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Abstract

Muscarinic M1/M4 stimulation can reduce abuse-related effects of cocaine and may represent 

avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of 

cocaine, including discriminative stimulus (SD) effects, but the receptor subtypes mediating those 

effects are not known. A better understanding of the complex cocaine/muscarinic interactions is 

needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice 

lacking M1, M2, or M4 receptors (M1
-/-, M2

-/-, M4
-/-), as well as control wild-type mice and 

outbred Swiss-Webster mice, were trained to discriminate 10 mg/kg cocaine from saline. 

Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity 

at the M1, M2, or M4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; 

tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists 

with high affinity at M1/M4 receptors partially substituted for cocaine and increased the SD effect 

of cocaine, while M2-preferring antagonists did not substitute, and reduced the SD effect of 

cocaine. The cocaine-like effects of scopolamine were absent in M1
-/- mice. The cocaine SD 

attenuating effects of methoctramine were absent in M2
-/- mice and almost absent in M1

-/- mice. 

The findings indicate that the cocaine-like SD effects of muscarinic antagonists are primarily 

mediated through M1 receptors, with a minor contribution of M4 receptors. The data also support 

our previous findings that stimulation of M1 receptors and M4 receptors can each attenuate the SD 

effect of cocaine, and show that this can also be achieved by blocking M2 autoreceptors, likely via 

increased acetylcholine release.
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1. Introduction

There are currently no approved or widely effective medications to curb addiction to 

psychostimulant drugs like cocaine. Manipulations targeting muscarinic cholinergic systems 

can modulate abuse-related effects of cocaine, and muscarinic receptors are thus emerging as 

potential targets for medications development in cocaine addiction [1]. We have previously 

shown that agonists or positive allosteric modulators that selectively stimulate either the M1 

or the M4 muscarinic receptor subtypes attenuate the discriminative stimulus (SD) 1effects 

and reinforcing effects of cocaine in rats and mice ([2-5]; [6]). Studies in knockout mice that 

lack M1 receptors (M1
-/-), M4 receptors (M4

-/-), or both receptors, suggested that both 

receptor subtypes mediate the attenuation of cocaine's SD effects, while other receptors, 

likely M3, mediate the rate-suppressing side effects that were observed with less selective 

ligands [2, 5]. Conversely, muscarinic receptor antagonists increased the SD effect of 

cocaine, and can produce cocaine-appropriate responding when substituted for cocaine [2, 

7-9].

Based on rat studies that used intracranial infusions or lesions, striatal areas appear to be 

central to mediating both the SD effects of cocaine [10, 11], and the modulation of the 

cocaine SD effect by muscarinic receptor ligands [12-15]. Striatal tissues express 

predominantly the M1 and M4 muscarinic receptor subtypes, and lower densities of the M2 

subtype: M1 receptors mostly postsynaptically, M4 receptors both pre-and postsynaptically, 

and M2 receptors mostly as presynaptic inhibitory autoreceptors [16-20]. M2 and M4 

receptors modulate the tonic acetylcholine release by striatal cholinergic interneurons, which 

in turn modulates striatal dopamine release via a nicotinic receptor-dependent mechanism 

[21-25]. Postsynaptically, M1 and M4 receptors modulate the excitability and activity 

patterns of GABAergic medium spiny neurons, the striatum's main output neurons. M1 and 

M4 receptor activation has long been known to produce functional dopamine antagonism, 

but more recent studies are showing the reciprocal modulation of striatal dopamine and 

acetylcholine release to be quite complex (for review, see [26-29]).

Here, we used subtype-preferring muscarinic receptor antagonists and knockout mice 

lacking M1, M2, or M4 receptors to investigate the contributions of specific muscarinic 

receptor subtypes in the muscarinic/cocaine interaction in the drug discrimination assay. 

Scopolamine is a non-selective muscarinic antagonist with comparable affinities at the M1 

and M3-M5 subtypes and a marginally lower affinity at the M2 subtype [30-32]. Telenzepine 

is a moderately M1-preferring antagonist, and trihexyphenidyl has about equal affinity at M1 

and M4 receptors, with modest selectivity over M2, M3, and M5 subtypes [30, 33, 34]. 

