3

Bone marrow 129.1 29.2   92.8–170.0

Solid bone 274.4 26.9 226.4–314.3
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Table 2

Mean and standard deviation of differences between extracted dose metrics.

Dose to location tMRCT versus MRCT mean differences
tMRCT versus MRCT standard deviation of 
differences

PTV

 D0.5cc (Gy) 0.21 0.42

 D0.5cc (% of prescribed dose) 0.4 0.8

 D99% (Gy) 0.29 0.33

 D99% (% of prescribed dose) 0.5 0.6

Femur

 V30 Gy(%) 0.4 0.4

Pelvis

 Mean dose (Gy) 0.10 0.10

 Mean dose (% of prescribed dose) 0.2 0.2

 V10 Gy (%) 0.0 0.1

 V20 Gy (%) 0.1 0.1

Rectum

 Mean dose (Gy) −0.03 0.15

 Mean dose (% of prescribed dose) −0.1 0.3

 V45 Gy (%) 2.5 (0.4 with outliers removed) 3.3 (0.2 with outliers removed)

Sacrum

 V10 Gy (%) −0.2 0.3

 V20 Gy (%) 0.0 0.1

Bowel

 D1cc (Gy) 0.18 0.40

 D1cc (% of prescribed dose) 0.3 0.7

 D5cc (Gy) 0.18 0.35

 D5cc (% of prescribed dose) 0.3 0.6

 V55Gy (cc) 0.22 0.64
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