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Abstract

Purpose—To evaluate DRAMMS, an attribute-based deformable registration algorithm, 

compared to other intensity-based algorithms, for longitudinal breast MRI registration, and to 

show its applicability in quantifying tumor changes over the course of neoadjuvant chemotherapy.

Methods—Breast magnetic resonance images from 14 women undergoing neoadjuvant 

chemotherapy were analyzed. The accuracy of DRAMMS versus five intensity-based deformable 

registration methods was evaluated based on 2,380 landmarks independently annotated by two 

experts, for the entire image volume, different image subregions, and patient subgroups. The 

registration method with the smallest landmark error was used to quantify tumor changes, by 

calculating the Jacobian determinant maps of the registration deformation.

Results—DRAMMS had the smallest landmark errors (6.05 ± 4.86 mm), followed by the 

intensity-based methods CC-FFD (8.07 ± 3.86 mm), NMI-FFD (8.21 ± 3.81 mm), SSD-FFD (9.46 

± 4.55 mm), Demons (10.76 ± 6.01 mm), and Diffeomorphic Demons (10.82 ± 6.11 mm). Results 

show that registration accuracy also depends on tumor versus normal tissue regions and different 

patient subgroups.

Conclusions—The DRAMMS deformable registration method, driven by attribute-matching 

and mutual-saliency, can register longitudinal breast magnetic resonance images with a higher 

accuracy than several intensity-matching methods included in this article. As such, it could be 

valuable for more accurately quantifying heterogeneous tumor changes as a marker of response to 

treatment.
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INTRODUCTION

Breast cancer is the second most frequent cancer and the second leading cause of death for 

women in the United States (1). A critical issue in the treatment of locally advanced breast 

cancer is how to effectively monitor tumor changes during the course of neoadjuvant 

chemotherapy, and predict the long-term pathologic response. This is needed so that 

clinicians can make necessary treatment adjustments and optimize treatment effects (2,3). To 

do so, clinicians often refer to longitudinal breast magnetic resonance (MR) images, 

acquired in multiple visits, days or weeks apart (a series of longitudinal breast MR images 

can be found for a representative breast cancer patient in the first row of Fig. 7). Here, a 

central problem is how to accurately quantify tumor changes over time, and more 

importantly, how to effectively reveal heterogeneous changes in various subregions within 

tumors, rather than tumors as a whole, since the heterogeneity may be more indicative of 

long-term pathologic response (11–16). Toward this goal, recent research has increasingly 

focused on image registration techniques (17,18). In this article, we evaluate the 

performance of six image registration methods specifically for the registration of 

longitudinal breast MR images. One primary objective is to evaluate an attribute-based 

deformable registration method, DRAMMS (19), and compare it with other intensity-based 

registration methods. We also demonstrate the feasibility of applying registration as a means 

to quantify tumor changes over time, which can be used as a potential marker for a breast 

cancer patient’s response to neoadjuvant chemotherapy.

Longitudinal Breast MR Image Registration: Definition and Necessity

By definition, image registration is the process of finding an optimal transformation that 

spatially aligns two or more images. In the context of longitudinal images, deformable 

registration can capture how anatomical structures deform over time. This concept is shown 

in Figure 1. In this figure, a follow-up image (Fig. 1b) is registered to the baseline image 

(Fig. 1a). The resultant deformation is visualized in Figure 1(d). The deformation is further 

quantitatively analyzed to derive the Jacobian determinant map, as shown in Figure 1e. The 

Jacobian determinant value at a voxel indicates the volumetric change ratio (follow-up/

baseline): >1 for expansion, <1 for shrinkage, and = 1 for volume preservation. Therefore, if 

the solid white plate in Figure 1 symbolizes a changing tumor, then the Jacobian determinant 

map in Figure 1e shows that the tumor has shrunk from the baseline to the follow-up images, 

while at the same time the neighborhood has expanded to fill into the region that was once 

tumorous. This conceptually demonstrates that the deformable image registration can 

quantify longitudinal changes, and that the quantification of changes agrees with the human 

interpretation.

Deformable registration can also reveal the spatial heterogeneity of changes at the voxel 

level (17,18). In contrast, the standard RECIST rule (20,21) or other segmentation-based 

approaches (22,23) could only tell how the tumors change as a whole. Indeed, tumors often 

change heterogeneously in space (24–29), meaning that different regions within a tumor 

may respond differently to the treatment, and hence they may change heterogeneously over 

time. Several studies have shown that such heterogeneity within tumors (30–33) and the 

surrounding tissue (34) can help predict the long-term pathologic response to treatment.

Ou et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2017 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Need for Evaluating Registration Performance for Longitudinal Breast MR Images

Despite its importance, longitudinal registration of breast MRI has been less studied, and the 

registration performance is less understood than that for other organs [e.g., brain (35,36), 

lung (37), heart (38), and liver (39,40)].