Tropicamide was reported to be a modestly M4-preferring antagonist with comparable 

affinities across M1-M3 subtypes [35]. Methoctramine and AQ-RA 741 are M2-preferring 

1Abbreviations: SD discriminative stimulus, DAR: drug-appropriate responding
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antagonists, with methoctramine generally showing a more selective profile than AQ-RA 

741 [33, 36-39]. Methoctramine binds at both the orthosteric site and an allosteric site on M2 

receptors, but the latter only at high concentrations less likely to be relevant in vivo [40, 41]. 

Each antagonist was either shown to be fully brain penetrant, or has been inferred to 

penetrate the central nervous system based on producing effects known to be centrally 

mediated, following systemic administration [32, 42-44].

2. Materials and Methods

2.1 Animals

Male Swiss-Webster, C57BL/6NTac, M1
-/-, M2

-/- and M4
-/- mice were acquired from 

Taconic Farms (Germantown, NY) at 4-8 weeks of age, the knockout mice with the 

permission of Dr. Jürgen Wess. M1
-/-, M2

-/- and M4
-/- mice were generated as described 

previously [45-47] and backcrossed 11 generations to C57BL/6NTac females. Age- and sex-

matched wild-type C57BL/6NTac (Taconic Farms) mice served as controls. Mice were 

acclimated to the housing facilities for at least 7 days before training began, at no earlier 

than 7 weeks of age. Mice were kept in a 12-h light/dark cycle, group housed up to four per 

cage. Experiments were conducted during the light phase of the circadian cycle. Water was 

accessible ad libitum and food (rodent diet 5001; PMI Feeds, Inc., St. Louis, MO) was 

provided daily after training/testing sessions, 4 g/mouse/day. Rodent “treats”, nesting 

material, and exercise/nesting devices were provided for enrichment. Some mice had been 

tested previously with muscarinic receptor ligands (M1 agonist and/or M4 positive allosteric 

modulator) before the tests reported here. All procedures were approved by the McLean 

Hospital Institutional Animal Care and Use Committee and were carried out in accordance 

with the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral 

Research and US laws.

2.2 Training and evaluation in cocaine discrimination

Operant-conditioning chambers and the experimental procedure were as previously 

described [2]. In brief, each chamber contained two nose-poke holes each equipped with a 

photocell and a cue light, and a cup into which liquid food was delivered from a syringe 

pump. Mice were trained to discriminate 10 mg/kg cocaine from saline (i.p.), reinforced 

with Vanilla-flavored Ensure nutrition drink. 30 reinforcers were available per 20-min 

session. Mice were trained initially under a FR 1 schedule, then, the ratio was gradually 

increased to FR 10, with increasing pretreatment time spent in the chamber rather than home 

cage. Eventually, sessions were preceded by the 10-min pretreatment period in the chamber, 

during which all lights were off, and responding had no scheduled consequences. Cocaine 

and saline were presented in pseudorandom order across daily training sessions, typically 

five days/week, and mice were counterbalanced with cocaine trained on the left or right 

nose-poke. Stable discrimination was defined as at least 7 of 8 consecutive sessions 

satisfying the following criteria: 1) ≥10 reinforcers earned per session, 2) ≥80% correct 

responses for the first reinforcer, and 3) ≥90% correct total responses.

Once criteria were met, mice were tested with saline, 0.32, 1.0, 3.2, 10, and 18 mg/kg 

cocaine to generate dose-effect functions. The non subtype-selective antagonist scopolamine 
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(0.032–10 mg/kg i.p.), the M1/M4-preferring antagonists telenzepine (3.2-56 mg/kg s.c.) and 

trihexyphenidyl (0.032– 32 mg/kg i.p.), the M4-preferring antagonist tropicamide (0.1–10 

mg/kg s.c.), and the M2-preferring antagonists AQ-RA 741 and methoctramine (0.1–3.2 

mg/kg s.c.) were each tested alone (i.e., as “substitution” for cocaine stimulus). In addition, 

pretreatment/combination tests were conducted, in which cocaine doses were tested in 

combination with scopolamine (0.32 mg/kg i.p., administered with cocaine as a single 

injection), tropicamide (0.1 mg/kg s.c.), AQ-RA 741 (0.1–1 mg/kg s.c.), and methoctramine 

(0.0032–1.0 mg/kg s.c.). Pretreatment times before cocaine injection (when tested in 

combination) or before session start (when tested alone as substitution) were: telenzepine, 10 

min; methoctramine, 15 min; all other drugs, immediately before. Doses were tested within-

subjects in a counterbalanced sequence. At least one training session was interspersed 

between each test session, and tests were only performed when mice satisfied discrimination 

criteria. If responding was suppressed to less than 10 responses in a session, the quantity of 

behavior was considered insufficient to evaluate response selection and the percentage of 

drug-appropriate responding (DAR) was not included in the data set.

