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ABSTRACT

Cleavage of phosphodiester bonds by small ribonuc-
lease mimics within different bulge-loops of RNA was
investigated. Bulge-loops of different size (1-7 nt) and
sequence composition were formed in a 3’ terminal
fragment of influenza virus M2 RNA (96 nt) by hybrid-
ization of complementary oligodeoxynucleotides.
Small bulges (up to 4 nt) were readily formed upon
oligonucleotide hybridization, whereas hybridization
of the RNA to the oligonucleotides designed to pro-
duce larger bulges resulted in formation of several
alternative structures. A synthetic ribonuclease
mimic displaying Pyr—Pu cleavage specificity cleaved
CpA motifs located within bulges faster than similar
motifs within the rest of the RNA. In the presence of
10 mM MgCl,, 75% of the cleavage products resulted
from the attack of this motif. Thus, selective RNA
cleavage at a single target phosphodiester bond was
achieved by using bulge forming oligonucleotides
and a small ribonuclease A mimic.

INTRODUCTION

Sensitivity of RNA phosphodiester bonds to cleaving reagents
is determined by the nature of adjacent nucleosides and their
involvement in secondary and tertiary interactions in the RNA
structure (1-4). Recently, it was shown that base stacking
strongly affects the reactivity of RNA phosphodiester bond
towards cleavage (5,6). Cleavage of single-stranded RNA oli-
gomers, as well as of RNA hairpin-loops and bulge-loops by
imidazole buffer (7), metal ions (8—11), amines (12) or deter-
gents (13) has been extensively investigated. Results of the
studies evidence that phosphodiester bonds within small hair-
pin loops have enough conformational freedom to be cleaved
by the in-line mechanism (14), however involvement of the
loops in tertiary interactions can suppress their reactivity (15).
Pb?*, Zn?*, Mg?* and complexes of these cations cleave

phosphodiester bonds within bulge loops (8,14,16) although
less readily than they do within single-stranded oligoribonuc-
leotides (8). Efficiency of cleavage by Pb** within bulges was
shown to depend on the bulge sequence and length (14). Sens-
itivity of RNA bulges to non-metallated ribonuclease mimics
has not been studied so far.

Sufficient conformational freedom and enhanced reactivity
of some phosphodiester bonds in specific positions within the
bulge-loops could be employed for achievement of increased
cleavage by the catalytic groups delivered to these bonds by
antisense oligonucleotides. Indeed, it was shown that cleavage
of RNA by lanthanide (La®" and Eu®") complex conjugated
to antisense oligonucleotide (17) or by transition metal com-
plexes conjugated to 2'-O-methyl oligoribonucleotides (18)
occurs more efficiently when the target sequence is located
within a bulge loop. Thus, oligonucleotide binding, yielding
highly reactive bulge loops, can thus be considered as an
approach to induction of unique reactive sites in RNA,
which can be selectively cleaved by small catalytic molecules.
Activation of the target phosphodiester bond by interaction
with acridine attached to addressing oligonucleotide was used
to accomplish selective cleavage of RNA by lanthanide ions
(19,20).

In the present work, we investigated cleavage of RNA
bulge-loops of varying size and composition by imidazole
and a small ribonuclease A mimic. We found that maximal
reactivity of phosphodiester bonds is observed within Py—Pu
motifs in the 4-7 nt long bulge-loops. RNA containing a single
bulge loop of this structure can be selectively cleaved at this
loop by a simple synthetic ribonuclease mimic.

MATERIALS AND METHODS

Ribonucleoside triphosphates, deoxyribonucleoside triphos-
phates and RNase A were from Sigma. [y->’P]JATP with
specific activity of ~4000 Ci/mmol was from Biosan (Russia).
Total tRNA from Escherichia coli used as a carrier to sup-
plement labeled RNA was from State Research Centre of
Virology and Biotechnology ‘Vector’ (Russia). RNase T1
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and RNase T2 were from Boehringer Mannheim. Taqg DNA
polymerase was from Laboratory of Bioorganic Chemistry
of Enzymes (this Institute). RNase H and T4 polynucleotide
kinase were from Fermentas (Lithuania). RNase ONE, RNase
U2 and ‘Large scale RNA production System Ribomax’ were
from Promega (USA). GFX™ PCR DNA and Gel Band Puri-
fication Kit was purchased from Amersham (USA). Artificial
ribonuclease ABL4C3 was synthesized in the Laboratory of
Organic Synthesis (this Institute) by Dr D. Konevez.

