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Abstract Genetically modified (GM) crops are the fastest

adopted commodities in the agribiotech industry. This

market penetration should provide a sustainable basis for

ensuring food supply for growing global populations. The

successful completion of two decades of commercial GM

crop production (1996–2015) is underscored by the

increasing rate of adoption of genetic engineering tech-

nology by farmers worldwide. With the advent of intro-

duction of multiple traits stacked together in GM crops for

combined herbicide tolerance, insect resistance, drought

tolerance or disease resistance, the requirement of reliable

and sensitive detection methods for tracing and labeling

genetically modified organisms in the food/feed chain has

become increasingly important. In addition, several coun-

tries have established threshold levels for GM content

which trigger legally binding labeling schemes. The

labeling of GM crops is mandatory in many countries (such

as China, EU, Russia, Australia, New Zealand, Brazil,

Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia,

Thailand), whereas in Canada, Hong Kong, USA, South

Africa, and Argentina voluntary labeling schemes operate.

The rapid adoption of GM crops has increased controver-

sies, and mitigating these issues pertaining to the imple-

mentation of effective regulatory measures for the

detection of GM crops is essential. DNA-based detection

methods have been successfully employed, while the whole

genome sequencing using next-generation sequencing

(NGS) technologies provides an advanced means for

detecting genetically modified organisms and foods/feeds

in GM crops. This review article describes the current

status of GM crop commercialization and discusses the

benefits and shortcomings of common and advanced

detection systems for GMs in foods and animal feeds.
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Introduction

The production of plants with improved quality traits such

as disease resistance, prolonged shelf-life, and drought

resistance by conventional breeding is extremely time

consuming (Delaney 2015). However, the demand for food

due to an ever-expanding global population and changes in

eating habits has continually increased the demand for

more productive food and feed crops. In fact, the provision

of sufficient food to feed an estimated 9.7 billion people by

2050 (FAO 2017) and approximately 11.0 billion by 2100

(James 2015) is one of the major challenges of this century.

Genetically modified (GM) crops provide an opportunity to

increase food and feed production efficiently by generating

plants with higher yields and greater nutritional benefits in
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reasonably short times (The Gaurdian 2016). GM crops

offer the possibility of expanding the accessible gene pool

for breeding by overcoming sexual incompatibilities

between plants and providing the opportunity to use genes

with beneficial traits and regulatory elements to express

genes of prokaryotic or viral origin (Southgate et al. 1995).

GM crops contain novel genes (transgenes) with

improved quality traits, such as herbicide tolerance, and

allow the developmental process to be dramatically

accelerated (Gressey 2013). GMOs (genetically modified

organisms) enable the barrier of sexual incompatibility

between plant species to be overcome and enormously

increase the size of the available gene pool (Gressey 2013).

GM crops have revolutionized agricultural commodities by

allowing breeders to introduce specific genes from a wide

variety of sources to produce more useful and productive

crops (Tarafdar et al. 2014). The rapid adoption of GM

crops within the agricultural sector has increased agricul-

tural productivity, contributed to economic growth, and

allowed food demand to be met (James 2015). The term

‘‘genetically modified organism’’ means an organism in

which genetic material has been altered in a way that does

not occur naturally by mating and/or natural recombination

(Directive 2001/18/EC). GM crops are modified using

recombinant DNA technology in three different ways, that

is, transgenic, cisgenic, or intragenic. ‘Transgenic’ modi-

fication involves the insertion of foreign DNA from an

unrelated genus or species. ‘Cisgenic’ involves the inser-

tion of one or more gene of related species or from a

crossable donor. The introduction of specific alleles/genes

present in the gene pool, without any DNA sequence

change, into new varieties is termed ‘cisgenesis’ (Schouten

et al. 2006), and such processes accelerate the breeding of

species with long reproduction cycles with no linkage drag.

On the other hand, ‘intragenic’ modifications involve the

use of genetic elements from other plants from the same

sexually compatible gene pool and, thus, the coding

regions of genes are combined with promoters and termi-

nators of different genes from the same sexually compati-

ble gene pool. Furthermore, there is a certain reluctance to

accept GM foods created by transgenesis rather than cis-

genics, as the latter process appears to be more natural.

Introduction of the R1 gene, which provides resistance to

late blight of potato, from wild-type potato (Solanum

demissum) to cultivated potato (S. tuberosum) is a cisgenic

process. However, the transfer of the Bt gene from the

bacterium Bacillus thuringiensis to the cotton genome to

produces pest-resistant cotton is an example of transgenesis

(Wu et al. 2008). Genetically modified crops are exploited

to develop the desired quality traits, such as drought,

temperature, or salinity tolerance or disease resistance (Key

et al. 2008). The Flavr Savr tomato was the first genetically

modified crop developed by employing anti-sense

technology and introduced to the market in 1994 (Bates

et al. 2005), and since then more than 100 GMOs have

been approved worldwide for use in commercial foods or

feeds (http://www.gmo-compass.org, http://www.agbios.

com/dbase.php) (Redenbaugh et al. 1992).

Genetically modified Bt corn carries gene variants of

Cry proteins from the soil bacterium B. thuringiensis.