Prior studies for breast image registration were either on two-dimensional (2-D) 

mammographic images (41–47), or on “short-interval” longitudinal breast MR images, 

which are acquired seconds or minutes apart during one visit [e.g., (48–54)]. There, 

registration is used mainly for motion correction (55–62). In contrast, to quantify the 

heterogeneous tumor changes, we are dealing with “long-interval” longitudinal breast MR 

images, which are acquired days or weeks apart in multiple visits. Few registration methods 

exist for this task. Moreover, a comprehensive evaluation of those methods remains an 

unexplored topic, which motivates our work in this article.

Outline and Contributions

This article evaluates six deformable registration methods that have been previously reported 

for the registration of long-interval longitudinal breast MR images. Hereafter, we will use 

the term “longitudinal breast MR images” as short for “long-interval longitudinal breast MR 

images,” unless otherwise specified. Out of those six methods, DRAMMS (19) is an 

attribute-based method (i.e., it finds voxel correspondences by the high-dimensional 

attributes extracted from the neighborhoods of voxels); while, in contrast, the other five are 

intensity-based methods (i.e., they find voxel correspondences by maximizing some image 

similarities defined on the intensity or intensity distributions). A primary purpose of our 

study is to evaluate whether the use of attributes in DRAMMS for characterizing voxels can 

help improve the registration accuracy over the intensity-based methods. A second purpose 

is to show preliminary results on using registration to quantify tumor changes over time as a 

measure of patient response to treatment. As such, our work presents the following 

contributions:

1. We evaluate six deformable registration methods specifically for longitudinal 

breast MR images. They have all been reported as being used for this specific 

task of longitudinal breast MRI registration. Within this context, we examine the 

advantages of different registration approaches, with an emphasis on the 

comparison between attribute- and intensity-based registration algorithms. We 

also point out potential areas to improve in the future.

2. We quantitatively measure the performance of registration methods based on two 

breast radiologists independently annotating a total of 2,380 landmarks in 

longitudinal MRI scans of 14 breast cancer patients.

3. We further separately examine registration errors in tumor versus normal tissue 

regions. Studies have shown that both types of regions can contribute to the 

prediction of long-term response to treatment (34). However, little is known 

about whether we should use them differently. This largely depends on whether 

the registration performance, and hence the subsequently registration-quantified 

changes, are different between tumor versus normal tissue regions, which has not 

yet been investigated in the literature.
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4. Finally, we quantitatively examine whether the registration performance is 

different for patient subgroups having different pathologic responses to 

treatment. The hypothesis is that, tumors may change more in patients having 

pathologic complete responses than patients having pathologic partial responses, 

thereby posing a higher level of challenge to registration.

The rest of this article is organized as follows. In Methods section, we describe our 

evaluation protocol. In Results section, we show the evaluation results, and show 

preliminary results of using deformable registration to quantify tumor changes. Finally, 

Conclusion section discusses and concludes this article.

METHODS

Protocol to Evaluate Registration Accuracy

This section presents the evaluation protocol. In the next four subsections, we will describe 

our dataset, the registration methods to be evaluated, the parameter settings for those 

registration methods, and the criterion we used to evaluate the registration accuracy.

Dataset—We have retrospectively collected longitudinal breast MR images (1.5T Siemens 

Sonata scanner) for 14 women with biopsy-proven T2–3 breast tumors from the ACRIN 

6657 I-SPY trial (63,64). All women in this trial underwent the standard neoadjuvant 

chemotherapy, which, at the time of the study, consisted of four cycles of adriamycin/

cytoxan, followed by four cycles of taxotere. At the end of the 3–4 months of chemotherapy, 

they were evaluated by a pathological analysis. Those who showed the absence of any 

residual invasive cancer in the breast and the absence of any metastatic cells in the regional 

lymph nodes were defined as pathologic complete responders (pCR; (65,66)), otherwise as 

pathologic partial responders (pPR). In our dataset, eight women were classified as pCR and 

six as pPR.

Imaging parameters were: FOV 18–20 cm, image size 256 × 256 × 64, voxel size 0.70 × 

0.70 × 2.0 mm3, pulse repetition time (TR) = 27.0 ms, echo time (TE) = 4.76 ms, flip angle 

= 45°. Pre-gadodiamide imaging was performed followed by immediate post-gadolinium 

images (at 2 min) and delayed post-gadodiamide images (at 7 min). The baseline image was 

the image obtained right before the first chemotherapy. We registered the follow-up image 

after two rounds of chemotherapy to the baseline image for each patient (average 31 ± 21 

days apart). Table 1 lists the information of each patient in our dataset.