Preparation of oligonucleotides

The following oligodeoxyribonucleotides (ONs) were syn-
thesized by standard phosphoramidite chemistry and purified
by successive ion-exchange and reverse-phase HPLC:
ON1(0), GCACTCTGCTGTTCCT; ON2(1/—), CACTCTG-
C#GTTCCTTTC; ON3(1/+), CACTCTGC#AGTTCCTTTC;
ON4(1/—), CAGCACTC#GCTGTTCC; ON5(2/—), CACTC-
TGCHTTCCTTTCG; ON6(2/+), CACTCTGCHATTCCT-
TTCG; ON7(2/—), CAGCACTC#CTGTTCCTT; ON8(3/-),
CACTCTGCH#TCCTTTCGA; ON9(3/+), CACTCTGCH#
ATCCTTTCGA; ONI103/-), AGCACTCH#TGTTCCTTT;
ON11(4/—), GCACTCTGH#TCCTTTCGA; ONI12(4/+),
GCACTCTGH#ATCCTTTCGA; ON13(4/—), AGCACTCT#-
TTCCTTTCG; ONI14(4/—), CAGCACTC#GTTCCTTTC;
ONI15(5/-), AGCACTCT#TCCTTTCG; ON16(5/+),
AGCACTCT#ATCCTTTCG; ON17(5/—), ACAGCAC#
TGTTCCTTT; ONI18(6/—), CAGCACTCH#TCCTTTCGA,;
ON19(6/+), CAGCACTCH#ATCCTTTCGA; ON20(6/—-),
ACAGCACTHTTCCTTTCG; ON21(7/—), ACAGCACT#
TCCTTTCGA; ON22(7/+), ACAGCACTH#ATCCTTTCGA;
ON23(7/—), CACAGCACHTTCCTTTCG; and ON24(7/—),
CAGCACTC#H#CCTTTCGAT. ‘# in the sequences indicates
the deletion sites where bulging of the RNA sequences occur
upon hybridization with the oligonucleotides. The extra
adenosines introduced opposite to the bulges are underlined.

Preparation of 216-312 fragment of influenza
virus M2 RNA (M2-96 RNA)

M2-96 RNA was prepared by in vitro transcription using T7
RNA polymerase as described previously (21). DNA template
corresponding to the nucleotides 216-312 of the influenza
virus M2 RNA was prepared by PCR using the construct
pSVK3M2 (bearing the M2 cDNA cloned into the Kpnl and
Xhol sites of the plasmid pSVK3) and forward 5'-ACAA-
GCTTTAATACGACTCACTCACTATAGGGCCTTCTAC-
GGAAGGAGTACC-3" and reverse 5'-CGAGACAAAAT-
GACTGTCGTCAGC-3' primers (T7 promotor sequence is
underlined) (22). PCR product was purified using GEX™
PCR DNA and Gel Band Purification Kit. The in vitro tran-
scription reaction was carried out using ‘Large scale RNA
production System Ribomax’ according to the manufacturer’s
protocol. Secondary structure of the in vitro produced tran-
script was established using the data of probing with ribo-
nucleases T1, T2, U2 and ONE as described previously (23).

RNA 5’ end labelling

Prior to 5" end labelling, M2-96 transcript was dephosphory-
lated using bacterial alkaline phosphatase (BAP) (Fermentas)
according to the described protocol (24). Briefly, the reaction
mixture, containing 50 mM Tris—HCI (pH 8.5), | mM EDTA,

0.2% SDS, 2% formamide, 2.5 mM DTT, 10 ug of in vitro
transcript of M2-96 RNA and 2 U of BAP in a total volume
of 50 ul was incubated at 37°C for 1 h. BAP was added to
the reaction mixture at 0 and 30 min of incubation time. The
reaction was quenched by 1:1 phenol-chloroform (v/v) extrac-
tion followed by extraction of water phase with ethyl ester and
ethanol precipitation.

Labelling of the 5’ end of the M2-96 transcript was per-
formed with [y-**P]JATP and T4 polynucleotide kinase under
standard conditions (25). **P-labeled RNA was isolated by
electrophoresis in 12% denaturing polyacrylamide gel. RNA
was visualized by autoradiography. 3?P-labeled RNA was
eluted from the gel with 300 pl of 0.3 M ammonium acetate,
pH 6.0 and ethanol precipitated.

Hybridization of oligonucleotides with M2-96 RNA

Hybridization of oligonucleotides with in vitro transcript
M2-96 RNA was studied using gel-mobility shift assay (26).
Reaction mixtures (5 pl) containing 0.1 uM (0.1 uCi)
32p_labeled M2-96 RNA, 1 uM corresponding oligonucleotide,
50 mM Tris—HCI (pH 7.0), 0.1 mM EDTA, 200 mM KCI, 1 pg
tRNA carrier were incubated at 37°C. Then, at definite times,
2.5 ul of loading buffer (20% Ficoll-400, 0.025% bromophenol
blue and 0.025% xylene cyanol) was added and the mixtures
were applied on running (20 V/cm) native 10% PAAG, with
TBE as a running buffer, at 4°C. The gel was dried and ana-
lyzed using Molecular Imager FX (Bio-Rad). The total extent
of RNA binding with oligonucleotide was determined as a
ratio of radioactivity measured in the RNA/ON complex to
the total radioactivity applied on the gel.

Effective association constant K¢

Hybridization of M2-96 RNA with oligonucleotides was per-
formed under conditions of 10-fold oligonucleotide excess
(0.1 uM of [**P]RNA and 1 uM oligonucleotide). The reaction
mixtures were processed as described above. The effective
association constants of RNA hybridization (K.) were derived
by minimizing the mean square deviation between the
experimental data and theoretical curves obtained according
to equation 1, using Origin 7.0 software.

0 = (Keqg X [ON] X (1 — exp[— kx1])/(1 +Keqg X [ON]), 1

where o is the extent of binding, & is the binding rate constant
and [ON] the concentration of oligonucleotide.