These proteins, also known as Bt toxins, species-specifi-

cally kill important plant pests like insects of the orders

Lepidoptera, Coleoptera, Diptera, and others if ingested

(Trapero et al. 2016). B. thuringiensis is a Gram-positive

spore-forming bacterium with entomopathogenic proper-

ties and a long history of safe use as a sprayable biopes-

ticide (Trapero et al. 2016). Parasporally formed crystals

are predominantly composed of one or more proteins (Cry

and Cyt toxins) also called d-endotoxin, which lyse

epithelial cells of the insect midgut by inserting pores into

the plasma membrane. Cry toxins are innocuous to

humans, vertebrates, and plants and are completely

biodegradable (Tabashnik et al. 2003). The effect of Bt

maize on the life cycle of the insect is depicted in Fig. 1.

The most widely accepted genetically modified traits in

GM crops are herbicide tolerance and insect resistance.

GM soybean, maize, canola, and cotton are the most

common examples of these crops in the market (James

2014). Developing countries like India and China are the

largest producers of genetically modified Bt cotton

(Markoulatos et al. 2004; Trapero et al. 2016). The most

common pest of cotton is the bollworm (corn earworm;

Helicoverpa zea) and the next most common ones are the

boll weevil and pink bollworms (Wu et al. 2008). Bt cotton

(Gossypium hirsutum) MON531 lepidopteran-resistant

variety expresses Cry1Ac in the cotton plant (Randhawa

et al. 2014). In 1998, maize MON 810 was the first

genetically modified crop approved for commercial culti-

vation in the EU (Randhawa et al. 2016), and this was

followed in 2010 by the AMFLORA potato (also known as

EH92-527-1), which has a high amylopectin content.

AMFLORA received criticism due to the presence of the

antibiotic resistance gene nptII and was withdrawn from

the EU market by the European Commission in 2013 due to

procedural errors during the approval process http://www.

basf.com/group/corporate/en/products-andindustries/biotech

nology/plant-biotechnology/amflora. Directive (2001/18/

EC) addresses GMO Regulation 1829/2003 on genetically

modified food and feed, and regulation 1830/2003 concerns

the traceability and labeling of GMOs. The first generation

of GM crops contained a single Bt gene (Cry1Ac, Cry1ab,

etc.) and enhanced economic benefits to farmers by

increasing yields and cost-effectiveness (Bawa and Ani-

lakumar 2013).

Some cultivars of GM corn and cotton are ‘stacked’

events as they carry a transgene/foreign DNA for insect

219 Page 2 of 15 3 Biotech (2017) 7:219

123

http://www.gmo-compass.org
http://www.agbios.com/dbase.php
http://www.agbios.com/dbase.php
http://www.basf.com/group/corporate/en/products-andindustries/biotechnology/plant-biotechnology/amflora
http://www.basf.com/group/corporate/en/products-andindustries/biotechnology/plant-biotechnology/amflora
http://www.basf.com/group/corporate/en/products-andindustries/biotechnology/plant-biotechnology/amflora


resistance (IR) and herbicide tolerance (HT) traits (Halpin

2005). Additionally, USDA-ERS (2013) claimed that 50%

of GM crops are ‘stacked’ events in GM corn and cotton.

Genetically modified crops of the first generation possess

properties that are relevant only for agriculture praxis. In

particular, herbicide- and insecticide-tolerant GM crops

belong to this category. GM plants of the second generation

differ, because embedded traits are intended to provide

benefits to consumers and for industrial applications. A

database of GM crop information is available in the link

http://cera-gmc.org/index.php?action=gm_crop_database

and is accessible to the public (Wu et al. 2014; Lin and Pan

2016). Third-generation GM crops carry a transgene con-

struct that has not been used in other (known) GM crops

and has undergone minimal recombination or modification

(Holst-Jensen et al. 2012; Lin and Pan 2016). Third-gen-

eration GM crops have been successfully commercialized

for recombinant vaccine production, producing industrial

products, such as, monoclonal antibodies, vaccines, plastics

and biofuel, and for bioremediation (Ma et al. 2003;

Sticklen 2005; Conrad 2005; Key et al. 2008; James 2015).

Global production status of GM crops

According to a recent release in ISAAA briefs (James

2015), the global production status of genetically modified

crops increased by 100-fold between 1996 and 2015 from

1.7 to 179.7 million ha (1996–2015) (James 2015) (Fig. 2).