Two breast imaging radiologists (SW and EC) annotated landmarks independently in the 

images, blinded to the patient response outcome. First, they agreed on a common set of 

anatomical/geometric landmarks in the baseline images. Then, they independently defined in 

the follow-up images the landmarks, which, according to their expert knowledge, were 

corresponding to the same set of landmarks in the baseline images. The baseline and follow-

up images were displayed side-by-side to facilitate expert annotations. The “New VOI”—

“Draw Point VOI” function in the MIPAV software (67) was used by the experts to annotate 

the landmark correspondences (VOI stands for volume of interest). When an expert chose a 

landmark location by a click of the mouse, the “Draw Point VOI” function placed a cross in 
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the image at the same location. At the same time, a number was associated with the cross, 

indexing the order in which the landmarks were annotated (i.e., Fig. 2). Locations of the 

same index numbers were considered corresponding landmark locations defined by experts 

in the two images. In general, landmarks were scattered in the image space to measure the 

accuracy of registration in various regions. Landmarks were usually located at nipples, 

breast boundaries, chest walls, internal milk ducts, vessels, glandular structures as well as 

tumors. As such, a total of 2,380 landmark pairs (85 ± 29 per patient) were annotated and 

labeled as being within tumor or normal tissue regions. As Table 1 and Figure 2 show, 

patients in the pCR and pPR subgroups have similar numbers of landmarks in the normal 

tissue regions, but pCR patients have significantly fewer landmarks in the tumor regions, 

highlighting the larger changes in tumors and hence an increased level of ambiguity in 

finding corresponding landmarks.

Figure 2 shows some example expert-annotated landmark correspondences in a 

representative subject (i.e., patient #1). Landmarks of the same indexing number in the 

different images correspond to each other according to expert annotations. Please note that, 

for the same set of landmarks in the baseline image (in the left panel of the figure), the 

annotated corresponding landmark locations by expert 1 (in the middle panel) and expert 2 

(in the right panel) were slightly different. Such differences can occur in the in-plane x–y 
locations, and also in the z-direction (see, e.g., the different slice numbers at the upper right 

corners of subfigures). The distribution of interexpert landmark differences can be found in 

the box-plots shown in Figure 4. In general, experts differ by 0–5 mm at a majority of 

(>80%) landmark locations, and they differ by more than 10 mm only at few (<5%) 

landmark locations.

All images were converted into the NIfTI image format. Before registration, they all went 

through the N3-based bias field correction (using the default parameters; 68). Histograms of 

the follow-up images were matched to histograms of the baseline images, using the 

histogram matching module of the MIPAV software (67). This was to reduce intensity 

differences caused by imaging artifacts or by the imaging sequences used at different times.

Registration Methods to be Evaluated—The registration methods included in this 

evaluation work satisfied two criteria:

1. They were previously reported in the literature to register (long-interval) 

longitudinal breast MR images for measuring the volumetric changes of tumors, 

and their corresponding implementation parameters were disclosed.

2. Their software packages are publicly available, therefore, allowing a wide use of 

them such as in this study.

Through our search of the literature, we found six registration algorithms satisfying these 

criteria. They have been implemented in three software packages: Demons (69,70), free 

form deformation (FFD; (71)), and DRAMMS (19). Demons was directly used in (17) and 

slightly modified in (72) to register breast MRIs acquired weeks or months apart (73). An 

FFD variant version (74) was used in (18) to register longitudinal breast MR images with 

known synthetic tumor changes. DRAMMS was used in (19,75) but was compared to FFD 
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for longitudinal breast MRI registration only qualitatively. Below we summarize the 

registration methods evaluated in our study.

• (Additive) Demons and Diffeomorphic Demons: Demons (69,70) is an intensity-

based deformable registration framework. It considers deformable image 

registration as a nonparametric diffusion process. It matches voxels to their 

correspondences according to local intensity characterizations. Using the 

intensity difference as the similarity metric, a force is computed from the optical 

flow equations to push voxels by some velocity that is iteratively combined with 

the total displacement (initially zero), which is later smoothed by Gaussian filters 

for regularization. (Additive) Demons (69) adds the velocity field to the current 

deformation in each iteration, whereas Diffeomorphic Demons (70) composes 

the deformation with the exponential of the velocity field, enforcing 

diffeomorphism. In this article, both (Additive) Demons and Diffeomorphic 

Demons were included in the evaluation. They are both available in the Demons 

software, which can be downloaded from http://www.insight-journal.org/browse/

publication/154.

• FFD and its variants: FFD is a geometric transformation model introduced to 

deformable image registration in 1999 (71) and widely used thereafter. It is often 

used in combination with intensity-based matching criteria, hence intensity-

based registration algorithms. In the FFD model, a regular grid of “control 

points” is superimposed on top of the dense image lattice. The main idea is that 

the movement of an image voxel is a smooth, cubic-B-spline-based interpolation 

of the displacements of the neighboring control points. Therefore, the task of 

finding movements at each voxel is translated into finding the displacements at a 

much smaller number of regularly spaced control points. In contrast to landmark-

based methods, FFD has three properties: (1) control points are regularly spaced 

in the image, providing guidance throughout the image domain; (2) deformation 

is regularized by the cubic-B-spline-based interpolation; and (3) a landmark 

moves by finding its own correspondence, whereas a control point moves by 

finding the most likely corresponding patches for the image patches it represents. 

The FFD transformation model can be combined with similarity metrics such as 

the normalized mutual information (NMI), the correlation coefficient (CC), and 

the sum of squared difference (SSD) of the two images to be registered. NMI-

FFD, CC-FFD, and SSD-FFD were all included in our evaluation. The software 

package, known as IRTK, is available at http://www.doc.ic.ac.uk/dr/software/.