Footprinting with RNase H

RNase H footprinting was performed as described previously
(27). Briefly, the reaction mixture (10 ul) containing 0.1 uM
(0.1 uCi) [5-**P]M2-96 RNA, 50 mM HEPES (pH 7.5),
100 mM KCl, 0.05 mM EDTA, 10 mM MgCl,, 1 ug tRNA
carrier and 1 pM oligonucleotide was incubated at 37°C for
1 h. Then 0.2 U of RNase H was added and the probe was
incubated at 37°C for 15 min. Cleavage products were
resolved on denaturing 18% PAAG. To identify the cleavage
sites (here and in all cleavage experiments), the probes were
run in parallel with ladders produced by RNase T1 (28) and
2 M imidazole buffer, pH 7.0 (5).
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M2-96 RNA

M2-96 RNA:ON22(7/+)

Figure 1. Secondary structure of in vitro transcript of M2-96 RNA (A) and complex of M2-96 RNA with oligodeoxynucleotide ON22(7/+) resulting in bulge
formation (B). RNA target and deoxy-ON are shown in red and blue, respectively. The arrows point to the cleavage sites induced in M2-96 RNA within the complex
by artificial ribonuclease in the absence (pink) and in the presence (green) of 10 mM Mg?*. Solid and dashed arrows show strong and weak cleavage sites,

respectively.

Probing of oligonucleotide—RNA complexes with 2 M
imidazole buffer

Reaction mixture (20 ul) containing 0.1 pM (0.1 pCi)
[5'-*2P]M2-96 RNA, 2 M imidazole buffer (pH 7.0), 0.5 mM
EDTA, 40 mM NaCl, 10 mM MgCl,, 2 pug tRNA carrier and
1 uM of corresponding oligonucleotide was incubated for
24 h at 20°C (29). Cleavage products were analyzed in 18%
denaturing PAAG as described above.

RNase A cleavage

Reaction mixture (10 ul) contained 50 mM Tris—HCI (pH 7.0),
0.1 mM EDTA, 200 mM KCI, 1 ug tRNA carrier, 0.1 uM
(0.1 uCi) [5'-**P]M2-96 RNA and 1 uM oligonucleotide. The
mixture was incubated for 1 h at 37°C and then RNase A was
added (concentration 1072 mg/ml). The reaction was incub-
ated for 1 min and quenched by adding 40 ul of tRNA carrier
(0.05 pg/ul) and 50 pl of water-saturated phenol-chloroform.
After phenol extraction, the cleavage products were pre-
cipitated with ethanol and analyzed by electrophoresis in
denaturing 18% PAAG.

Cleavage assay with small artificial ribonuclease
ABL4C3

To avoid any contamination of ABL4C3 (30) with ribo-
nucleases, 2 mM solution of ABL4C3 was filtered through
Centricon3 filters (Amicon, Dauvers, MA) as described in
(31). Standard reaction mixture contained 0.1 pM (0.1 pCi)
[5'-*P]M2-96 RNA, 50 mM Tris—HCl (pH 7.0), 0.1 mM
EDTA, 200 mM KCI, 1 pug tRNA carrier and 1 uM oligonuc-
leotide. In some experiments (see figure legends), the buffer
was supplemented with 10 mM MgCl,. After 1 h of hybrid-
ization, compound ABL4C3 was added (final concentration
5 x 10~* M) and the reaction mixture was incubated for 8 h.

Cleavage products were analyzed using denaturing 18%
PAAG. The gel was dried and analyzed using Molecular
Imager FX. Total extent of RNA cleavage and extent of
RNA cleavage at a specific site were determined as the ratio
of radioactivity measured in the RNA fragment(s) to the total
radioactivity applied on the gel.

RESULTS

The model RNA used in our experiments is 96 nt long in vitro
transcript of the 3’ end fragment of influenza virus M2 RNA
(‘M2-96 RNA’) (Figure 1A). This RNA fragment retains the
main elements (hairpins) of M2 RNA secondary structure and
has the 5’ terminus convenient for labeling with **P. Recently,
we have found that CAGCA sequence (nucleotides 256-260)
located in a stem-loop of M2 RNA is slightly sensitive
to artificial ribonucleases ABLkC3 (31). We have chosen
this sequence in M2-96 RNA (CssAGCAs9 underlined in
Figure 1) as a target to be placed in artificial bulge-loops.
This sequence contains two Py-A motifs, which are known
to display enhanced reactivity towards different RNA-
cleaving compounds (32,33). We expected that this sequence
would display even greater cleavage sensitivity by placing it
into bulge-loop.

Sequences of oligodeoxyribonucleotides (15-18mers)
were designed so that their hybridization with M2-96 RNA
should result in formation of bulges containing up to 7 nt
(Figures 1B and 2). The oligonucleotide sequences were
selected to avoid self-complementarity and to have the
shoulders of oligonucleotide providing similar affinities to
their RNA complements. The oligonucleotides were named
ONn(m/t), where n is oligonucleotide number, m corresponds
to the size of the bulge formed upon the oligonucleotide

hybridization, ‘4" or ‘—’ indicates, if the oligonucleotide
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contains extra adenosine (mismatch) opposite to the bulge or
not. Oligonucleotides also differed in the location of the target
sequence within bulge (Figure 2). Oligonucleotide-induced
bulge-loops contained either the C55-A56 or the C58-A59
target sequence or both. In the latter case [oligonucleotides
ON18(6/—) and ON20 (6/—) and ON21(7/—), ON23(7/—) and
ON24(7/-)], the sequences of the bulges differed by a one-
nucleotide shift. Oligonucleotide ON1(0) forming a fully
complementary complex with the sequence 50-65 of the
RNA was used as a control.

