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The prevalence of obesity and its associated pathologies, 
including insulin resistance, have increased in the past sev-
eral decades (1–4). Numerous studies have implicated adi-
pose tissue-recruited immune cells as a critical component 
of insulin resistance and significant attention has been fo-
cused on macrophages, whose malleable nature allows for 
alternative states of activation dependent on the local envi-
ronment (5, 6). With the development of obesity, adipose 
tissue acquires a chronic low-grade proinflammatory state, 
along with increased reactive oxygen species (ROS), dysfunc-
tional mitochondria, and whole body insulin resistance 
(7–9).

Leukotrienes (LTs) are lipid mediators derived from  
arachidonic acid via the actions of the 5-lipoxygenase path-
way (10–13). LTA4 hydrolase activity results in the produc-
tion of LTB4, whereas LTC4 synthase initiates the glutathione 
conjugation of LTA4 to produce LTC4, LTD4, and LTE4 
(14, 15). These lipids bind with high affinity to a subfamily 
of G protein-coupled receptors, thus initiating signal cas-
cades to direct functional consequences, typically of a pro-
inflammatory nature (16–18). Lipopolysaccharide (LPS), 
zymosan, and calcium ionophores have all been demon-
strated to increase LTB4 production and secretion in mul-
tiple cell types, including neutrophils and macrophages 
(19, 20). LTB4 binds with high affinity to the LTB4 receptor 
1 (BLT1R), a member of the G protein-coupled receptor 
family (16, 21, 22). A second LTB4 receptor, BLT2R, binds 
LTB4 with a 20-fold higher Kd (21, 22). Several other lipoxy-
genase products have been demonstrated to bind to 
BLT2R, with the thromboxane synthase product, 12-HHT, 
having a 10-fold higher affinity than LTB4; thus 12-HHT is 
thought to be an endogenous ligand (22, 23). LTB4 is in-
volved in host defense following infection in a number of 
ways, including increasing the recruitment of immune 
cells via increased chemotaxis, calcium mobilization, and 
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altered gene expression, ultimately leading to an inflam-
matory state (13, 24, 25). Additionally, LTB4 stimulates neu-
trophil secretion of proteins, including lysozyme and matrix 
metalloproteinases (26, 27). In macrophages, LTB4 has 
been demonstrated to increase proliferation and plays a 
role in phagocytosis (28–30). Chronic LTB4 proinflamma-
tory signaling has been implicated in several pathological 
states including atherosclerosis, asthma, arthritis and  
cancer (16, 24, 31–33).

On a high-fat diet, murine adipose tissue accumulates 
M1-activated macrophages, thereby producing an inflam-
matory state (34–36). However, BLT1R knockout mice dem-
onstrate an anti-inflammatory adipose phenotype and are 
resistant to pathologies associated with a high-fat diet. With-
out BLT1R, adipose tissue accumulates M2 macrophages 
with a corresponding decrease in M1 macrophages. This 
ultimately results in decreased circulating proinflamma-
tory chemokines and cytokines and reduced insulin resis-
tance (37, 38). Additionally, BLT1R has been implicated in 
the insulin resistance derived by adipose tissue B2 cells 
(39). BLT1R deletion also protects from the progression of 
atherosclerosis in an ApoE-deficient mouse (37). In addition 
to the BLT1R, Olefsky and colleagues have demonstrated 
that high-fat diet-induced obesity results in increased LTB4 
production in metabolic tissues, including adipose, liver, 
and muscle (38).

Fatty acid binding proteins (FABPs) are small soluble 
fatty acid carriers and comprise a family of nine members 
(40). FABP4 (aP2/AFABP) plays a significant role in lipid 
metabolism; in the absence of FABP4, lipolysis is reduced 
(41–43). Furthermore in the obese state, genetic deletion 
of FABP4 improves metabolism, resulting in reduced insu-
lin resistance, atherosclerosis, and asthma (44–49). More 
specifically, FABP4-null macrophages have been shown to 
exert an anti-inflammatory phenotype, most closely resem-
bling an M2 state. Interestingly, members of the FABP family, 
including FABP4, have been implicated in stabilizing short-
lived LT intermediates, by binding the unstable epoxide 
containing LTA4, functionally protecting it from water hy-
drolysis to the inactive 5,6- or 5,12-diHETEs (50, 51). 
Herein, we report that in macrophages, the inflammatory 
stimuli LPSs, as well as ROS, upregulate BLT1R expression 
in a FABP4-dependent manner. Furthermore, we demon-
strate that in macrophages lacking FABP4, the LTB4-in-
duced signal cascade is dramatically reduced.