• DRAMMS: DRAMMS (19) is an attribute-based deformable image registration 

algorithm. It characterizes voxels by the high-dimensional Gabor texture 

attributes extracted from the multiscale and multiorientation neighborhoods of 

voxels. This has the potential to increase the accuracy and reliability of 

voxelwise matching, especially in the presence of intensity inhomogeneity and 

contrast differences between longitudinal scans. Besides, DRAMMS uses a 

newly developed mutual-saliency function, which automatically quantifies the 

matching reliability at the voxel level. Based on this function, DRAMMS guides 

the registration with those voxels/regions having higher confidence to establish 
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correspondences across images. DRAMMS uses the cubic-B-spline FFD 

transformation model ((71); described above) and the discrete optimization 

strategy (76,77). The DRAMMS software package is available at http://

www.cbica.upenn.edu/sbia/software/dramms/.

Parameter Settings in Registration Methods—For (Additive) Demons and 

Diffeomorphic Demons, the key parameters are (i) the Gaussian smoothing kernel (σ1) of 

the velocity field; and (ii) the Gaussian smoothing kernel (σ2) after having combined the 

velocity field into the overall deformation field. Larger smoothing kernels σ1; σ2 lead to 

smoother deformations. Study (17) used Demons directly to recover breast changes in 

longitudinal MR images 3 months apart, which is fairly similar to our dataset with the same 

objective. In their study, Demons was used with σ1 = 8 and σ2 = 1. In another study (73), 

which registered breast MR images weeks apart, an algorithm similar to Demons was used 

with parameter σ1 = 7. In a related study (78) registering breast elastography, which has 

image sizes and voxel sizes similar to breast MRI, the authors used σ2 = 1.5. Since the 

parameters in all three independent studies were similar, we also followed their settings and 

chose the Demons parameters at σ1 = 8 and σ2 = 1.5. In addition, we allowed the maximum 

number of iterations in three image resolutions to be 30 × 20 × 10, which doubles the default 

maximum number of iterations and was used in a recent studies (35,80) to ensure the 

convergence of the program.

For FFD and its variants, the key parameters are (i) the control point spacing δ, with a larger 

spacing capturing more global deformations; and (ii) the regularization weight λ, with larger 

weights providing smoother deformations. We set δ = 10 mm and λ = 0.01 following the 

original FFD paper (71), which, together with other studies from the same group [e.g., 

(48,60)], found this set of parameters to perform stably and well suit the breast MR image 

registration task.

For DRAMMS, most parameters are automatically adaptive to the input images (i.e., size, 

contrast, and histogram), and hence do not need extensive tuning. One parameter that may 

need to be tuned is the regularization weight g, which is usually set between 0 and 1, with 

higher weights for smoother deformations, and even greater than 1 for very smooth 

deformations. We set g = 0.3, which led to slightly smoother deformations than using the 

default value g = 0.2. This was also the parameter used in its original works (19,75) for 

longitudinal breast MR image registration experiments.

Note that the parameters mentioned above were not set arbitrarily. Usually, the authors of the 

aforementioned studies tried a wide range of parameter settings, and reported the ones that 

led to the most stable and/or most accurate alignment of breast MR images.

Evaluation Criterion for Registration Accuracy—Evaluating the accuracy of 

registration is a difficult task in general. This is mainly due to the lack of the ground-truth 

deformation at each and every voxel. In other registration evaluation studies (e.g., for brain, 

lung, or short-interval longitudinal breast MR images), existing work has used simulated 

images/deformations [e.g., (41,44,45,51,79)], expert-annotated regions of interest [ROI; e.g., 

(35,38,43)], or expert-annotated landmarks [e.g., (43,73)]. While simulations provide 
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ground-truth deformations, they do not offer fully realistic deformations as in real images. In 

our evaluation study, we aimed to measure accuracy directly in clinical longitudinal breast 

MR images. Approaches based on ROIs have been used more often for well-defined and 

highly localized structures such as some cortical structures in the brain, whereas the human 

breast does not necessarily have many such well-defined structures across individuals. For 

these reasons, registration accuracy in our evaluation study was assessed based on expert-

defined landmarks.

As conceptually depicted in Figure 3, we measured interexpert landmark errors as well as 

algorithm-to-expert landmark errors. Assume that we have a set of expert-annotated 

landmarks  in the baseline image (N is 85 on average, as section Dataset and Table 1 

show). Two experts (SW and EC) independently found their corresponding points in the 

follow-up image, denoted as  and . Conversely, the deformation 

calculated by a registration algorithm maps the same set of landmarks  to locations 

. We could, therefore, define interexpert landmark errors = (i.e., the length 

of the solid line in Fig. 3) as

[1]

and algorithm-to-expert landmark errors (i.e., the average length of the dashed lines in Fig. 

3) as

[2]

where d(·, ·) is the Euclidean distance between two voxel locations.