2.3 Drugs

Cocaine hydrochloride was supplied by the National Institute on Drug Abuse (National 

Institutes of Health, Bethesda, MD), Scopolamine hydrobromide, telenzepine 

dihydrochloride hydrate, trihexyphenidyl hydrochloride, tropicamide, and methoctramine 

hydrate were purchased from Sigma-Aldrich (St. Louis, MO). AQ-RA 741 was purchased 

from R&D Systems, Inc (formerly Tocris, Ellisville, MO). Cocaine, scopolamine, 

telenzepine, and AQ-RA 741 were dissolved in 0.9% saline, methoctramine, in sterile water. 

Trihexyphenidyl was dissolved by gentle heating in sterile water. Tropicamide was dissolved 

in ethanol and diluted to ≤1% ethanol in sterile water. All drug doses refer to the weights of 

the respective salts. Vehicles, route of administration, pretreatment times, and initial dose 

ranges were selected based on published reports, and adjusted empirically in initial studies 

[2, 44, 48-51].

2.4 Data analysis

The %DAR for the whole session and total rates of responding (i.e., in both holes) are 

presented. Comparable effects were observed in %DAR for the first reinforcer, unless stated 

otherwise. Repeated measures ANOVA were performed with dose of pretreatment drug 

and/or cocaine or dose of substitution drug, as variables, on %DAR and response rate. For 

knockout strain studies, ANOVA were performed with genotype as between-subjects 

variable and drug doses/pretreatments as repeated-measures variables. Occasionally, 

responding was eliminated or suppressed to the point that no reinforcers were earned during 

the session; in those cases, no %DAR was calculated for that mouse (i.e., missing value). 

Data are reported as group means with standard error of the mean. Significance level was set 

at P<0.05; statistical software was Stata/SE for Mac.
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3. Results

3.1 “Cocaine-like” muscarinic receptor antagonists in Swiss-Webster mice

In outbred Swiss-Webster mice, the M1/M4-preferring antagonists telenzepine and 

trihexyphenidyl, and the M4-preferring antagonist tropicamide, each produced some 

cocaine-appropriate responding, with peak averages between 38% and 61% (Fig. 1). DAR 

was related to antagonist dose for telenzepine [F(3,21)=4.07, P<0.05], trihexyphenidyl 

[F(3,39)=3.68, P<0.05], and tropicamide [F(5,39)=3.82, P<0.01]. Trihexyphenidyl decreased 

rates of responding at the highest dose tested (main effect [F(3,39)=14.3, P<0.0001]; 

32mg/kg vs. vehicle P<0.001). Tropicamide and telenzepine did not affect rates of 

responding significantly.

When telenzepine (3.2 mg/kg) and tropicamide (0.1 mg/kg) were tested in combination with 

cocaine, each antagonist produced a small shift of the cocaine dose-effect function to the left 

(Fig. 2), but only the effect of tropicamide reached statistical significance by ANOVA 

[F(1,63)=10.6, P<0.01]. The effect of cocaine dose on response allocation was always highly 

significant (P<0.0001). In two mice, telenzepine profoundly suppressed responding at the 

highest doses (despite no to minimal effects on rates of responding in other mice), which 

resulted in missing values and consequently reduced statistical power. As an alternative 

analysis method less affected by missing values, potencies of cocaine were calculated by 

interpolation in each mouse with and without telenzepine, which confirmed a leftward shift 

(1.34 mg/kg, 95% confidence interval 0.68 – 2.65 vs. 0.39 [0.23 – 0.65] mg/kg, P<0.01 by 

paired-sample t-test). Telenzepine produced a small decrease in rates of responding 

regardless of the cocaine dose [F(1,62)=6.90, P<0.05], while tropicamide did not affect 

rates.