RESEARCH DESIGN AND METHODS

Cell culture
RAW264.7 macrophages were maintained in DMEM (Invitro-

gen) with 10% FBS. WT, FABP4/aP2 knockout (AKO), shGFP 
control, and shUCP2 knockdown AKO macrophages were main-
tained in RPMI 1640 (Invitrogen) with 5% FBS. Concentrations 
and times of treatment of LPS, H2O2, N-acetyl cysteine, or LTB4 
are listed in each figure legend.

Bone marrow-derived macrophage isolation
Bone marrow-derived macrophages (BMDMs) were isolated 

from 10-week-old female C57BL/6J mice as indicated in Ying et al. 

(52). Cells were plated and maintained in Iscove’s modified Dul-
becco’s medium (Invitrogen) with 10% FBS and 10 ng/ml macro-
phage colony-stimulating factor (M-CSF) for 1 week to allow 
maturation of the cells into naïve macrophages. Polarization of 
cells to either M1 or M2 activation states occurred by treatment 
with either LPS (1 g/ml)/IFN (10 ng/ml) or IL-4 (10 ng/ml)/
IL-13 (10 ng/ml) for 48 h, respectively. All experimental proce-
dures using animals were reviewed and approved by the Univer-
sity of Minnesota Institutional Animal Care and Use Committee.

Quantitative RT-PCR
Total RNA was isolated using TRIzol reagent (Invitrogen) and 

cDNA synthesis was performed using iScript according to the 
manufacturer’s protocol (Bio-Rad). Quantitative (q)RT-PCR am-
plification utilized a Bio-Rad CFX 96 real-time system with a SYBR 
green Supermix (Bio-Rad). Transcription factor II E (TFIIE) was 
used as the internal control to normalize expression. Primer 
sequences used are (forward; reverse): Arginase, (AACACGGCA-
GTGGCTTTAACC; GGTTTTCATCTGGCGCATTC); BLT1R, 
(GGCATCTGGGTGGTGTCTTTTC; TGCTCTTTGTTGGGATAG-
TTCG); CD206, (CTCGTGGATCTCCGTGACAC; GCAAATG-
GAGCCGTCTGTGC); CXCL10, (CGTGTTGAGATCATTGC-
CAC; TTAAGGAGCCCTTTTAGACC); IL-1, (AAATACCTGTG-
GCCTTGGGC; CTTGGGATCCACACTCTCCAG); iNOS, (AGC-
GAGTTGTGGATTGTCC; TCTCTGCCTATCCGTCTCG); LCN2, 
(GGGAGTGCTGGCCAAATAAG; TGCCACTCCATCTTTC-
CTGTT); PPAR, (GCCATTGAGTGCCGAGTC; TGTGGATC-
CGGCAGTTAA); TFIIE, (CAAGGCTTTAGGGGACCAGATAC; 
CATC CATTGACTCCACAGTGACAC).

Immunoblot analysis
Cells were lysed with RIPA buffer supplemented with protease 

inhibitors (Calbiochem). Fifty micrograms of protein from each 
sample were separated by SDS-PAGE and transferred to a PVDF 
membrane. After blocking with Odyssey blocking buffer (Li-Cor 
Biosciences), membranes were incubated with primary antibody 
overnight at 4°C. Membranes were washed and incubated with 
secondary antibody conjugated to Li-Cor IRDye for 1 h and visual-
ized using Odyssey infrared imaging (Li-Cor Biosciences). The 
primary antibodies used were anti-BLT1R (Cayman Chemical) 
and anti-actin (Sigma).