We can further analyze landmark errors for different regions, based on the prior knowledge 

whether a landmark xn belongs to tumor or normal tissue regions. We can also analyze 

landmark errors in patient subgroups having different responses to neoadjuvant 

chemotherapy, based on the prior knowledge of whether a patient belongs to the pCR or pPR 

subgroup.

Using Registration to Quantify Tumor Changes During Neoadjuvant Chemotherapy

The registration method obtaining the highest accuracy (i.e., smallest landmark errors) was 

used to quantify tumor changes in patients undergoing neoadjuvant chemotherapy. We first 

registered the follow-up images of each patient to their baseline scans. The obtained 

deformation fields were further used to calculate the Jacobian determinant maps. The 

Jacobian determinants, computed at the voxel level, show the volumetric change ratio 

(follow-up/baseline) at each voxel. Mathematically, suppose a 3D baseline image is indexed 

by three orthogonal axes i; j; k in a Cartesian coordinate system, a voxel is denoted as u = 

(ui; uj; uk), and a deformation field computed from the registration of follow-up to baseline 
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images is denoted as h(u) = (hi(u), hj(u), hk(u)) at every voxel u. Then the Jacobian 

determinant at voxel u, denoted as JacDet(u), is defined as

[3]

where

[4]

and det (·) is the determinant of a matrix. The Jacobian determinant value, therefore, shows 

the expansion of a voxel if greater than 1, shrinkage if smaller than 1, and volume-

preservation if exactly 1.

RESULTS

Evaluation Results and Observations

This section presents our evaluation results. We measured the landmark-based registration 

accuracy in the entire image, in different regions (tumor vs. normal tissue), and in different 

patient subgroups having different pathologic responses to chemotherapy. The results are 

presented in the next three subsections, respectively. Note that we stratified registration 

accuracy by regions and pathologic subgroups, since it is our hypothesis that patients in the 

pCR subgroup may pose higher levels of difficulty to registration due to potentially larger 

changes in the tumor regions after treatment.

Overall Landmark Errors—The mean and standard deviation errors for different 

registration methods are listed in Table 2. Furthermore, Figure 4 shows the box-whisker plot 

of the landmark errors. Several observations can be made:

1. The average landmark error between human experts was 3.12 ± 2.84 mm. This 

error was higher than the errors in the registration of short-interval longitudinal 

breast MR images (usually pre- and postcontrast DCE-MRI), where studies have 

reported subvoxel registration accuracy (50,52). This showed the increased level 

of registration difficulty in longitudinal breast MR images acquired days or 

weeks apart. It was perhaps caused by several factors, including the patient 

repositioning, the soft tissue deformation, and the tumor changes due to 

treatment.

2. The landmark errors of all the automated registration methods evaluated were 

larger than the average error between human experts.

3. Among the automated methods included in our evaluation, DRAMMS performed 

closest to human experts, with landmark errors at 6.05 ± 4.86 mm. FFD and its 

variants followed, in the order of CC-FFD, NMI-FFD, and SSD-FFD, all with a 
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statistically significant difference from DRAMMS. Demons and Diffeomorphic 

Demons had the largest landmark errors, with errors at 10.76 ± 6.01 mm and 

10.82 ± 6.11 mm, respectively (which are similar to the 11.67 ± 4.81 mm error 

reported in (73) on a similar dataset). The difference between Demons and 

Diffeomorphic Demons was not significant (P = 0.0474), if we only consider the 

differences with P < 0.01 to be statistically significant.

Landmark Errors in Different Regions—We further examined landmark errors in 

tumor versus normal tissue regions. As Figure 5 shows, methods followed the same rank for 

landmark errors in tumor regions as for landmark errors in the entire image. In tumor 

regions, DRAMMS had the smallest landmark errors among all automated methods (5.64 

± 4.79 mm), then NMI/CC/SSD-FFD (8.33 ± 3.87, 8.33 ± 3.88, and 8.74 ± 4.38 mm), and 

then Demons (9.28 ± 5.42 mm) and Diffeomorphic Demons (9.45 ± 5.57 mm). In normal 

tissue regions, DRAMMS had the smallest landmark errors among all automated methods 

(6.41 ± 4.90 mm), then CC/NMI/SSD-FFD (8.11 ± 3.76 mm, 7.87 δ3.83 mm, 9.29 ± 4.68 

mm) and then Diffeomorphic Demons (12.07 ± 6.32 mm) and Demons (12.09 ± 6.22 mm).