Subsequently, there was a tremendous increase in the

commercialization of GM crops (Fig. 3) at a rate unsur-

passed during the history of modern agriculture (James

2015). Currently, USA is the world’s largest producer of

GM crops with 70.9 million ha (39%), 90% of which is

accounted for by maize, soybean, and cotton. Brazil is the

second largest with 44.2 million ha (25% of the total global

production) and planted stacked events (HT/IR) on a record

11.9 million ha. Argentina is the world’s third leading

producer with 24.3 million ha. India has ranked fourth with

11.6 million ha of Bt cotton and has registered phenomenal

growth in cotton production and topped the world with

95% resilient adoption rate. (James 2015). Canada has

ranked fifth with 11.0 million ha (Fig. 4). Hence, the five

major global GM crops are soybean, cotton, maize, and

Fig. 1 Schematic representation of the effect of Bt maize on the life cycle of insect. A Transformation of Bt gene in maize. B Ingestion of GM

maiz expressing Bt gene by insect larvae. C Mechanism of action of the involved cry protein in the midgut of insect pest
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canola. In 2015, 82% (90.7 of 111 million ha) of the soy-

bean planted were GM soybean strains, whereas GM cotton

accounted for 68% (25.1 of 37 million ha) of global cotton

production (Figs. 3, 4; James 2015). Of the 184 million

hectares of maize planted, global 55.2 million ha (30%)

was GM maize (Table 1). Moreover, herbicide-tolerant

Fig. 2 The global areas of production of GM crops in 2015 (total.

181.5 million ha). Others include (Myanmar 0.3, and Mexico 0.2;

Spain 0.1; Colombia 0.1; Sudan 0.1 and Honduras, Chile, Portugal,

Cuba, Czech Republic, Romania, Slovakia, Costa Rica, Bangladesh

less than 0.1 million ha). Source: James 2015

Fig. 3 US statistics of

Adoption of GM crops from

1996–2015 (Source: USDA,

Economic Research Service

using data from Fernandez-

Cornejo and McBride (2002) for

the year 1996–99 and USDA,

National Agricultural Statistics

Service, June Agricultural

Survey for the years 2000–15;

http://www.ers.usda.gov/data-

products/adoption-of-

genetically-engineered-crops-

in-the-us/recent-trends-in-ge-

adoption.aspx)
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GM canola accounted for 25% of global planting (9 of 36

million ha) in 2015 (James 2015). The annual total for

these four crops was 368 million ha, and 181.5 million ha

(49%) comprised GM crops. According to a recent survey,

the agronomic and economic benefits of GM crops are

significant, as these benefits are dependent on the modified

trait and geographical area (Klumper and Qaim 2014).

High-yielding insect-resistant (IR) and herbicide-tolerant

(HR) crops are greatly adopted by developing countries.

Recently, genetically modified potato (InnateTM) genera-

tion I with multi-trait resistance to black-spot bruising and

browning was developed using RNA interference tech-

nology (Simplot Company) and successfully commercial-

ized in 160 ha in the USA (James 2015). InnateTM II with a

disease resistance trait for late blight of potato was sub-

sequently approved. In terms of genetically modified ani-

mals, landmark approval of the first GM salmon was

granted by FDA in 2012 for commercial food production

and human consumption. The products are expected to be

available in the US market by 2018 (James 2015).

Detection of genetically modified organisms in GM
crops

GM crops are 100% genetically modified, that is, each cell

of the transgenic plant contains a copy of the transgene

insert. The detection and quantification of GM content in

GM foods or feed is an important consideration before

acceptance/commercialization (Pandey et al. 2010; Dela-

ney 2015).

Biosafety measurements came into existence as ‘safety

filter’ by testing and labeling of genetically modified

organisms in GM produce for food/feed and, thus, mini-

mized the potential risks to the environment and human

health (Delaney 2015). GM labeling requirements for food

products were introduced by the EU (Regulation (EC)

258/97) to determine whether products were recognized as

‘‘safe’’ for consumer uptake and commercialization. The

traceability and contents of GMOs in GM crops and

associated labeling systems are mandatory requirements in

many countries (Australia, Brazil, Chile, China, EU, India,

Fig. 4 Global production of major GM and other GM crops and their percent statistics (James 2016)
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Indonesia, Israel, Japan, Philippines, Russia, South Korea,

Taiwan, and Thailand), whereas in Argentina, Canada, and

USA they are voluntary (Directive: EC/1829/2003; Dela-

ney 2015).

The successful commercialization of GM crops is

hampered by existing strict regulations and many countries

have enacted legislation to regulate GMO and GMO-

derived products (Wu et al. 2014; Fraiture et al. 2015a, b).

Data on molecular characterization, data analysis of an

inserted gene of interest, and location in the genome are

regarded as important requirements by regulatory authori-

ties. Hence, the labeling and traceability of GMOs in food/

feed are huge contemporary issues with respect to the

release of GM crops before commercialization, as evi-

denced by EU legislation (Miraglia et al. 2004; Yang et al.

2005a, b). The precautionary measures deployed in

accordance with the Cartagena Protocol on Biosafety and

Convention on Biological Diversity (Gruere and Rao 2007;

Fraiture et al. 2015a, b) ensure adequate levels of protec-

tion during the transfer, handling, and proper labeling of

GM crops (Gruere and Rao 2007). The enforcement of a

‘threshold value’ has created a demand for the develop-

ment of reliable and accurate detection methods (Gressey

2013). The European Commission (EC) is responsible for

establishing rules for the assessment and authorization of

GM food labeling, traceability, and commercialization of

GMOs in individual European Union (EU) member states

(Mitchell 2003; Davidson 2010). The EU has strict regu-

lations for the labeling of genetically modified organisms,

GM foods and recombinant DNA crops, and those from

genetic engineering technology with focused interest for

the requirement of highly sensitive detection methods.