3.2 “Cocaine-like” muscarinic receptor antagonists in muscarinic receptor knockout mice

Wild-type mice and knockout mice lacking M1, M2, or M4 receptors acquired cocaine 

discrimination after on average 89.3±5.4, 85.5±5.2, 96.3±5.8, and 129.9±10.5 sessions, 

respectively. The M4
-/- mice required significantly longer training to meet criteria relative to 

wild-type mice (χ2=13.1, P<0.001). The genotypes did not differ in their cocaine dose-effect 

functions (Supplemental Fig. 1).

To test the hypothesis that M1 and/or M4 receptors mediated the cocaine-like discriminative 

stimulus effect of the non subtype-selective muscarinic antagonist scopolamine, 

scopolamine was tested as substitution in each knockout strain. Tests were aborted in the 

M2
-/- strain due to unexpected toxicity, as the first few M2

-/- mice tested with doses of 

scopolamine above 0.32 mg/kg died within a day. Thus, dose-effect functions for 

scopolamine substitution were obtained in wild-type mice, M1
-/- mice, and M4

-/- mice (Fig. 

3). DAR was related to both genotype [F(2,71)=3.54, P<0.05] and scopolamine dose 

[F(4,71)=8.47, P<0.0001]. Scopolamine produced partial substitution, and significant effects 

on DAR, in the wild-type mice [F(4,25)=7.28, P<0.001] and in the M4
-/- mice 

[F(4,24)=3.41, P<0.05], but not in the M1
-/- mice. Rates of responding were also affected 

differentially (genotype effect [F(2,74)=6.41, P<0.01], scopolamine effect [F(4,74)=6.08, 

P<0.001].
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A low dose of scopolamine can shift the cocaine discrimination dose-effect function to the 

left in intact mice [2]. To test the hypothesis that M1 receptors also mediated the potentiation 

of the cocaine discriminative stimulus effect by scopolamine, we determined cocaine dose-

effect functions with and without 0.32 mg/kg scopolamine in wild-type mice, M1
-/- mice, 

M2
-/- mice, and M4

-/- mice. We observed a qualitative difference between strains, in that 

scopolamine produced the expected shifts to the left in the wild-type mice, M2
-/- mice, and 

M4
-/- mice, but produced a shift to the right in the M1

-/- mice (Fig. 4). A three-way ANOVA 

with the factors genotype, cocaine, and scopolamine confirmed a significant genotype by 

scopolamine interaction [F(3,237)=6.11, P<0.0001], and follow-up simple effects confirmed 

a significant effect of scopolamine in each knockout line (P<0.05 to P<0.001). No evidence 

of toxicity was observed in the M2
-/- mice with this dosing. The effect of cocaine dose on 

DAR was significant in all pretreatment/combinations tests (P<0.0001).

3.3 “Cocaine-attenuating” muscarinic receptor antagonists in Swiss-Webster mice

The M2-preferring antagonist methoctramine produced little cocaine-appropriate responding 

per se, with a maximal DAR of 35% at the highest dose (main effect [F(4,26)=3.43, P<0.05]; 

3.2mg/kg vs. vehicle P<0.05), (Fig. 5A). Methoctramine was tested over a range of doses, up 

to doses that produced rate-decreasing effects [F(4,28)=7.21, P<0.001].

We then tested methoctramine in combination with cocaine, testing for a shift in the cocaine 

dose-effect function at two doses of methoctramine, and testing a range of methoctramine 

doses in combination with 3.2 mg/kg cocaine. As opposed to scopolamine and the M1/M4 

receptor-preferring antagonists telenzepine, trihexyphenidyl, and tropicamide, 

methoctramine moderately attenuated the cocaine discriminative stimulus effect in Swiss-

Webster mice: administration of 0.01 mg/kg methoctramine produced a small shift of the 

dose-effect function to the right (Fig. 5B; methoctramine effect [F(1,53)=4.34, P<0.05], 

cocaine by methoctramine interaction [F(4,53)=2.67, P<0.05]. At 1.0 mg/kg, methoctramine 

had no signignificant effect on DAR (in fact showed a trend to shift the cocaine curve to the 

left), and moderately decreased rates of responding ([F(1,63)=17.6, P=0.0001; Fig. 5C). This 

“biphasic” effect was also apparent when testing a range of methoctramine doses with 3.2 

mg/kg cocaine, in which doses from 0.01 to 0.32 mg/kg methoctramine decreased DAR 

(main effect of methoctramine dose [F(6,30)=3.28, P<0.05]), but 1 mg/kg had no effect (Fig. 