Immunoprecipitation
For JAK2 phosphorylation experiments, following LTB4 treat-

ments, JAK2 antibody (Cell Signaling) was added to cell lysates 
and incubated overnight at 4°C. Subsequently protein A-agarose 
was added and after 2 h of rocking at 4°C, centrifuged and the 
pellet was washed three times. The immunoprecipitants were de-
natured by boiling and run on SDS-PAGE. Immunoblots utilized 
antibodies to phospho-tyrosine (4G10; Millipore) and total JAK2 
(Cell Signaling).

Statistical analysis
All data in this work are expressed as ±SEM. Statistical signifi-

cance was determined using an unpaired two-tailed Student t-test 
(*P < 0.05).

RESULTS

Genetic or pharmacologic depletion of FABP4 reduces 
BLT1R expression

Previously, genetic knockout or pharmacologic inhibi-
tion of FABP4 has been shown to reduce inflammation and 
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improve insulin sensitivity (44, 53). This inhibition of 
FABP4 results in accumulation of intracellular fatty acids in 
both adipocytes and macrophages (41, 42, 54). Recently we 
demonstrated that monounsaturated fatty acids, particu-
larly C16:1 palmitoleic acid and C18:1 oleic acid, drive the 
upregulation of UCP2 in macrophages resulting in re-
duced ROS and proinflammatory cytokine production 
(54). Because the LTB4 pathway is intimately involved in 
promoting inflammation, we evaluated the expression of 
the receptor, BLT1R, in macrophages generated from 
C57BL/6J (WT) or FABP4 knockout mice (AKO). FABP4 
knockout macrophages expressed approximately 50% the 
BLT1R mRNA levels of WT (Fig. 1A) with BLT1R protein 
levels similarly reduced in FABP4 knockout macrophages 
(Fig. 1B, C).

Signaling by LTB4 is compromised in FABP4 knockout 
macrophages

Because the expression of BLT1R is reduced in FABP4 
knockout macrophages, we next determined whether this 

translated into a functional effect on signaling. LTB4 has 
been demonstrated to activate the JAK2 pathway in macro-
phages via coupling to GI, which inhibits the known JAK2 
inhibitor, SOCS1 (55). Therefore, we tested whether the 
LTB4-dependent activation of JAK2 differed in FABP4 
knockout as compared with control macrophages. As ex-
pected, a time course of LTB4 treatment resulted in phos-
phorylation of JAK2 in WT macrophages; however this was 
dramatically blunted in FABP4 knockout macrophages 
(Fig. 1D).

Macrophage polarization affects BLT1R expression
Macrophages can be activated by a variety of autocrine 

or paracrine factors to yield either a classical inflammatory 
M1 state or an alternatively activated anti-inflammatory M2 
state (35, 56, 57). To determine whether expression of 
BLT1R is altered depending on the activation state, we uti-
lized BMDMs activated to the M1 proinflammatory state 
using LPS and IFN, or to the M2 anti-inflammatory state 
using IL-4 and IL-13. To evaluate macrophage polariza-
tion, we quantified the expression of several genes known 
to be markers of M1 or M2 macrophages (58). As shown in 
Fig. 2A, LPS and IFN resulted in robust expression of the 
M1 markers, iNOS, CXCL10, IL-1, and LCN2, while re-
ducing expression of the M2 markers, arginase, PPAR, 
and CD206 (Fig. 2B). In contrast, IL-4 and IL-13 increased 
the M2 markers while reducing the expression of the M1 
markers. Consistent with an inflammatory state regulating 
the expression of BLT1R, M1 macrophages expressed 
higher BLT1R mRNA levels than macrophages in the M2 
state (Fig. 2C).

BLT1R expression is regulated by LPS in macrophages
The regulatory effect of inflammatory signals such as 

LPS on BLT1R expression varies greatly dependent on the 
specific cell type (59–61). Therefore, we tested the effect of 
LPS on BLT1R in the murine macrophage cell line, 
RAW264.7. LPS exerted a time- and dose-dependent in-
crease in BLT1R mRNA (Fig. 3A, B) in RAW264.7 cells. 
Interestingly, short-term exposure to LPS increased BLT1R 
protein levels (Fig. 3C). However, longer LPS exposure re-
sulted in a decrease in BLT1R protein (Fig. 3D). This result 
might be due to receptor desensitization that includes in-
ternalization and degradation or perhaps some other 
mechanism. Because AKO macrophages express lower 
basal levels of BLT1R, we evaluated the effect of LPS treat-
ment on BLT1R expression in AKO cells. Figure 3E dem-
onstrates that although LPS increased BLT1R mRNA 
expression in WT macrophages, LPS had no effect on AKO 
macrophages, consistent with the reduced levels of ROS 
and inflammation in this cell line (54, 62, 63).