Furthermore, the specificity of detection methods becomes

more of an issue as the number of product types increases,

mixed GMO products are devised, or different processing

methods are introduced. To meet the demands of the

Table 1 The global area of production of GM crops in 2015. Source: James 2015

Rank Country Area (mil. ha) GM crops

1 USA 70.9 Maize, soybean, cotton, canola, sugar beet, alfalfa, papaya, squash

2 Brazil 44.2 Maize, soybean, cotton

3 Argentina 24.5 Maize, soybean, cotton

4 India 11.6 Cotton

5 Canada 11 Canola, maize, soybean, sugar beet

6 China 3.7 Cotton, papaya, poplar, tomato, sweet pepper

7 Paraguay 3.6 Soybean, maize, cotton

8 Pakistan 2.9 Cotton

9 South Africa 2.3 Maize, soybean, cotton

10 Uruguay 1.4 Soybean, maize

11 Bolivia 1.1 Soybean

12 Philippines 0.7 Maize

13 Australia 0.7 Cotton, canola

14 Burkina Faso 0.4 Cotton

15 Myanmar 0.3 Cotton

16 Mexico 0.2 Cotton, soybean

17 Spain 0.1 Maize

18 Colombia 0.1 Cotton, maize

19 Sudan 0.1 Cotton

20 Honduras \0.1 Maize

21 Chile \0.1 Maize, soybean, canola

22 Portugal \0.1 Maize

23 Cuba \0.1 Maize

24 Czech Republic \0.1 Maize

25 Romania \0.1 Maize

26 Slovakia \0.1 Maize

27 Costa Rica \0.1 Cotton, soybean

28 Bangladesh \0.1 Brinjal, eggplant

Total 181.5
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regulatory labeling issues for GM crops, sensitive and

reliable methods that utilize advanced protein techniques

and DNA-based detection methods are required.

An acceptable GMO detection technique should:

• Detect all known GMOs.

• Provide quantitative data on the content and/or pres-

ence of GMOs.

• Enable the testing of extensive ranges of food and

agriculture produce.

• Be reliable, reproducible, and produce minimum levels

of false-positive results.

• Be sensitive and accurate under all laboratory

conditions.

Phenotype-based detection

The bioassays are used to detect the GM crops and analyze

adverse environmental and health and safety issues. A

bioassay is a complementary technique for providing ana-

lytical and biological information about herbicides and

determining their phytotoxic effects (Marmiroli et al.

2000). These phenotypic bioassays provide essential

information on soil–plant–herbicide relationships (Mar-

miroli et al. 2000) and on responses of plants to herbicides

(Borem and Almeida 2011). Phenotype detection allows

the presence of a trait particularly used for herbicide

resistance (HR) and insect resistance (IR), such as of Cry1a

protein or gene in GM maize for MON80100, MON801,

MON802, MON809, and others, to be determined (Torres

et al. 2003; Ladics et al. 2015). Herbicide (HR) bioassays

are claimed to be accurate, cheap, and user friendly and are

used by seed companies for quality assurance purposes.

Currently, the herbicide-resistant bioassay is commercially

available for soybean, maize, cotton, oilseed rape, etc.

(Ladics et al. 2015). The efficiency of the bioassay is based

on the number of total seed samples tested and germinated,

and insect resistance (IR) is determined by counting insect

larvae that die immediately after feeding the leaves of

genetically modified GM crop. However, such bioassays

are not available for the testing of processed foods, crushed

grain, or for the identification of a single GM event.

DNA-based detection methods

Southern blotting

The molecular characterization of a single copy gene in the

genome of a transformed sample or GM crop is performed

by Southern blot hybridization (Southern 1975). SB is the

most commonly used technique for the nucleic acid

(DNA)-based detection of successful gene integration,

copy number insertion, and incorporation of sequences

from the transformation plasmid backbone. SB is a low-

density screening method that employs a combination of

few restriction enzymes and probes. Recently, Zastraw-

Hayes et al. (2015) described the use of an innovative

Southern-by-Sequencing approach, which provides

sequence-level information about the DNA flanking

sequences at insertion sites (used to characterize genomic

locations), coupled with NGS to develop event-specific

PCR assays for insertions (Zastraw-Hayes et al. 2015).

PCR-based detection

Molecular detection methods based on PCR are used to

determine the presence of small quantities of foreign

DNA/transgene inserts in genetically modified crops. Tra-

ditionally, the target DNA contains CaMV 35 constitutive

promoter, NOS terminator, nptII (antibiotic resistance

gene), and the Ti plasmid of Agrobacterium tumefaciens

(Yang et al. 2013; Datukishvili et al. 2015; Randhawa et al.

2016). The increased production of GM crops harboring

stacked events has limited the abilities of sensitive, user-

friendly, cost-effective detection techniques to detect the

presence of genetically modified organisms (Fu et al. 2015;

Fraiture et al. 2015a, b). As a result, other techniques are

also gaining importance with high thermal and chemical

stability of DNA, apparent potential automation, and sen-

sitivity, and thus the onset of sequence-based high-

throughput technologies is trending (Zimmermann et al.