5D).

In an effort to replicate those findings, the putative M2-preferring antagonist AQ-RA 741 

was also tested. AQ-RA 741 alone produced no cocaine-appropriate responding in a range of 

doses previously shown to be active in vivo (no effect of dose on DAR or rate; see 

Supplemental Fig. 2A). However, the selectivity of AQ-RA 741 is modest, and the 

usefulness of those data is limited by the fact that higher, rate-suppressing doses were not 

tested, out of concerns for potential toxicity. Administration of 1.0 mg/kg AQ-RA 741 

produced a small shift of the cocaine dose-effect function to the right (Supplemental Fig. 

2B), although the effect only reached statistical significance for the first reinforcer (AQ-RA 

741 dose [F(1,62)=4.45, P<0.05], AQ-RA 741 by cocaine interaction [F(4,62)=2.98, 

P<0.05]), but not for total-session responding. A range of AQ-RA 741 doses were tested 

with 3.2 mg/kg cocaine (Supplemental Fig. 2C). Again, AQ-RA 741 produced moderate 
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decreases in DAR that was significant for first-reinforcer responding [F(3,15)=4.43, P<0.05] 

(total session analysis: P=0.06). Rates of responding were not significantly affected.

3.4 “Cocaine-attenuating” muscarinic receptor antagonists in muscarinic receptor 
knockout mice

Because methoctramine has relatively low selectivity for the M2 subtype, we wanted to test 

the hypothesis that effects on cocaine discrimination were mediated through M2 receptors. 

To this end, we tested 0.032 mg/kg methoctramine as pretreatment to cocaine in wild-type 

mice, M1
-/- mice, M2

-/- mice, and M4
-/- mice (Fig. 6). A three-way ANOVA with the factors 

genotype, cocaine dose and methoctramine dose confirmed a significant genotype by 

methoctramine interaction [F(3,205)=2.97, P<0.05]. As hypothesized, methoctramine had no 

effect in the M2
-/- mice (Fig. 6C), while the moderate rightward shift observed in the Swiss-

Webster mice was confirmed in the wild-type mice (P=0.001; Fig. 6A). The effect appeared 

intact in the M4
-/- mice (P<0.01; Fig. 6D), but was diminished in the M1

-/- mice, in which 

the shift was not significant (Fig. 6B).

4. Discussion

Muscarinic antagonists can partially mimic and increase the SD effects of cocaine, but the 

muscarinic receptor subtypes involved in these effects are not known. We tested muscarinic 

receptor antagonists with no subtype selectivity, or moderately preferential affinity at the 

M1, M2 or M4 subtype, in wild-type mice, M1
-/- mice, M2

-/- mice and M4
-/- mice trained to 

discriminate 10 mg/kg cocaine from saline. We found that the non-selective antagonist 

scopolamine or antagonists with relatively higher affinity at M1/M4 receptor subtypes 

produced some cocaine-appropriate responding per se, and produced leftward shifts in the 

cocaine SD effect curve in intact animals. Experiments in the knockout mice further 

indicated that M1 receptors, rather than M4 receptors, mediate the cocaine-like SD effects of 

scopolamine. In contrast, antagonists with relatively higher affinity at the M2 receptor 

subtype attenuated the cocaine SD effect. Experiments in knockout mice also supported the 

notion that M2 receptors mediate the cocaine SD attenuating effects of methoctramine.

4.1 Cocaine-like effects of non-selective and M1/M4-preferring antagonists in intact mice

We previously showed that scopolamine produced cocaine-appropriate responding in Swiss-

Webster mice (partial substitution with an inverted U-shaped curved), and that a sub-

threshold dose of scopolamine shifted the cocaine dose-effect curve to the left [2]. 