Hybridization assay

Gel-mobility shift assay was used to follow hybridization
of oligonucleotides with M2-96 RNA at 37°C (Figure 3).
All the oligonucleotides tested (at concentration 1 uM) formed
complexes with the complementary sequence in M2-96 RNA.
Figure 3A and B show time course of M2-96 RNA:ON
complex formation for oligonucleotides ON4(1/—) and
ON23(7/—), respectively. Oligonucleotide ON4(1/—) effi-
ciently binds to M2-96 RNA. During the first minutes of
incubation, M2-96 RNA rapidly forms a complex with
ON4(1/—), which accumulates in the course of the following
incubation. This complex, named complex 1, was suggested to
correspond to the complementary duplex with a bulge-loop.
In case of the oligonucleotide ON23(7/—) designed to form in
the RNA the largest (7 nt) bulge (Figure 3B), a considerable
portion of M2-96 RNA remained unbound even after 1.5 h of
incubation. In contrast to ON4(1/—), ON23(7/—) formed two
types of complexes with the RNA. The additional complex,
named complex 2 has higher electrophoretic mobility as com-
pared with the complex 1. Complex 2 could apparently be
either an imperfect complex or the complex folded in some
alternative structure. Complex 2 was formed faster than com-
plex 1; after 1 h both complexes were present in similar
amounts. This type of M2-96 RNA:ON23(7/—) hybridization
was observed at different oligonucleotide concentrations (data
not shown). The kinetic curve of M2-96 RNA:ON4(1/—) com-
plex 1 formation reaches plateau (~95%) after 45 min incuba-
tion similarly to the control oligonucleotide ON1(0) binding.
Association constants (K.s) evaluated from these curves are
10® and 3.1 x 10"’ M~ for ON1(0) and ON4(1/—), respect-
ively. Extent of M2-96 RNA binding with ON23(7/—) reaches
its plateau (complex 1, 28% and complex 2, 41%) after 1 h of
incubation. The observed K for M2-96:0N23(7/—) complex 1
formation was estimated to be 10° M_l, which is considerably
(one and two orders of magnitude) lower than the respective
constants for ON4(1/—) and ON1(0).

Figure 3D and E display the data on M2-96 RNA hybrid-
ization with oligonucleotides inducing bulges of different
length. It is seen that after 1 h of incubation, 70-98% of
M2-96 RNA is bound to oligonucleotides. ONs hybridization
with M2-96 RNA is not affected by the presence of 10 mM
MgCl, (data not shown). Efficient binding (95 * 5%) was
observed for oligonucleotides forming bulges up to 6 nt
long. In the case of ON21(7/—)-ON24(7/—), 70-90% of the
RNA is involved in complex formation. Complex 1 for each of
the oligonucleotides displayed an electrophoretic mobility
similar to that of the complex formed with the fully
complementary control oligonucleotide ON1(0) [Figure 3D,
lane 1(0)]. Four oligonucleotides—ON2(1/—), ON3(1/4),

ON4(1/—) and ON9(3/+) formed with M2-96 RNA only
complex 1 (Figure 3E). In the case of the oligonucleotides
forming bulges up to 3 nt [ON5(2/—), ON6(2/+), ON7(2/-),
ONS8(3/—) and ON10 (3/—)], the portion of complex 2 typic-
ally did not exceed 10% of the total. Yield of the complex 2
increased from 12 to 64% with the increase in bulge length
from 4 to 7 nt (Figure 3E). Surprisingly, yield of the complex 2
was rather high (36%) in the case of ON13(4/—). This can be
attributed to alternative bulge formation due to A/T base pairs
flanking the bulge (Figure 2).

Probing the structure of M2-96:oligonucleotide
complexes

To characterize the structure of M2-96 RNA:ON complexes,
we used RNase H (Figure 4A) allowing identification of nuc-
leotides in M2-96 RNA involved in hybridization, additionally
RNase A (Figure 4B) was used to map single-stranded regions
and thereby the size of the bulges. As expected, RNase H cuts
were gradually shifted to the 3’ end of RNA in accordance with
the increasing length of a bulge, while intensities of the cuts
gradually decreased. M2-96 RNA bound to oligonucleotides
ON4(1/—), ON5(2/—), ON8(3/—) and ON13(4/—) (bulges up
to 4 nt) was cleaved by RNase H within the complementary
sequences. The most intensive cleavages occurred at G:C
pairs. M2-96:0ON17(5/—) complex was also cleaved within
the entire complementary sequence, but the cuts in the 3’
end of the duplex were weak. In the complexes with 6-
7-member bulges, formed by oligonucleotides [ON18(6/—)
and ON21(7/-)], only three cuts were detected: one strong
cut at position G52 and two weak cuts at G64 and G67, which
is an evidence for poor hybridization of the 5’ part of oligo-
nucleotides to their complement in the RNA. No cuts outside
of the complementary sequences were observed except for the
ON13(4/—), where strong cleavage at G57 occurred. This
cleavage site can be attributed to alternative structure of the
bulge, containing bulged Css and CsgAGgo sequence instead
of CssAGCsg (Figure 2). Thus, RNase H footprinting clearly
shows that in the case of oligonucleotides forming of 5—
7-member bulges the 5’ part of oligonucleotides is loosely
bound to the RNA.