2000). To address the regulatory needs for GM crop

labeling effectively, reliable analytical methods are

urgently required for the detection and quantification of the

existence of GM content in GM foods and feeds.

Event-specific PCR

Event-specific PCR is used to detect genetically modified

organisms using trait-specific events, i.e., the junction

sequences for integration between a transgene construct

and the plant genome. The PCR assay technique used to

amplify this DNA sequence is referred to as ‘transforma-

tion event’-specific PCR (Wu et al. 2014; Randhawa et al.

2016). The integration of a single transgene sequence into a

plant genome is a random event and is highly unlikely to

occur at the same genomic locus in two different GMOs,

and this can be used to devise unambiguous detection

assays specific for the transgenic construct and the inte-

gration site to be devised. The sequence information of a

GMO is essentially required to detect legitimate transgenic

events and a non-GM sample is needed as reference

material (Wu et al. 2014). The P35S CaMV promoter and

NOS terminator are the GMO screening targets most

widely used for identification in the EU recommendation
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for commercial food and feed (Peano et al. 2005; Wu et al.

2014). An assay specific for the transgenic construct

developed for the specific detection of maize Bt 11,

MON810, GA21, and LY038 has been devised (Windels

et al. 2003; Randhawa et al. 2016), and similarly Roundup

Ready transformation-event-specific PCR for soybean (Lin

and Pan 2016). A European Union database of 50 GM

reference events for analysis based on the Compendium of

Reference Methods for the GMO Analysis is available at

GMOMETHODS and http://gmo-crl.jrc.ec.europa.eu/

(Randhawa et al. 2016; Guertler et al. 2013; Randhawa

and Singh 2012; Wu et al. 2010). The event-specific PCR

can potentially be utilized as a marker for screening of

trait-specific known GMOs and their identification.

Construct-specific detection

Construct-specific PCR detection is based on two adjoining

DNA sequences carrying the ‘transgene’ also resulting in

GMOs containing the same construct. Construct-specific

assays targeting ctp2-Cry2Ab2, ctp2-cp4epsps, P35S-

cry1Ac, and P35S-UidA have been reported (Lee et al.

2007; Grohmann et al. 2009; Randhawa and Singh 2012;

Chhabra et al. 2014; Randhawa et al. 2016). However,

construct-specific PCR is unable to detect a single GMO

event, and hence considered unreliable and simple for

screening of GMOs in GM crop.

Multiplex PCR

Multiplex PCR is a variant of conventional PCR, which

involves simultaneous amplification of multiple target gene

sequences in a single reaction and saves time, effort, and

cost. A multiplex PCR system developed for amplification

of four target DNA sequences of (cp4-epsps, m-epsps, pat,

bar, and ribulose bisphosphate carboxylase RBCL gene)

for the simultaneous detection of GM soybean, maize, rice,

and their products (Jinxia et al. 2011) and seven gene

sequences containing the lec and zein genes (Kim et al.

2013; Huber et al. 2013; Randhawa et al. 2016) have been

developed. Multiplex assays have been described for

salinity- and drought-tolerant GM tomatoes, GM potatoes

with better protein quality, and Bt crops including Bt

brinjal, Bt okra, Bt potato, and Bt rice (Randhawa et al.

2016). However, the development of multiplex assays

requires careful testing and validation.

Real-time PCR

Quantitative detection by real-time PCR is a method of

choice for GM content detection in food or feed (Mano

et al. 2009; Holst-Jensen 2013). The existence of threshold

limits for GM contents in produce or crops is mandatory,

and sensitive and accurate methods are needed. Real-time

PCR coupled with fluorometric measurements of an inter-

nal probe during the reaction enables GMO contents or

gene expression levels to be precisely quantified (Peano

et al. 2005). Each test sequence includes the analysis of a

full set of standards, to produce standard curves for

determining GMO contents of unknowns (Randhawa et al.

2013, 2014). Moreover, tests for crops like wheat, maize,

rapeseed, cotton, cassava, and brinjal have been success-

fully developed (Li et al. 2004; Lee et al. 2006; Wu et al.

2007; Beltran et al. 2009; Ballari et al. 2013).

LAMP PCR

The loop-mediated isothermal amplification (LAMP)

method is a relatively simple and field-adaptable technique

for sequence determination and offers a potential alterna-

tive to PCR (Lee et al. 2009). Target DNA is amplified

under isothermal conditions using DNA polymerase (from

Bacillus stearothermophilus) and amplification results in

the formation of magnesium pyrophosphate. The LAMP

method does not involve the use of a thermal cycler and is

used to detect GMOs specifically and sensitively. Target

event-specific sequences are available for transgenic MS8

and RF3 oilseed rape, transgenic element CaMV 35S, and

NOS terminator. Moreover, a LAMP protocol combined

with gel electrophoresis was developed for the detection of

GM oil seed rape with a detection limit of 0.01%, and the

detection of three GM rice events has been reported

(Randhawa et al. 2014; Chen et al. 2012; Kiddle et al.

2012). In addition to this, a bioluminescent real-time

reporter (BART) of LAMP, targeting the P35S, T-NOS,

and Adh1 gene, was developed for the MON810 GM maize

event (Kiddle et al. 2012), and event-specific assays have

been developed for two soybean events, three GM rice

events, and seven GM maize events (Chen et al.

