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Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide with an overall 

survival rate of less than 15% in developed countries. Despite attempts at new therapeutic 

strategies, the majority of patients succumb to this cancer. Buttressed by the highly successful 

clinical impact in melanoma, immunotherapy is gaining momentum as the next treatment modality 

for many human cancers. Chimeric antigen receptors (CAR) contain the antigen binding moieties 

of a monoclonal antibody and the co-stimulatory and signaling domains associated with effector 

receptor signaling. Bispecific antibodies (BsAb) combine the binding specificities of two different 

monoclonal antibodies, one activating a receptor on a killer effector cell, while the other engaging 

a tumor-associated antigen to initiate tumor cytotoxicity. In this review, we survey the HCC targets 

for which CARs and bispecific antibodies have been generated. The pros and cons of these targets 

for T-cell and Natural Killer cell based immunotherapy will be discussed.
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1. Introduction

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is the fifth most 

common cancer and the second most common cause of cancer deaths worldwide. HCC 

developed mostly in livers with chronic inflammation. The main causal factors for the latter 

are chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. However, other 

factors such as excessive alcohol consumption, non-alcoholic fatty liver disease, obesity, 

diabetes, aflatoxin, and smoking also play important roles in the pathogenesis of this 

neoplasm [12]. Despite advances in treatment, the five-year survival rate of patients with 
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HCC remains poor averaging 5–15% [12]. Although viral vaccines [69] and effective anti-

hepatitis drugs [75] in recent years have greatly reduced the incidence and the severity of 

chronic infection in developed countries, for the rest of the world, these benchmarks will 

take decades to be realized. In the meantime, finding an effective therapeutic for HCC 

remains an unmet need.

1.1 Immunobiology of liver and liver cancer

Through the portal blood flow from intestine to heart, bacterial products, toxins and antigens 

continually challenge the liver parenchyma. To effectively neutralize these environmental 

threats, the liver contains a rich source of innate immune cell including macrophages, 

natural killer (NK) cells, NKT cells, and γδT cells. Among these, NK cells are a unique 

population comprising about 30–50% of liver lymphocytes in healthy individuals and up to 

90% in liver malignancies [39]. Compared to the peripheral blood NK cells, liver NK cells 

are more cytotoxic against HCC. In fact, interleukin-2 (IL2)-stimulated liver NK cells 

express tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), whose receptor is 

highly expressed on poorly differentiated HCC [52]. Although this local population of NK 

cells generally have low CD16 expression [17], a limitation for most natural anti-tumor IgG1 

antibodies, a BsAb targeting CD16 could potentially overcome this limitation. Since NK 

cells are less restricted by the immunosuppressive tumor microenvironment intended for T 

cells, their activation using bispecific antibodies against HCC is appealing.

The role of Lymphocytes in defense against HCC is well known. In fact, there is a positive 

correlation between T and NK cell infiltration into the tumor site and higher survival rate in 

HCC patients [24, 53]. However, immunosuppressive tumor microenvironment undermines 

lymphocyte function. Myeloid derived suppressor cells [41], mesenchymal stem cells [117], 

regulatory T cells [108], cancer-associated fibroblasts [3], tumor associated macrophages 

[30], and programmed cell death protein 1 (PD-1)hi regulatory B cell [111] suppress immune 

cells and promote HCC progression. Furthermore, overexpression of inhibitory receptors 

including PD-1 and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) on 

circulating or tumor-infiltrating T cells was associated with poor clinical outcomes [64, 

100]. In addition, PD-1 ligand (PD-L1) or B7-H3 expressed on HCC cells can induce T cell 

apoptosis or inhibit T cell functions [100, 102]. Hence, modulation of immunosuppressive 

cells and molecules is an active area of investigation [54, 64, 107].

A Phase I/II clinical trial to evaluate the safety and efficacy of nivolumab, a fully human 

IgG4 PD-1 blocking monoclonal antibody, was completed on 41 patients with HCC. Patients 

were treated for up to two years with nivolumab (0.1 – 10 mg/kg intravenously) [31]. 

Among 39 patients whose response was evaluable, 2 complete responses, 7 partial 

responses, 18 stable diseases, and 12 progressive diseases were reported. 71% patients 

experienced drug-related adverse effects (17% grade 3/4) including rash and elevated serum 

levels of aspartate aminotransferase, alanine aminotransferase, and amylase. Overall survival 

rate was 72% after six months. In a recent case report, a 75-years old male patient with 

metastatic HCC unresponsive to sorafenib was treated with pembrolizumab, a humanized 

IgG4 PD-1 blocking monoclonal antibody. After six cycles of treatment (each cycle with 2 

mg/kg every three weeks), the patient’s tumor mass and blood alpha fetoprotein was 

Hoseini and Cheung Page 2

Cancer Lett. Author manuscript; available in PMC 2018 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



markedly reduced [107]. In murine models of HCC, it was shown that sorafenib treatment 

increases intratumoral hypoxia leading to increased expression of stromal cell-derived 1 

alpha (SDF1α), PD-1 ligand (PDL1), and accumulation of immunosuppressive cells [20]. 