Regulation of BLT1R expression by UCP2 and ROS
We have previously demonstrated that knockout or inhi-

bition of FABP4 leads to decreased inflammation and ROS 
due to the upregulation of UCP2 (54). To determine 
whether downregulation of BLT1R in AKO cells was UCP2-
dependent, we silenced UCP2 expression (approximately 
80%) in AKO macrophages using stable shRNA (54). As 

Fig. 1. FABP4 regulates BLT1R expression and activity. A: BLT1R 
mRNA expression normalized to TFIIE in stable macrophage cell 
lines from WT C57BL/6J (black bars) and genetic knockout of 
FABP4/aP2 (AKO) (gray bars) mice. B: BLT1R and actin protein 
expression in WT and AKO macrophages. C: Quantification of 
BLT1R protein levels normalized to actin. D: WT and FABP4/aP2 
(AKO) macrophages were treated with 100 nM LTB4 for the indi-
cated times. Following JAK2 immunoprecipitation, immunoblot 
analysis was conducted using phospho-tyrosine and total JAK2 anti-
bodies. Data were analyzed by Student’s t-test; *P < 0.05.
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shown in Fig. 4A, loss of UCP2 in AKO cells resulted in in-
creased expression of BLT1R mRNA. Although there is 
some controversy as to whether UCP2 has uncoupling ac-
tivity, it is generally agreed that UCP2 expression is nega-
tively correlated with ROS (64, 65). We too have provided 
evidence supporting this correlation, because we measured 
increased ROS levels when UCP2 was silenced in RAW264.7 
macrophages (52). To determine whether ROS could in-
dependently regulate BLT1R, Raw264.7 macrophages were 
treated with hydrogen peroxide and BLT1R mRNA levels 
were evaluated. As shown in Fig. 4B, BLT1R mRNA levels 
were robustly increased following H2O2 treatment of 
RAW264.7 macrophages. Furthermore, if reduced oxida-
tive stress in AKO macrophages was responsible for the de-
creased BLT1R expression, exogenous H2O2 should 
increase BLT1R in both WT and AKO macrophages. For 
this, we isolated and treated BMDMs from C57BL/6J (WT) 
and AKO mice, and treated both with exogenous H2O2. 
Figure 3C shows that basal expression of BLT1R in AKO is 
trending down, similar to our stable macrophage cell lines, 
but exogenous H2O2 results in a similar increase in BLT1R 
expression in both cell types. Finally, we tested whether the 
general ROS scavenger, N-acetyl cysteine, could decrease 
expression of BLT1R in WT and AKO macrophages. Con-
sistent with the model of ROS being a primary regulator of 
BLT1R, mRNA levels of BLT1R decreased in both WT and 
AKO following treatment with N-acetyl cysteine (Fig. 4D).

DISCUSSION

Herein, we demonstrate that the expression of macro-
phage BLT1R is upregulated by LPS and ROS, and that 
FABP4 knockout (AKO) macrophages have significantly 
blunted BLT1R expression and activity. Previous studies 
have demonstrated that the reduced proinflammatory ac-
tivity in the FABP4 knockout macrophages is due in large 
part to increased UCP2 expression and, in the present 
study, we extend that analysis to link UCP2 expression and 
ROS to the expression of BLT1R (40, 62, 63). Increased 
expression of UCP2 in FABP4 knockout macrophages re-
duces inflammatory cytokine synthesis and secretion (54). 
Moreover, FABP4 protein stabilizes LTA4 to chemical deg-
radation and stimulates LT synthesis and secretion. These 
findings are consistent with our current data demonstrat-
ing the inverse relationship of elevated BLT1R expression 
and reduced UCP2 expression.