2011, 2012; Guan et al. 2010). Similarly, event-specific

visual and real-time LAMP assays have been described for

the detection of two major commercialized Bt cotton

events, MON531 and MON15985 (Randhawa et al. 2015).

The portability, isothermal nature, and the lack of a need

for a DNA extraction kit mean that real-time LAMP assays

are well suited to GMO detection in the field (Randhawa

et al. 2016).

Matrix

The matrix-based GMO screening approach is a combi-

nation of five target elements developed for 81 authorized/

unauthorized GM events as determined by the European

Union (Waiblinger et al. 2010). This matrix approach

involves a stepwise process integrated with a decision

support system (DSS) and a selection of target genetically
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modified organisms (GMOs) and their data analysis tech-

niques (Randhawa et al. 2016). A GMOtrack algorithm has

been developed http://kt.ijs.si/software/GMOtrack/

GMOseek.html for the detection of GMO events in crop

species and for potential target screening, and is freely

available (Holst-Jensen et al. 2012). The matrix-based

GMO screening approach provides a user-friendly, cost-

effective means for detecting authorized or unauthorized

GM plants (Kralj-Novak et al. 2009; James 2009; Waib-

linger et al. 2010).

Protein-based detection methods

The detection of GMOs in plants is restricted to fresh/

frozen foods or unprocessed food samples, because at high

temperature proteins are denatured. GMO protein samples

are resolved by one-dimensional SDS–gel electrophoresis.

However, the differences between GMO and reference

samples are not well resolved. Two-dimensional gel elec-

trophoresis provides better resolution, but does not gener-

ally provide unequivocal identifications of transgene

products, unless combined with immunological methods.

The expression levels of genetically modified products in

plants with strong constitutive promoter P35S (CaMV)

expression will constitute only 0–2% of total soluble pro-

tein (Padgette et al. 1995). The concentration of a geneti-

cally modified organism (GMO) in plant tissues ([10 lg
per tissue sample) means that given the limit of detection

(LOD) of a typical protein, the presence of recombinant or

genetically modified protein can only be detected in up to

1% of GMOs (Stave 2002). Immune-sensor techniques are

mainly used to analyze serum and blood samples (Morgan

et al. 1996), and the immunological methods described

below depend on the availabilities of highly specific

antibodies.

ELISA

PCR ELISA (enzyme-linked immunosorbent assay) offers

a high-throughput approach suitable for automation.

ELISA is based on the specific hybridization of immobi-

lized, biotinylated PCR products (CaMV 35S Promoter)

with digoxigenin-labeled internal probes suitable for col-

orimetric detection. ELISA is less time consuming than

other detection techniques and can detect as little as 0.1 ng

of amplicons in 2 h. ELISA has been successfully

employed to detect the protein encoded by the cp4-epsps

gene in Roundup Ready soybean (Rogan et al. 1999;

Kamle and Ali 2013) and to detect Bt proteins like Cry1Ac

and Cry1Ab (Vazquez-Padron et al. 2000). A monoclonal

antibody-based sandwich ELISA immunoassay for Cry1Ac

and Cry2Ab in cotton seeds/leaf samples has also been

reported (Shan et al. 2007; Markoulatos et al. 2004; Kamle

and Ali 2013). Various ELISA kits are commercially

available for the detection of specific proteins of Cry1C,

Cry3A, Cry2A, Cry9C, pat, and nptII (Anklam et al. 2002).

Western blot

Western blot is a highly sensitive qualitative technique for

the detection of target proteins present below or above

threshold levels in genetically modified samples, in par-

ticular, when applied to insoluble proteins and the detec-

tion limits vary between 0.1 and 1% in plant/seed samples,

depending on protein expression levels (Markoulatos et al.

2004). Both ELISA and western blot techniques have been

employed to detect Monsanto’s Roundup Ready soybean

(Markoulatos et al. 2004).

Immunostrips

Immunostrip tests are important because they provide

rapid, qualitative, and semi-quantitative information on

GM proteins present and are provided as ready to use kits,

which are useful for the initial screening of seed/grains.

The immunostrips/dipsticks provide results in 5–10 min

and are available for the detection of Cry1Ab, Cry1Ac,

Cry2Ab, and Cp4-EPSPS (Fagan et al. 2001; Monsanto

1997; Kamle and Ali 2013), but not available for all

commercialized GMOs. However, one important limitation

of these tests is that all commercially available GMOs

encode for a particular protein and, hence, are required to

have a specific detection method. The second limitation of

these kits is that their sensitivities lie within the range

0.1–1% and are highly inferior to PCR. It is noteworthy

that ELISA and lateral flow (dipstick) detection techniques

are trait specific and the same trait target proteins found in

different GMOs contain the same construct (Fagan et al.