All the designed bulges contained CpA motifs that could
be detected using RNase A as a probe. Incubation of M2-96
bound to oligonucleotides ON7(2/—), ON9(3/+), ON12(4/+),
ON16(5/+), ON19(6/+), ON22(7/+) or ON24(7/—) with RNase
A resulted in RNA cleavage at C55-A56 and/or C58-A59
sites, in accordance with the expected bulge structures
(Figure 4B). Small 1-member bulges were not cleaved by
RNase A. Besides, in the case of all tested oligonucleotides
except for ON22(7/+) cleavage at U68—G69 next to 3’ end of
the duplex was observed. In the native M2-96 RNA, this bond
is resistant to cleavage with RNase A, since nucleotides U68
and G609 are located in a double-stranded region (Figure 1A).
Upon RNA hybridization with oligonucleotides forming bulge
up to 6 nt the RNA stem (nucleotides 54-58 and 64-68)
unfolds, U68 becomes unpaired, and the phosphodiester bond
U68-G69 is cleaved by RNase A. Complementary sequences
of oligonucleotides ON22(7/4+) and ON 24(7/—) include U68
and G69 and in complexes with these oligonucleotides this
bond is protected from RNase A. This is the case for
the ON22(7/+), whereas ON24(7/—) formed a ‘breathing’
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the absence of oligonucleotide. Positions of M2-96 RNA and the RNA:oligonucleotide complexes are given on the right. Gel-mobility shift assay was carried out as
described in Materials and Methods. (C) Secondary plot of the data shown in (A and B) for ON4(1/—), ON23(7/—) and for ON1(0) [primary data for ON1(0) not
shown]. Triangles are for ON1(0), diamonds for ON4(1/—), asterisks for the complex 1 formation with ON23(7/—) and circles correspond to the total RNA binding to
oligonucleotide ON23(7/—) (complex 1 + complex 2). (D) Gel-mobility shift assay of M2-96 binding with oligonucleotides. Prior to analysis, M2-96 RNA (10~ M)
was incubated with respective oligonucleotide (1 uM) for 1 h at 37°C. Locations of M2-96 RNA and RNA:oligonucleotide complexes are shown on the right.
C, control, M2-96 RNA. Oligonucleotide numbers are shown on the top. (E) Efficiencies of M2-96 RNA binding with oligonucleotides. Formations of complex 1 and
complex 2 are shown with light grey and dark grey, respectively. Hybridization conditions are as in (D). Experimental error not exceeded 10%.

complex with M2-96 RNA and did not prevent RNA cleavage
at this particular site. To summarize, the probing provided
direct evidences that the oligonucleotides tested bind to
M2-96 RNA at their complementary sequences and form
bulge-loops. In particular, oligonucleotides ON2-ON10,
ONI12 and ONI14 form stable complexes with bulges up to
4 nt long, while in complexes with oligonucleotides designed
to form longer bulges the 5" sequence of the oligonucleotide is
loosely bound to M2-96 RNA, thus resulting in several alter-
native structures of the complexes under these conditions.

Cleavage of RNA bulges with 2 M imidazole buffer
and artificial ribonuclease ABL4C3

2 M imidazole buffer (pH 7.0) is known as an agent cleaving
single-stranded sequences in RNA (29). Incubation of M2-96
RNA:ON complexes in 2 M imidazole buffer adjusted at
pH 7.0 at 37°C for 24 h induce RNA cleavage within loops
and within artificial bulges. From the data shown in Figure 5B,
the bulge formation in M2-96 RNA upon binding of oligo-
nucleotides ON2—-ON14 is clearly seen, while no cleavage at
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sequences involved in DNA:RNA interaction is observed.
These data indicate that these oligonucleotides are capable
of strong binding with the RNA. In the case of oligonuc-
leotides designed to form bulges longer than 4 nt (ON15-
ON24), 2 M imidazole buffer cleaves phosphodiester bonds
in the bulge at a rate similar to that of phosphodiester bonds
that were expected to be hybridized. For oligonucleotides
ON20(6/—), ON21(7/—) and ON24(7/—) imidazole cleavage
pattern did not differ from the control, which indicates that
RNA regions 54-58 and 64—68 complementary to the oligo-
nucleotides remain partly unpaired. These data suggest that
M2-96 RNA complexes with oligonucleotides ON17(5/—),
ON18(6/—) and ON21(7/—), as detected with RNase H, are

Nucleic Acids Research, 2005, Vol. 33, No. 4 1207

rather weak and/or form several alternative structures, which
are in equilibrium. Probing of RNA:ON complexes with 2 M
imidazole buffer clearly discriminates between stable com-
plexes and the complexes with alternative structures caused
by ‘breathing’ complexes.