One noteworthy finding is that, DRAMMS, Demons, and Diffeomorphic Demons all had 

significantly smaller landmark errors in the tumor regions than in the normal tissue regions 

(evidenced by the P-values provided in Fig. 5). One possible explanation may be that, the 

soft normal breast tissues exhibit more complicated deformations than the relatively solid 

tumors. This might be the case especially when considering factors such as patient 

movements and breast positioning differences in different visits, which may affect the 

appearances of normal tissue regions more than the tumor regions. Another potential 

explanation might be that the heterogeneity within the tumor regions may have helped the 

automated registration algorithms to better locate anatomical correspondences. Conversely, 

as observed in Figure 6b,c, the errors in tumor regions were actually larger than in normal 

tissue regions for the pCR subgroup. This suggested that the effect of the treatment may 

override the comparison of landmark errors in tumor versus normal tissue regions. Finally, 

whether the landmark differences were significant in different regions seems to also depend 

on which registration algorithm was used (see Figs 5 and 6). Considering all these possible 

factors, a larger-scale, carefully controlled study may be needed to fully evaluate the reason 

why and how landmark errors may differ in tumor versus normal tissue regions.

Landmark Errors and Response to Chemotherapy—The previous subsection 

showed that registration accuracy may vary by image regions. This subsection will show that 

registration accuracy may also vary by patient subgroups. Figure 6 compares the landmark 

errors between the pCR and pPR subgroups, in (a) the entire image, (b) tumor regions, and 

(c) normal tissue regions. The P-values from the Student’s t-test were provided and the 

statistical significance (when P < 0.01) was noted by purple stars in the figure. Some 

observations can be made:

1. The pPR patients almost always had smaller registration errors than pCR 

patients, regardless of the registration methods being used, and regardless of 

tumor versus normal tissue regions.
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2. The difference of the registration errors between the pPR and pCR patient 

subgroups were almost always statistically significant in the entire image, except 

for the expert raters (upper subfigure in Fig. 6). This was most likely driven by 

the statistically significant difference in landmark errors between the pPR and 

pCR patients in the tumor regions, except for the expert raters (middle 

subfigure). Conversely, registration errors in the normal tissue regions remained 

almost the same, regardless of a patient’s response to neoadjuvant chemotherapy.

Combining these two observations, the larger registration errors in the pCR subgroup as 

compared with the pPR subgroup may be partly because the tumors changed more in the 

pCR subgroup than in the pPR subgroup, which posed greater challenges especially for the 

automated registration methods.

Application to the Quantification of Tumor Changes

Because DRAMMS had higher accuracy than other automated registration methods 

evaluated, in this section, we show preliminary experiments of using the DRAMMS 

registration algorithm to quantify tumor changes in patients undergoing neoadjuvant 

chemotherapy. Examples of the registered images are shown in the second rows of Figures 7 

and 8, for a representative pPR patient and a representative pCR patient, respectively. 

Jacobian determinant maps were computed from the obtained deformation fields, as shown 

in the third rows in Figures 7 and 8, which are overlaid onto the baseline intensity images. 

Here, the Jacobian determinant maps are shown only within tumor regions. The tumor 

regions were obtained in the baseline images by a user-interactive intensity thresholding 

step, followed by a human expert’s verification of the segmented tumor boundary. Note that 

the tumor regions were in no means used for image registration or for the calculation of 

Jacobian determinant maps; they were only used as masks to visualize the Jacobian 

determinants specifically within the tumor regions. As shown in Figures 7 and 8, the 

quantified volumetric changes agree with the visual findings of how tumors have changed 

due to the effect of treatment. Moreover, the Jacobian determinant maps can show the 

spatially heterogeneous changes within the tumor regions, which may be important features 

for predicting the long-term pathologic response as suggested in recent studies (30–33). Our 

future work will be to further validate the automatically computed heterogeneous tumor 

changes as quantitative imaging biomarkers for predicting the response to neoadjuvant 

chemotherapy.

DISCUSSION

Summary of Work and Findings

Deformable image registration can automatically capture 3-D volumetric changes at the 

voxel level. It is, therefore, an appropriate choice for quantifying the spatially heterogeneous 

changes within tumors. Our study evaluated DRAMMS, an attribute-based image 

registration method, in comparison to five other intensity-based algorithms, for the task of 

registering long-interval longitudinal breast MR images. We compared the accuracies of 

registration methods using expert-defined landmarks as references. We also showed 

preliminary results of using the DRAMMS registration method, which had the smallest 

Ou et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2017 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



landmark errors, to quantify longitudinal tumor changes induced by treatment. As such, our 

work adds into the literature several important findings:

First, automated registration methods differed greatly in their performances. The attribute-

matching component helped DRAMMS to obtain the smallest landmark errors, almost 25–

40% smaller than the errors from five other intensity-based methods. The high-dimensional 

geometric/texture attributes that DRAMMS uses seemed to be less sensitive to the image 

noise, the intensity inhomogeneity, or the partial volume effects. Because of this, DRAMMS 

also seemed to require fewer parameter tunings. Besides longitudinal breast images 

presented in this study, another recent study on the intersubject brain image registration also 

found a similar trend, that DRAMMS performed relatively accurately, without much need 

for parameter tunings (80).

Second, our analysis on image regions and patient subgroups showed that, the voxel 

correspondences were least ambiguous in the tumor regions of patients in the pPR subgroup 

(where tumors expanded or shrank but did not disappear), then a little more ambiguous in 

the normal tissue regions (almost equivalent between the pCR and pPR subgroups), and 

most ambiguous in the tumor regions of patients in the pCR subgroup (perhaps because 

tumors changed more, or even disappeared, which caused a possible loss of correspondences 

in some locations). This trend has been observed for both experts and most algorithms, as 

can be observed from the landmark errors in panels (b) and (c) of Figure 6.