2001). Thus, antibody-based methods may not reliably

differentiate GMOs precisely (e.g., maize Bt-176, Bt II, and

Mon 810 contain the same cry protein). The glyphosate-

resistant maize variety GA21 expresses a transgene EPSPS

protein which contains few amino acids derived from the

native plant (Nelson 2001). Besides this, the structures of

both the native plant and transgenic EPSPS are so similar

that the antibodies developed are not able to differentiate

between these two (Patel 2002). Hence, no immune tests

have been developed for the glyphosate-resistant maize

GA21 event. Consequently, PCR-based detection methods

are more reliable and accurate for GMO detection, but

during the early stage of detection immunoassays or tests

are also considered as suitable options.
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Other detection methods

Chromatography

Chromatographic methods are being developed when the

genetically modified organisms contain fatty acids,

triglycerides, and certain chemicals that can only be

detected suitably by qualitative ways. These analytical

techniques were developed using high-performance liquid

chromatography (HPLC) coupled with atmospheric pres-

sure chemical ionization mass spectrometry (APCI-MS) in

GM canola for the presence of triglycerides (Byrdwell

et al. 2001; Jin et al. 2016). Quantification was performed

with a flame ionizer detector (FID) coupled with HPLC and

it precluded GM canola oils from containing an increased

percentage of triglycerides for more oxidative stability in

canola and soybean (Byrdwell et al. 2001).

Near infrared (NIR) spectroscopy

Near infrared (NIR) spectroscopy is used mainly for cereals

and grains in elevators, usually for the non-destructive

analysis of whole grains to determine the moisture, protein,

oil, fiber, and starch contents. NIR is used to differentiate

Roundup Ready soybean from conventional soybean

(Agelet et al. 2013). In this technique, the spectral scans

were obtained using Infratech 1220 spectrometer, where

whole-grain samples flowed through a fixed path length for

distinguishing Roundup Ready soybean from conventional

soybean. The test is fast, cost-effective, takes less than a

minute, and sample preparation is not needed because it

uses whole kernels (about 300 g), which are dropped are

dropped into measurement cells or flow-through system

(Anklam et al. 2002). However, NIR’s major limitation is

that it is unable to generate spectra for large sets of samples

for identification purposes and changes in DNA or protein.

Biosensor-based detection

Biosensor is an analytical device which converts a bio-

logical element or response into electrical signals

(Baeumner et al. 2003; Nakamura and Karube 2003). The

biological element can be a complex structure, such as a

tissue or organelle, or can be composed of isolated

structures, such as a specific tissue or organelle, or it can

be composed of isolated molecules, such as antibodies,

enzymes, or nucleic acids (Minunni et al. 2001; Arugula

et al. 2014). Biosensor-based detection is fast expanding

for exploring high-throughput screening of GMO’s con-

tent for appropriate labeling for on-site import and com-

mercialization. However, biosensors are not able to

improve analysis under particular conditions and to

accurately determine GMO contents in the produce

(Nakamura and Karube 2003; Minunni et al. 2001; Aru-

gula et al. 2014). Furthermore, biosensors are generally

not convenient during the identification of GMO at the

preliminary stage.

SPR (surface plasmon resonance)

SPR is a sensitive and selective screening method for the

detection of GMOs and utilizes PCR and a commercially

available surface plasmon resonance (SPR) affinity

biosensor (Biacore XTM). In SPR-based detection, the

target DNA sample is hybridized with SPR transduction

using Biocore XTM to allow hybridization at the sensor

surface using an immobilized probe (Sawata et al. 1999;

Miyachi et al. 2000; Kneipp 2007). The immobilized

probes are specific for the 35S promoter and NOS termi-

nator sequences, which are characteristic of GMOs.

SPR imaging is particularly useful for single-stranded

DNA. No labeling is required, but the technology is limited

to the detection of single-stranded DNA samples only,

which include target P35S and NOS-T (Nica et al. 2004),

35S from soy and maize (Mariotti et al. 2002), and GM

maize (Feriotto et al. 2002).

SERS spectroscopy

SERS (surface enhanced Raman scattering) spectroscopy

involves the interaction of light, molecules and metal

nanostructures, which enhance Raman signals that can

resolve structures down to the single molecule level. This

is a flexible tool for biological analysis due to its excellent

ability to detect a wide target biomolecules (Kneipp et al.

2002; Chen and Liu 2012; Arugula et al. 2014). An SERS-

barcoded nanosensor was developed for the detection of Bt

gene-transformed rice expressing insecticidal proteins. The

barcode sensor designed by fabricating an SERS barcoded

with a golden core for optical enhancement, a layer Raman

reporter molecule absorbed onto the surface of the gold

core for spectroscopic barcoding, and a silica shell to

protect and the functionalization’s and conjugations of

oligonucleotide strands targeting DNA strands. Two

transgenes cry1Ab and cry1Ac for Bt rice (Bai et al. 2006)

were used as a fusion gene sequence and compared with

surface plasmonic spectroscopy for conventional rice to

construct a specific SERS-based detection method. SERS

spectra were finally used to decode the testing results. The

detection assay showed good precision, accuracy, and

sensitivity with a detection limit of 0.1 pg/ml (Leoni et al.

2011).
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Advanced detection methods

DNA walking

The specific identification of unknown nucleotide sequen-

ces adjacent to known DNA regions in the given genome

using specific primers for a known sequence is referred to

as DNA walking, and the final product is further sequenced

using Sanger sequencing technology (Spalinskas et al.