Artificial ribonuclease ABL4C3 is a conjugate of 1,4-
diazabicyclo[2.2.2]octane substituted with a tetradecamethyl-
ene fragment at the bridge position, and histidine. ABL4C3
(Figure 4A) cleaves RNA preferentially at Py—Pu bonds
located in single-stranded regions (31).

Complexes of M2-96 RNA with the oligonucleotides were
incubated in the reaction buffer (see above) containing 0.5 mM
ABLAC3 at 37°C for 8 h. Patterns of M2-96 RNA cleavage in
the presence and in the absence of Mg®" are shown in
Figure 5C. In the absence of oligonucleotides and MgCl,,
ABLA4C3 cleaves M2-96 RNA at three major sites: U20-
A21, U30-A31 and U43-A44 (Figure 5C, lane Cl— and
Figure 1A). Less intensive cleavages are observed at phos-
phodiester bonds after A21, C22, U24, U28, G33 and C46.
To be noted, the same phosphodiester bonds are cleaved with
RNase A (data not shown). Addition of 10 mM MgCl, inhibits
cleavage (Figure 5C, lane Cl1+). Cleavage at the sequences
U20-A21, U30-A31, U43-A44 and C46-G47 occurs,
although less efficient and cleavage of other sites is completely
arrested. Apparently, this is the result of RNA structure
stabilization by magnesium ions. In the presence of oligo-
nucleotide ON3(1/4), the pattern of the RNA cleavage by
ABLA4C3 is similar to that induced by RNase A. No cleavage
at the 1 nt bulges was observed. M2-96:0ON13(4/+) complex
containing 4-member artificial bulge is cleaved by ABL4C3 at
the C55-A56 phosphodiester bond both in the presence and
in the absence of magnesium. In the absence of Mg”*, the
cleavage extent at the C55-A56 bond was comparable with
the cleavage extent at U20-A21, U30-A31 and U43-A44
bonds, which remained unaffected by oligonucleotide binding
and were the same as in the control (Figure 5C, lane C1—). The
presence of MgCl, drastically affected the cleavage pattern
(Figures 5C and 2): the bulged C55-A56 bond became the
major cleavage site (13%), while the phosphodiester bond
U43-A44 was cleaved poorly (4%) and bonds U20-A21
and U30-A31 were not cleaved at all. In the complex with
oligonucleotide ON22(7/+) forming a 7-member bulge,
cleavage occurred at both C55-A56 and C58-A59 bonds.
Total extents of RNA cleavage at these CpA bonds were
18% and 15% in the absence and in the presence of Mg?*,
respectively, while total cleavage extent within the RNA was
80% and 20%, respectively. The selectivity (ratio of cleavage
extent within the bulge to the total RNA cleavage) in the bulge
in the absence and in the presence of MgCl, equaled 0.22 and
0.75, respectively, assuming total cleavage extent as 1. Thus,
selective RNA cleavage within the bulge is achieved in the
presence of magnesium.

M2-96 cleavage with RNase A under similar conditions
(in the presence and in the absence of magnesium) were per-
formed to check if selective RNA cleavage within bulge-loops
can be achieved by using natural enzyme (see Figure 2 in
Supplementary Material). It turns out, that in the presence
of Mg®" M2-96 RNA cleavage within short bulges is sup-
pressed, and in the longer bulges the phosphodiester bonds
are cleaved with rate similar to the other loops of RNA
(U6, U20, U30, U43).
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sites are indicated on the right, the major cuts are in boldface.

Effect of bulge structure on the cleavage selectivity

Figure 6A shows primary results of oligonucleotide:M2-96
RNA complex cleavage with ABL4C3 in the presence of
10 mM MgCl,. Under these conditions, only the bonds
after U43, C46 and C85 were cleaved by the artificial ribo-
nuclease; therefore, only the upper part of autoradiogram is
shown. To compare the cleavage level with the bulge struc-
tures, the intensities of cleavage within the target sequence
are marked in Figure 2 by green arrows. Minor cleavages at
the target bonds C55-A56 and C58—-A59 (cleavage selectivity
was 0.12) were observed in the absence of oligonucleotide
(Figure 6A, lane C1). In the presence of bulge-forming oligo-
nucleotides, the intensity of U43-A44 bond cleavage is con-
siderably lower as compared to the control (Figure 6A, lane
C1). The cleavage intensities at the target sites are gradually
increased with increasing bulge size. Similar to RNase A,
compound ABL4C3 cleaved CpA motifs within the bulges
of different size except for the 1-member bulges. The latter,
C55 (or C58) is involved in base paring with oligonucleotide
and the adenine (A56 or AS59) is bulged out [Figure 6A,

lanes 2(1/—) and 4(1/—); and Figure 2] and this combination
is not cleavable by ABL4C3. In the symmetric situation, when
C58 is bulged and AS9 is base-paired [ON13(4/—), ON15(5/—)
and ONI16(5/4)], some cleavage with poor efficiency is
observed. This is in accordance with data on RNA bulge
loops cleavage by metal ions (16).