Third, because of the higher accuracy of DRAMMS compared to other registration methods, 

we further evaluated its ability to quantify longitudinal tumor changes as induced by 

neoadjuvant chemotherapy for breast cancer. Although preliminary, our results were 

promising. Those results showed the ability of DRAMMS to capture the changes agreeable 

to human observations. Furthermore, those results also showed the ability of DRAMMS to 

characterize the spatially heterogeneous effects induced by treatment, which may be 

ultimately used as more sensitive markers for evaluating treatment response and predicting 

patient outcomes.

Future Work

On further evaluating the performance of registering longitudinal breast MR images, our 

future work will include (a) the quantitative evaluation of registration accuracies on 

longitudinal images with more than one follow-up time point; (b) the evaluation of the 

performance of registration in larger datasets and for a broader range of registration 

algorithms [although not being reported before as being used in this context, many 

deformable registration algorithms/tools may well serve this specific registration task, such 

as elastix (81), ANTs (82), ART (83), DROP (76), HAMMER (84), MIND (85), NiftyReg 

(86), and plastimath (87)]; and (c) the evaluation of the change of registration performance 

as registration parameters vary. Also, the quantification and better understanding of the 

genuine ambiguity for human experts to annotate landmarks is another important topic to 

explore. It may require a substantial amount of work, as it could involve many factors such 

as varying landmark locations and deriving some precise quantitative measures of the intra-

rater ambiguity.
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On further improving the accuracy of registering longitudinal breast MR images, our future 

work will extend the current 3-D registration into 4-D (3-D + time) or groupwise registration 

[e.g., (54,88–92)]. As tumor changes are often temporally smooth, registering a full 4-D 

spectrum of longitudinal images at the same time can better maintain the temporal 

smoothness. In addition, we can incorporate some task-specific prior knowledge to further 

aid the registration, such as the removal of image background and the chest region [e.g., 

(93–95)], the automatically detected landmarks [e.g., (96,97)], the segmentation of various 

breast tissue types [e.g., tumor vs. normal fibroglandular tissue (98,99)], and even the 

explicit segmentation of tumors [e.g., (100–102)]. Such modifications could further aid the 

registration to focus on ROI, and could largely reduce the negative impacts from structures 

that are not of interest to the specific application. Finally, we could also explore 

methodologies to form a consensus mechanism, where multiple registration methods can 

complement each other toward more accurately capturing voxelwise volumetric changes 

[e.g., (103,104)].

Finally, based on our reported results, our future work will also directly evaluate 

registration-quantified tumor changes. This would include (a) a direct comparison with the 

RECIST and other segmentation-based approaches, for the accuracy of the quantified 

morphologic changes; and (b) the use of registration-quantified changes and the registration-

revealed heterogeneity of changes to predict long-term pathologic response to treatment. 

This should have an impact on treatment optimization for breast cancer patients.

CONCLUSION

The registration of longitudinal breast MR images acquired days or weeks apart during the 

course of treatment has gained increasing interest as a tool, because it can be used to 

quantify tumor changes, assess treatment effects, and potentially predict long-term response 

and patient survival. This article performed a comprehensive evaluation of the registration of 

longitudinal breast MR image, using expert-annotated landmarks as references. Specifically, 

we evaluated DRAMMS, an attribute-based registration method, and compared it with five 

other intensity-based registration methods. Our results showed that DRAMMS can achieve 

significant improvements in registration accuracy over other automated registration methods 

included in this study. This was possibly due to the use of the high-dimensional voxel 

neighborhood information to characterize the geometric and anatomical properties of voxels, 

which seemed to be more robust to the noise, the intensity inhomogeneity and the contrast 

changes between images. We also showed some preliminary evidence of using DRAMMS to 

quantify the longitudinal tumor changes, and the spatial heterogeneity, as induced by 

neoadjuvant chemotherapy. Our ultimate goal is to use registration-quantified tumor changes 

to more accurately predict long-term pathologic response and patient survival after 

treatment.
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FIG. 1. 
A conceptual illustration of using deformable registration to quantify the volumetric changes 

of tumors and the surrounding tissue in longitudinal images. The solid white plate 

symbolizes a tumor that has shrunk at the follow-up visit.
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FIG. 2. 
Example landmarks annotated by human experts in a representative patient (patient #1). 