FABP4 knockout mice are protected from chronic in-
flammation, insulin resistance, atherosclerosis, and exper-
imental autoimmune encephalomyelitis (44–49, 66). The 
LTB4-BLT1R axis has been demonstrated to play a sig-
nificant role in promoting each of these conditions  
(16, 24, 37, 67, 68) and has been identified as a potential 
therapeutic target (69). Furthermore, the phenotype of the 
BLT1R knockout mice shares similarities to that of the FABP4 
knockout mice. These include increased alternative activa-
tion (M2) of macrophages, decreased MCP-1 expression, 
and JNK activation, as well as decreased liver triglycer-
ides (37). Additionally, inhibition of BLT1R in the 

Fig. 2.  Macrophage polarization regulates BLT1R expression. 
Cultured BMDMs from C57BL/6J mice were activated to the M1 
state with LPS (1 g/ml)/IFN (10 ng/ml) (black bars) or the M2 
state with IL-4 (10 ng/ml)/IL-13 (10 ng/ml) (gray bars) for 48 h 
and gene expression evaluated by quantitative RT-PCR. A: Expres-
sion of genes representing M1-polarized macrophage markers. B: 
Expression of genes representing M2-polarized macrophage mark-
ers. C: Relative expression of BLT1R in the M1- and M2-activated 
macrophages. All expression results were normalized to TFIIE. Data 
were analyzed by Student’s t-test; *P < 0.05.
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leptin-deficient obesity model, ob/ob, increased the 
amount of M2 adipose tissue macrophages and decreased 
M1 macrophages (38). Consistent with this, inhibition of 
BLT1R also led to decreased expression and circulation of 

proinflammatory cytokines (37, 55). Therefore, the reduc-
tion of BLT1R in the FABP4-null macrophages may underlie 
the reduced susceptibility to metabolic diseases in the FABP4-
null mice.

Fig. 3. LPS regulates BLT1R expression. A: Time course (2–24 h) of BLT1R mRNA expression in RAW264.7 
macrophages treated with LPS (100 ng/ml). B: Expression of BLT1R mRNA in response to a 24 h concentra-
tion course of LPS. C: Expression of BLT1R protein in response to short-term LPS (100 ng/ml) treatment 
(0–3 h). D: Expression of BLT1R protein in response to 24 h of LPS (100 ng/ml) treatment. E: BLT1R mRNA 
expression in WT and AKO macrophages under basal conditions and in response to LPS (100 ng/ml) treat-
ment for 24 h. Data were analyzed by Student’s t-test. *P < 0.05 as compared with no treatment (A–D). *P < 0.05 
AKO compared with WT (E).
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Upon ligand binding, G protein-coupled receptors typi-
cally become desensitized, internalized, and degraded  
(70, 71) and this regulatory mechanism has been demon-
strated for LTB4-BLT1R in an atypical phosphorylation-
independent manner via -arrestin association (72). In 
this study, LPS treatment resulted in a short-term in-
crease in protein expression of BLT1R; however, chronic 
LPS treatment resulted in decreased BLT1R protein lev-
els (Fig. 3C, D). The apparent discordance between 
BLT1R mRNA and protein expression may be linked to 
desensitization and subsequent degradation of the re-
ceptor protein. However, preliminary work thus far has 
not supported this assertion (data not shown). Thus the 
mechanism that leads to the dramatic decrease in LTB4 
signaling in the FABP4-null macrophages, in addition to 
the reduction of the receptor, is not currently known. Ad-
ditional work is necessary to determine the mechanism 
underlying this observation.

The LTB4 precursor, LTA4, has been shown to be highly 
unstable due to the water hydrolysis of its epoxide ring, 
eliminating its biological activity (73). The half-life of 
LTA4 is markedly increased by members of the FABP fam-
ily, including FABP4 (50), and pharmacologic inhibi-
tion of FABP4 in macrophages markedly reduces LTC4 
secretion (74). As such, FABP4 regulates LT signaling on 
multiple levels. First, it directly affects the stability and 
secretion of LTs and, second, it indirectly regulates 
BLT1R via an UCP2-dependent ROS-based mechanism. 
Together these effects significantly influence the activity 
of LTB4/BLT1R proinflammatory signaling and suggest 
that decreased LTB4 signaling in FABP4 knockout mice 
would contribute to the anti-inflammatory phenotype of 
the animals.
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