2013a). There are three categories of DNA walking as

follows: (1) the restriction method involves digestion of

genomic DNA using the desired restriction enzyme tar-

geting sites close to the sequence of interest, such as the

junction between the unknown and known sequences

(Fraiture et al. 2015a, b). The obtained fragments are then

self-circularized or ligated to a DNA cassette, named

inverted PCR. (2) Extension based on a sequence-specific

primer amplification method. The resulting ssDNA is

ligated into either a DNA cassette or 30 tail. This strategy
has been successfully used on GM maize (MON810), rice

(LLRICE62), soybean (A2704-12), rapeseed (T45), and

cotton (LTCOTTON25) to characterize the transgene cas-

sette and flanking regions (Spalinskas et al. 2013b; Fraiture

et al. 2015a, b). (3) Primer-based methods combine (ran-

dom or degenerate primers) to target specific primers using

PCR strategies (Spalinskas et al. 2013a). The DNA walking

method is of great value of importance for the detection of

GMOs in processed and unprocessed food/feed. This

approach involves two semi-nested PCRs to increase the

yield and specificity for GMO targets, which is crucial

when GMO is present at very low levels (Spalinskas et al.

2013b). This technique has been successfully implemented

and adapted for routine GM crops analysis according to

EU-regulatory guidelines for array of crops and is both

rapid and sensitive. Therefore, regulatory elements such as

promoter (P35S) and terminator (NOS) are commonly used

as targets (Raymond et al. 2010; Yang et al. 2005a, b;

Wang et al. 2011; Fraiture et al. 2015a, b; Ruttink et al.

2010; Kok et al. 2014). However, this approach is not

preferred for the detection of unknown elements in GM

crops.

Next-gen sequencing technologies

Molecular characterization of GMOs in GM crops is cur-

rently performed by Southern blot and PCR in combination

with Sanger sequencing to target the precise locations of

transgenes integrated into the host genome and to detect

backbone sequences for transformation vectors. Recently,

Kok et al. (2014) reported on the number of stacked traits

used to develop GM crops. Increased sequencing

throughput possibilities, at continuously decreasing costs,

combined with NGS technologies have increased the

reliability of genomic research in a diverse range of

applications. NGS is the most efficient approach for the

molecular detection of GMOs (Leoni et al. 2011; Gut-

tikonda et al. 2016) and has been adapted for applied plant

breeding techniques and the identification of small inser-

tions and deletions in Arabidopsis thaliana (Chao et al.

2013) and Rice (Wahler et al. 2013). NGS has been

demonstrated to have advantages over Southern blotting

(Guttikonda et al. 2016). It also enables transcriptome

profiling (Chu and Corey 2012) and detects altered

expression profiles of transgene inserts and the relative

abundances of pools of small regulatory RNAs (siRNA

pools) in genetically modified crops and the sequenced data

produced should be analyzed strictly under risk assessment

(Ramon et al. 2014). Furthermore, cost-effective methods

are developed to detect and analyze the GM crops and NGS

coupled with whole genome sequencing (WGS) provides

precise, specific results for the data analysis of GM crops.

It has been revealed to provide a powerful means of

characterizing GM crops having massive data developed

for vip3Aa2 from MIR162 using Hiseq (Illumina) (Liang

et al. 2014), Bt11 gene (454 system, Roche), Bt176 gene,

LEC, P35S/CTP4, CP4-EPSPS, P35S, and T-NOS (454

system, Roche) (Song et al. 2014; Fraiture et al. 2015a, b).

Consequently, the deployment of whole genome sequenc-

ing (WGS) technology for generating massive data can

replace successfully the next-gen sequencing technology as

the genomes of the majority of GM crops being considered

for sequence-based analysis or under consideration in the

near future.

Conclusion and future prospects

Twenty successful years of GM foods as commodity crops

provides substantial multiple benefits to farmers concern-

ing social, economic, and health benefits. Currently, a

100-fold increase in GM crop production has been recorded

since their introduction in 1996. Rapid adoption of GM

crops demands accurate and sensitive trait-specific assay

detection methods of GMOs in GM crops before their

commercial release. Time and effort should be devoted to

on-farm trials to avoid potential risks. The appropriate

regulatory framework with defined parameters should be

employed to carefully assess the environmental and health

risks associated with the use of GM crops. In addition to

this, an array of sensitive and advanced sequence-based

techniques and biosensor detection methods need to be

explored for the detection of GMOs in GM crops.

Recently, a transgenic cotton expressing Cry10Aa toxin

conferring resistance to cotton boll weevil has been

developed (Ribeiro et al. 2017). Similary, a label-free

biosensor using single-walled carbon nanotube (SWCNT)
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for GMO detection was developed and it is sensitive and

able to determine the GM food samples efficiently (Tam

2015). Consequently, despite the benefits of GM crops,

these are often not carefully tested and adequately stored to

avoid mixing of GM seeds with non-GM seed samples.

Hence, developing countries, before releasing GM crops

for commercialization, need to assess the impact and risk

analysis of the GM crops and make their own strict regu-

latory framework and implementation policies.
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