Landmarks with the same indexing numbers in different images correspond to each other, 

according to the expert annotations. Note that the images have been manually cropped for 

the display purpose. In the automated registration, however, we used the entire images as 

shown in the first rows in Figs. 7 and 8, where no manual or automated cropping was 

involved.
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FIG. 3. 
Depiction of the interexpert landmark errors (the length of the solid line) and the algorithm-

to-expert landmark errors (the average length of the dashed lines).
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FIG. 4. 
The overall landmark errors in all 14 subjects, for interexpert errors and algorithm-to-expert 

errors.
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FIG. 5. 
Landmark errors in different image regions. The P-values from Student’s two-sample t-test 

represent the significance of difference between landmark errors in the tumor versus in the 

normal tissue regions. Purple stars note registration methods which obtained significantly 

lower errors in the tumor regions compared to errors in the normal tissue regions.
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FIG. 6. 
Comparison of landmark errors in the pCR and pPR patient subgroups, in (a) the entire 

image; (b) the tumor regions; and (c) the normal regions. The differences with P-values 

smaller than 0.01 are treated as statistically significant, which are noted by the purple stars 

in the figure.
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FIG. 7. 
Quantification of the voxelwise longitudinal breast cancer change by the DRAMMS 

registration algorithm. Results shown in this figure are from an example pathologic partial 

responder (pPR) patient. Jacobian determinants in the tumor regions are overlaid on the 

baseline image in the bottom row.
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FIG. 8. 
Quantification of the voxelwise longitudinal breast cancer change by the DRAMMS 

registration algorithm. Results shown in this figure are from an example pathologic complete 

responder (pCR) patient. Jacobian determinants in the tumor regions are overlaid on the 

baseline image in the bottom row.
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Table 1

Lists of Cases in the Pathologic Complete Responder (pCR) and Partial Responder (pPR) Subgroups in Our 

Study

#days (FU-BL) #LM (tumor) #LM (normal) #LM (all)

pPR group

 Patient 1 14 63 59 122

 Patient 2 29 25 55 80

 Patient 3 13 64 60 124

 Patient 4 14 22 45 67

 Patient 5 14 90 16 106

 Patient 6 56 53 55 108

 Mean ± stdev 23 ± 17 53 ± 26 48 ± 17 101 ± 23

pCR group

 Patient 7 61 42 30 72

 Patient 8 14 14 48 62

 Patient 9 60 16 45 61

 Patient 10 56 8 19 27

 Patient 11 14 22 81 103

 Patient 12 55 41 20 61

 Patient 13 21 51 25 76

 Patient 14 14 31 87 118

 Mean ± stdev 37 ± 23 28 ± 15 44 ± 27 73 ± 28

All patients

 Mean ± stdev 31 ± 21 39 ± 23 46 ± 22 85 ± 29

The time interval between the follow-up and baseline images, and the number of manually annotated landmarks in tumor and normal tissue regions 
are listed for each patient. (FU: follow-up; BL: baseline; LM: landmarks.)

Magn Reson Med. Author manuscript; available in PMC 2017 July 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ou et al. Page 29

Ta
b

le
 2

M
ea

n 
an

d 
St

an
da

rd
 D

ev
ia

tio
n 

(s
td

ev
) 

of
 L

an
dm

ar
k 

E
rr

or
s 

fo
r 

D
if

fe
re

nt
 R

eg
is

tr
at

io
n 

M
et

ho
ds

 (
m

m
)

In
te

re
xp

er
t

D
em

on
s

D
if

f. 
D

em
on

s
D

R
A

M
M

S
C

C
-F

F
D

N
M

I-
F

F
D

SS
D

-F
F

D

M
ea

n
3.

12
10

.7
6

10
.8

2
6.

05
8.

07
8.

21
9.

46

St
de

v
2.

84
6.

01
6.

11
4.

86
3.

86
3.

81
4.

55

N
um

be
rs

 in
 th

e 
bo

ld
 f

on
t i

nd
ic

at
e 

ei
th

er
 th

e 
la

nd
m

ar
k 

er
ro

rs
 b

et
w

ee
n 

hu
m

an
 e

xp
er

ts
, o

r 
th

e 
sm

al
le

st
 la

nd
m

ar
k 

er
ro

rs
 (

m
ea

n 
or

 s
ta

nd
ar

d 
de

vi
at

io
n)

 o
f 

au
to

m
at

ed
 a

lg
or

ith
m

s 
as

 c
om

pa
re

d 
w

ith
 h

um
an

 e
xp

er
ts

.

Magn Reson Med. Author manuscript; available in PMC 2017 July 04.


	Abstract
	INTRODUCTION
	Longitudinal Breast MR Image Registration: Definition and Necessity
	Need for Evaluating Registration Performance for Longitudinal Breast MR Images
	Outline and Contributions

	METHODS
	Protocol to Evaluate Registration Accuracy
	Dataset
	Registration Methods to be Evaluated
	Parameter Settings in Registration Methods
	Evaluation Criterion for Registration Accuracy

	Using Registration to Quantify Tumor Changes During Neoadjuvant Chemotherapy

	RESULTS
	Evaluation Results and Observations
	Overall Landmark Errors
	Landmark Errors in Different Regions
	Landmark Errors and Response to Chemotherapy

	Application to the Quantification of Tumor Changes

	DISCUSSION
	Summary of Work and Findings
	Future Work

	CONCLUSION
	References
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	Table 1
	Table 2