To identify features determining the bulge sensitivity to
cleavage by ABL4C3, we investigated the influence of
bulge length, location of CpA motifs in the bulge and of an
extra adenine on the reaction (Figure 6B-D). Selectivity of
cleavage within bulges was calculated as a ratio of cleavage
extent within the bulge to total extent of RNA cleavage
(Figure 6B-D). Both, in the presence and in the absence
of Mg®" (for primary data, see Supplementary Material),
the intensities of RNA cleavage within bulges are higher
than in the free, unhybridized M2-96 RNA (column C in
Figure 6B corresponds to the lane C1 in Figure 6A). The
selectivity of RNA cleavage within bulges is much higher
when the reaction is supplied with Mg®*, except for the
case of one member bulges (cf. Figures 5C and 6).
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Figure 6. Sensitivity of artificial RNA bulge-loops to cleavage with chemical ribonuclease ABL4C3 in the presence of 10 mM MgCl,. Products of M2-96
RNA:oligonucleotide duplex cleaved with compound ABL4C3 resolved in 18% denaturing PAAG (A). Oligonucleotide numbers referring to Figure 2 are indicated
on the top. Cl, cleavage of M2-96 RNA with ABL4C3 in the absence of oligonucleotide. C2, incubation control. Lane L, imidazole ladder; and lane T1, RNA
cleavage with RNase T1 under denaturing conditions. The cleaved bonds in M2-96 RNA are indicated on the right. Selectivity of RNA cleavage within bulges
calculated as a ratio of cleavage extent within bulge to total extent of RNA cleavage (B-D).

The data shown in Figure 6B indicate that in the case of
oligonucleotides containing an extra adenine opposite to
the bulge [ONn(m/+)] the cleavage selectivity is similar
(2-member bulges) or reliably higher (longer bulges), than
in the case of corresponding oligonucleotides lacking a mis-
matched adenine [ONn(m/—)]. It is worth noting that oligo-
nucleotides with and without extra adenine display similar
binding mode and binding efficiency (Figure 3E). Thus,
the difference in cleavage selectivity can be attributed to
more flexible structures of the bulge formed opposite to
the extra adenine which results in better conditions for
transesterification to occur.

Among short bulges, the highest selectivity (~0.7)
was achieved in a 4-member bulge [Figure 5C, ON13(4/+)

and Figure 6B], containing C55-A56 bond in the apical
position. This advantageous position of the CpA in the bulge
containing 4 nt provide the same cleavage selectivity as
observed in the case of long bulges containing two CpA motifs
[ON16(5/+), ON19(6/+) and ON21(7/+)]. The total extents of
RNA cleavage in the case of complexes with 6- and 7-member
bulges are 1.5 times higher than those observed for the
4-member bulges: maximal cleavage extent (in the presence
of magnesium) of 70% is observed for the M2-96:0N21(7/—)
complex. Thus, maximal selectivity of cleavage achieved
(0.70-0.75) in the 4-member and in the 7-member bulges
corresponds to cleavage extents of 14 and 55%, respectively.

Selectivity of RNA cleavage within bulges containing only
C58-A59 bond (Figure 6C) is higher than within the bulges of
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the same length containing C55—-A56 bond (Figure 6B), but the
total extent of RNA cleavage is lower. The selectivity of RNA
cleavage within bulges containing both CpA motifs is shown
in Figure 6B and D. The highest selectivities and the highest
total cleavage extents are achieved in the case of 6- and
7-member bulges in which the C55A56 motif is located in
the apical position. To summarize, efficient site-selective
cleavage of M2-96 RNA by compound ABL4C3 is achieved
in the presence of MgCl, in the complexes with oligo-
nucleotides forming bulges longer than 3 nt and containing
CpA motif in the apical position.

DISCUSSION

We undertook the first systematic study of sensitivity of RNA
bulges to cleavage with an imidazole-containing agent.
Previously, cleavage of artificial bulges containing up to 4
nt with Me*" has been investigated (15). It was shown that
cleavages predominantly occurred at the phosphodiester bond
on the 3’ side of the bulged nucleotide. We observed similar
results upon cleavage of RNA:oligonucleotide complexes by
2 M imidazole buffer (see Figure SA). Artificial ribonucleases
cleaved a smaller set of phosphodiester bonds in the bulges and
the cleavage extents are affected by the structure of the bulge.
Our systematic screening of CpA motif location within bulges
shows that bulges containing CpA motifs in the apical position
are cleaved with the highest rate. The cleavage rates within
small bulges are lower than in bulges longer than 4 nt. This
observation is in contrast to the reported data for Me>* ions, for
which the 2 nt bulges are more preferential (34). On the other
hand, similar results have been obtained upon cleavage of short
hairpins by Zn** and Zn** complex (35). It was shown that
phosphodiester bond in the apical position of a 5-member
bulge was cleaved with the highest rate.

To achieve high rates of RNA cleavage and high reaction
turnover, it is necessary that (i) the oligonucleotide should
efficiently bind the RNA and the cleavage-sensitive complex
should be formed, and (ii) the oligonucleotide would easily
dissociate from the complex after cleavage took place and
hybridize with the next RNA molecule. Prolonged incubation
time (20 h) of RNA:ON complexes in the presence of 2 M
imidazole buffer reveals that M2-96 RNA:oligonucleotide
complexes, containing bulges up to 4 nt dissociate slowly,
while complexes with longer bulges exist in equilibrium
of hybridized (complex 1 and complex 2) and free forms.
On the other hand, the long bulges display the highest cleavage
selectivity in the presence of Mg?*. Thus, complexes contain-
ing longer bulges seem favorable for RNA targeting.