Methylscopolamine, which has poor brain penetration, was less potent than scopolamine in 

producing these effects, indicating a centrally mediated effect [2]. This is in agreement with 

earlier studies in rats, in which the non subtype-selective muscarinic antagonists atropine 

and scopolamine produced leftward shifts in cocaine's SD effects [7, 8]. Potentiation of 

psychostimulant effects by muscarinic receptor blockade has been observed consistently in 

mice, rats, and non-human primates across a range of endpoints, including locomotor 

activity, stereotypies, and intravenous self-administration [8, 52-55]. Isobolographic 

analyses confirmed that the effects of cocaine-scopolamine combinations were more than 

additive both in drug discrimination in mice, and in locomotor activity in rats, implying that 

muscarinic receptor antagonists and cocaine produce their effects through different brain 
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pathways [2, 56]. The interaction likely involves dopamine release, as systemic 

administration of muscarinic antagonists induces striatal dopamine release in humans and 

rats, and potentiates cocaine-induced dopamine increases [34, 57, 58].

Here, M1 and/or M4-preferring antagonists produced some cocaine-appropriate responding, 

comparable to results obtained previously with scopolamine [2]. Previous investigations 

similarly found that the moderately M1-preferring antagonists telenzepine and 

trihexyphenidyl potentiated the locomotor stimulant and/or SD effects of cocaine in rats [9, 

34]. Tropicamide was described as somewhat M4-preferring, although recent data suggest 

that is a relatively nonspecific muscarinic antagonist [35, 59]. Effects of M4 receptor 

blockade on cocaine's SD effects have not been reported previously, but our findings are 

consistent with a report that tropicamide increased or prolonged cocaine-induced 

stereotypies in rats [52]. The notion that blocking either M1 receptors or M4 receptors 

increases effects of cocaine is also consistent with our findings that, conversely, 

pharmacological stimulation of M1 and/or M4 receptors attenuated the SD effects and 

reinforcing effects of cocaine in rats and mice ([2-5]; [6]). Taken together, this first data set 

suggests that M1 and/or M4 receptor blockade at least partly mediate the effects of 

scopolamine in the cocaine discrimination assay.

4.2 Cocaine-like effects of muscarinic antagonists in muscarinic receptor knockout mice

Brain-penetrant muscarinic receptor antagonists with a high degree of selectivity for each of 

the five receptor subtypes are still being developed, and we therefore used a combination of 

subtype-preferring ligands and receptor knockout mice to determine the contributions of 

individual receptor subtypes to the above effects. Cocaine produced comparable SD dose-

effect functions in all four strains – wild-type, M1
-/-, M2

-/-, and M4
-/-. In contrast, 

substitution of scopolamine for cocaine revealed striking differences: scopolamine produced 

over 80% cocaine-appropriate responding in the wild-type mice, but no appreciable cocaine-

appropriate responding in the M1
-/- mice in the same dose range. Partial substitution was 

observed in the M4
-/- mice. Although we cannot exclude that higher doses of scopolamine 

could have produced some cocaine-appropriate responding in the knockout mice, these 

findings indicate that M1 receptors are necessary for scopolamine to produce cocaine-SD 

like effects, while M4 receptors may contribute partially to the effect.

When we tested scopolamine in combination with cocaine, the M1
-/- mice again showed a 

qualitatively different effect: whereas scopolamine produced leftward shifts in the cocaine 

dose-effect function in wild-type mice, M2
-/- mice, and M4

-/- mice, M1
-/- mice showed a 

rightward shift. Thus, the cocaine-potentiating effect of scopolamine appears to be 

dependent upon blockade of M1 receptors.

These findings illustrate the opposing modulatory effects of different muscarinic receptor 

subtypes on striatal dopaminergic transmission (for review, see [28]; Thomsen et al. 2017 

under review). In the absence of M1 receptors, scopolamine would block M2-M5 receptors, 

and the fact that scopolamine produced a rightward shift, not leftward shift, in M1
-/- mice, 

suggests that blocking M4 receptors alone is not sufficient to potentiate the effects of 

cocaine. Rather, antagonism of M2 receptors and the resulting increase in acetylcholine tone 

appears to produce sufficient stimulation of M4 receptors to attenuate cocaine's effects, 
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consistent with the effect of an M4 positive allosteric modulator in the same assay [6]. It is 

possible that effects at M5 receptors play a role as well [66, 67]. M1
-/- mice (but not M2

-/- 

mice or M4
-/- mice) showed plasma levels of scopolamine roughly twice as high as the wild-

type controls 30 min after an intraperitoneal injection of 1 mg/kg, as well as a trend for 

higher brain levels [32]. However, given that scopolamine produced cocaine-like effects up 

to at least 10 mg/kg in wild-type mice, it seems unlikely that this slightly higher blood level 

would account for the complete reversal of effect observed here between the wild-type mice 

and the M1
-/- mice.