RNA stem-loop structures are well investigated and several
algorithms for prediction of their stability have been devel-
oped (36-38), however experimental data on stabilities of
RNA:DNA bulges are limited and rather inconsistent. It is
known that bulge-loops change the structure of dsRNA by
introducing a kink into RNA and into the regular structure
of RNA:DNA helices, dependent on the length and structure of
the bulge (39—41). Due to a variety of interactions in which the
bulged bases participate, the geometry and stability of bulges
cannot be predicted precisely from the thermodynamic
data available. Thermodynamic evaluations predict that
destabilization of a duplex produced by a bulge increases

monotonously as bulge size increases (42—44), but in some
cases the AGs; values are the same for bulges of different size.
In our study, we observed a decrease of RNA:oligonucleotide
complex stability and formation of ‘breathing’ complexes. We
assume that this decrease in stability and therefore, lower
proportion of the perfect complex in the mixture (complex 1)
is due to the instability of long bulges rather than to the steric
difficulties of RNA unfolding necessary for the complex
formation, as all the oligonucleotides tested targeted the
same M2-96 RNA region. According to the published data,
the nearest nucleotide neighbors strongly influence stability
of bulges: in some cases, sequences containing purine bases
adjacent to the bulge stabilize it (45). Other authors (46)
reported that average AG;7 value for the bulges flanked by
two purines, by two pyrimidines, and by one purine and a
pyrimidine were the same within experimental error. Our res-
ults demonstrate that only the 4-member bulges were reliably
less stable in case of A:T closing pairs, but for other bulges
no correlation of bulge stability and bulge sequence was
observed, probably because sequences of the bulges were
approximately similar (see Figure 2).

RNA cleavage catalyzed by natural ribonucleases and some
chemical compounds occurs via transesterification reaction,
which involves nucleophilic attack of the 2’ oxygen on the
adjacent phosphorus center (47-49). Transesterification is
permitted only when the attacking 2’ oxygen nucleophile is
positioned in line with the 5’ oxyanion leaving group, in such a
way that the leaving group is located directly on the opposing
side of the phosphorus center relative to the nucleophile. The
in-line conformation of any phosphodiester bond linkage is
characterized by defined values of torsion angles in the nuc-
leotide and defined interatomic distance between the 2’ oxygen
nucleophile and the phosphorus electrophile (50). Attempts
were made to find the sites with near to in-line conformation
within different RNAs because these sites can display high
cleavage sensitivity and can be the site of spontaneous RNA
cleavage. Good correlations between theoretical and empirical
data were obtained only for short RNAs, but in the case of long
RNA (longer than 40 nt) the accuracy was poor, which could
be ascribed to the differences of RNA structure in crystal and
in solution.

The crystallization data show that nucleotides within natural
and artificial bulge-loops can be either stacked into RNA helix
(51,52) or bulged out (53-56). This flexibility can help to
assume the in-line conformation. This mechanism can be pro-
posed for RNA cleavage in the absence of Mg?*. Addition
of magnesium ions makes RNA structure more rigid (57) and
stabilizes the bulge. This decreases spontaneous mobility
of nucleotides and their feasibility of assuming in-line con-
formation. Using X-ray crystallography, it was shown that in
the presence of 2 mM MgCl,, adenine in a bulge is near to the
in-line conformation and the distance between 2’ oxygen nuc-
leophile and the phosphorus electrophile is short enough for
the transesterification reaction to occur (58). There is no data
available for the conformation of other bases in the presence of
Mg?*, but we can suggest that in our case some of the bulged
phosphodiester bonds exist in advantageous conformation for
the efficient cleavage and that Mg”* ions clamp this state. At
the same time, the C43-G44 motif remains single-stranded but
conformation of the internucleotide bond becomes unfavor-
able for transesterification, and this situation is also anchored



under these conditions. This combination results in the site-
specific cleavage of the target sequence using non-covalently
attached cleaver.

Site-selective RNA cleavage can be achieved by using
conjugates of oligonucleotides with RNA cleaving agents.
It is known that conjugates bearing RNA cleaving groups at
5" or 3’ ends slowly dissociate from the complex after cleavage
occurred, thereby leading to a low if any reaction turnover
(17). This can be improved by placing the catalytic group in
the middle of the oligonucleotide and by creating artificial
bulges within target RNA (15,37); however, bulge-targeting
conjugates remain to be designed (17,34).

Binary system can be considered as an alternative way of
achieving site-selective RNA cleavage. In this system, the
cleaver is free and specially designed oligonucleotides induce
very sensitive phosphodiester bonds in the target RNA. In our
study, the total cleavage extent of RNA reaches 71%, where
55% fall in the cleavage of CpA motifs within the artificial
bulge. This is the first example of site-selective 96mer RNA
cleavage by using a binary system consisting of an oligo-
nucleotide and of a small RNase A mimic.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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