The scopolamine-induced leftward shift in cocaine SD was preserved or if anything larger in 

the M2
-/- mice and M4

-/- mice relative to wild-type mice. Loss of inhibitory autoreceptors 

may be expected to lead to increased extracellular levels of acetylcholine, and/or reduced 

effect of scopolamine on acetylcholine release. Indeed, these effects were observed in M2
-/- 

mice, M4
-/- mice, and M2

-/-M4
-/- double knockout mice [25, 68]. Thus, loss of scopolamine-

increased acetylcholine tone (which would tend to attenuate the cocaine SD effect) would 

unmask the M1 receptor-mediated potentiation of the cocaine SD effect. These data suggest 

that M1 receptors, not M4 receptors, play the major role in scopolamine-potentiated cocaine 

SD effects. Studies using M1
-/- mice, M4

-/- mice, and double M1
-/-M4

-/-mice similarly 

indicated that M1 receptors, not M4 receptors, mediated the disruption of prepulse inhibition 

of the startle response by scopolamine, another effect that is shared between muscarinic 

receptor antagonists and psychomotor stimulant drugs [69].

4.3 Cocaine-attenuating effects of M2-preferring antagonists

In contrast to the M1/M4 receptors, we did not anticipate that blockade of the (primarily 

presynaptic) M2 receptors would produce cocaine-like effects in the drug discrimination 

assay. Indeed, neither methoctramine nor AQ-RA 741 substituted for cocaine in intact mice, 

with the caveat that neither ligand is highly selective for the M2 receptor, and that neither 

ligand was tested at doses that produced strong behavioral suppression, due to expected risks 

of toxicity. To evaluate the effects of methoctramine in combination with cocaine, we 

therefore tested a wide range of doses (two and a half log units), including doses that may 

bind M2 receptors preferentially, and doses that may have off-target effects. This produced a 

biphasic dose-effect function, from an ineffective, sub-threshold dose, over a range of doses 

that decreased cocaine-appropriate responding, to a complete reversal of effect this at the 

highest dose. A biphasic dose-effect function of methoctramine has been observed 

previously, similarly attributed to recruitment of non-M2 receptors [60]. M2 receptor 

antagonists reduced the SD effects of 3.2 mg/kg cocaine by up to 50% in Swiss-Webster 

mice, an effect similar to that produced by M1/M4 agonists [2, 5]. When tested against a 

range of cocaine doses, a small rightward shift was obtained.

Brain M2 receptors are mainly inhibitory autoreceptors [61, 62]. M2 receptors serve as 

autoreceptors throughout the brain with the probable exception of the nucleus accumbens, 

while M4 receptors appear to serve this function only in the striatum [18, 21, 23, 25]. 

Consistent with this function, in vitro and in vivo studies have shown that M2-preferring 

antagonists increase acetylcholine in dorsal striatum, hippocampus, and cortex [39, 60, 

63-65]. We therefore hypothesize that the M2 antagonists attenuated the cocaine SD effect 
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indirectly, through stimulation of brain M1 and/or M4 receptors by endogenous 

acetylcholine. Nicotinic receptors, which also modulate dopamine release in the dorsal and 

ventral striatum, could also be involved [23]. A complete lack of effect of methoctramine in 

the M2
-/- mice supports the interpretation that methoctramine attenuated the cocaine SD 

effect in intact mice via antagonism of M2 receptors. Although rat studies indicated that the 

nucleus accumbens is important in mediating the SD effects of cocaine [10, 11], the above 

results suggest that the effect of methoctramine is likely mediated at least partially in dorsal 

striatum (and/or other brain regions) rather than the nucleus accumbens, because M4 

receptors, not M2 receptors, serve as autoreceptors in the accumbens [23]. While 

methoctramine produced a rightward shift of the cocaine curve in wild-type mice and in the 

M4
-/- mice, the effect was strongly attenuated in the M1

-/- mice. This is perhaps surprising in 

the light of the effects of scopolamine in the knockout mice, but may suggest that 

stimulation of postsynaptic M1 receptors plays a more important role relative to M4 

receptors in attenuating the cocaine SD.

4.4 Conclusions

Taken together, the present findings suggest that cocaine-like SD effects of muscarinic 

antagonists are primarily mediated through muscarinic M1 receptors, with a minor 

contribution of M4 receptors. The data are in agreement with the notion that stimulation of 

M1 receptors and M4 receptors can each attenuate the SD effect of cocaine, not only through 

direct pharmacological stimulation as shown previously ([2, 5]; [6]), but also through 

increased cholinergic tone due to blockade of M2 autoreceptors. Finally, the findings also 

suggest that the cocaine-modulating effects of muscarinic receptor manipulations are likely 

not mediated entirely in the nucleus accumbens, but involve dorsal striatum or other brain 

regions as well.
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Highlights

• Muscarinic antagonists produce cocaine-like effects mainly via M1 receptors

• M2-preferring antagonists attenuate cocaine effects

• M2 antagonist effects are likely mediated by M1/M4 receptors via increased 

acetylcholine
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Figure 1. 
Dose-effect functions for cocaine and muscarinic M1/M4 receptor -preferring antagonists in 

Swiss-Webster mice, tested as substitutions for the training dose of 10 mg/kg cocaine: 

telenzepine (N=8), tropicamide (N=9), trihexyphenidyl (N=14), and cocaine in the same 

cohort (N=19). Data are %DAR (top) and responses per second (bottom), as a function of 

substitution drug dose.
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Figure 2. 
Effects of adding 3.2 mg/kg telenzepine (A, N=9) or 0.1 mg/kg tropicamide (B, N=8) to 

cocaine in Swiss-Webster mice. Data are %DAR (top) and responses per second (bottom), as 

a function of cocaine dose. In the top panel, exceptions to the group sizes are indicated on 

the figure when some mice failed to respond at a given dose.
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Figure 3. 
Dose-effect functions for the non subtype-selective antagonist scopolamine in wild-type 

mice (WT, N=8), M1
-/- mice (N=7), and M4

-/- mice (N=7), tested as substitutions for the 

training dose of 10 mg/kg cocaine. No data in the M2
-/- mice due to toxicity. Data are 

%DAR (top) and responses per second (bottom), as a function of scopolamine dose. In the 

top panel, exceptions to the group sizes are indicated on the figure when some mice failed to 

respond at a given dose.
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Figure 4. 
Effects of adding 0.32 mg/kg scopolamine to cocaine in wild-type mice (A, N=8), M1

-/- 

mice (B, N=6), M2
-/- mice (C, N=6), and M4

-/- mice (D, N=8). Note the qualitatively 

different effect in the M1
-/- mice. Data are %DAR (top) and responses per second (bottom), 

as a function of cocaine dose. In the top panel, exceptions to the group sizes are indicated on 

the figure when some mice failed to respond at a given dose.
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Figure 5. 
A: Dose-effect functions for cocaine (N=12) and the muscarinic M2 receptor-preferring 

antagonist methoctramine (N=8) in Swiss-Webster mice, tested as substitutions for the 

training dose of 10 mg/kg cocaine. B: Effect of adding a 0.01 mg/kg methoctramine to a 

range of cocaine doses (N=7). C: Effect of adding 1 mg/kg methoctramine to a range of 

cocaine doses (N=8). D: Dose-response relationship of adding methoctramine to 3.2 mg/kg 

cocaine in Swiss-Webster mice (N=6). Data are %DAR (top) and responses per second 

(bottom), as a function of cocaine dose or methoctramine dose. In the top panel, exceptions 

to the group sizes are indicated on the figure when some mice failed to respond at a given 

dose.
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Figure 6. 
Effects of adding 0.032 mg/kg methoctramine to cocaine in wild-type mice (A, N=8), M1

-/- 

mice (B, N=6), M2
-/- mice (C, N=6), and M4

-/- mice (D, N=6). Data are %DAR (top) and 

responses per second (bottom), as a function of cocaine dose. In the top panel, exceptions to 

the group sizes are indicated on the figure when some mice failed to respond at a given dose.
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