Combination of sorafenib, murine PD-1 blocking antibody, and SDF1α receptor inhibitor 

provided the most potent tumor growth delay [21].

1.2 Antibody-based T cell-dependent immunotherapy

Compelled by the striking recent clinical results of T-cell based therapies, cancer 

immunotherapy was named as the breakthrough of the year in 2013 [25]. Chimeric antigen 

receptors (CAR) and bispecific antibodies are two powerful extensions of this approach. 

CARs were originally developed by fusing the antigen-binding moiety of an antibody to the 

transmembrane and cytoplasmic domains of CD3ζ [34] T cells equipped with these CARs 

had in vitro cytotoxicity, but their in vivo persistence and function were suboptimal. 

Therefore, second and third generation CARs were developed by addition of one or two 

costimulatory domains (e.g. CD28, 4-1BB, OX40), respectively to the intracellular domain 

of the first generation CARs (fig. 1) [77]. Bispecific antibodies (BsAb) combine the 

specificities of two monoclonal antibodies in a single molecule. These bispecific reagents 

can neutralize the effect of two tumor-associated-antigens. More commonly, they activate 

effector cells and bring them to engage cancer cells to execute their cytotoxic functions [77]. 

CAR technology has been tested against the target CD19 (in human cancers such as ALL, 

CLL), GD2 (neuroblastoma), CD22 (ALL), mesothelin (mesothelioma), and HER2 

(sarcoma) [4, 8, 38, 45, 76, 90], and IL13R (glioblastoma) [13] with overwhelming success 

in CD19(+) leukemia, but only select solid tumors. Several factors might be responsible for 

the inferior efficacy of CART cells in solid versus hematological malignancies including 

target antigen heterogeneity, poor trafficking and penetration of therapeutic cells, and the 

hostile tumor microenvironment (hypoxia, acidosis, nutrient depletion, tumor-derived 

immunosuppressive molecules, various immunosuppressive cells including tumor-associated 

macrophages, regulatory T cells, and myeloid-derived suppressor cells) [85]. BsAb was 

successfully proven for CD19 (ALL), leading to the FDA approval of blinatumomab for 

Philadelphia chromosome (ph)-negative relapsed/refractory B-cell precursor ALL 

(BLINCYTOTM) in 2016. BsAb targeting CD33, CD52, HER2, CD20, GD2, GPC3, and 

CD123 are in the clinical pipeline. It is timely to review preclinical and clinical studies 

where these T-cell based therapeutic strategies have been applied to HCC. Table 1 

summarizes the BsAb and CAR targets of HCC. Table 2 summarizes clinical trials involving 

anti-HCC BsAb and CARs. Table 3 and 4 summarize the characteristics of BsAbs and CARs 

used against HCC targets.

1.3 Glypican-3 (GPC3)

GPC3 (also known as GTR2-2, intestinal protein OCI-5, and MXR7) is a heparan sulfate 

proteoglycan expressed as a 70kDa precursor protein. Upon cleavage by furin, GPC3 is 

divided into an N-terminal 40kDa and a C-terminal 30kDa fragment. The latter, which 

contains two heparin sulfate chains, is attached to the cell membrane via a 

glycosylphosphatidylinositol anchor [49].
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It has been shown that GPC3 is expressed on the majority of hepatocellular carcinoma 

(HCC) and hepatoblatsoma cases but not or to a lower degree on normal liver tissue [51, 57, 

67, 84]. Interestingly, GPC3 expression could be used as an HCC precancerous marker in 

cirrhotic livers since it is associated with dysplasia in cirrhotic livers [74]. Furthermore, 

overexpression of GPC3 in HCC is associated with poor prognostic indicators including 

poor tumor differentiation, higher TNM score, and tumor invasion into blood vessels [65].

1.3.1 Glypican-3 CAR—The first GPC3 CAR was generated by fusing the scFv of an 

anti-GPC3 antibody to the CD8α hinge and transmembrane regions followed by the 

intracellular signaling domain of the CD3ζ. This first-generation CAR does not have the co-

stimulatory domains. Therefore a third-generation CAR composed of the anti-GPC3 scFv, 

CD8α hinge, CD28 transmembrane and intracellular signaling domains, 4-1BB, and CD3ζ 
was produced. Although human T cells transduced with concentrated lentiviral vectors 

containing either of the CAR constructs specifically lysed HCC cell lines, the third-

generation CAR T cells produced higher levels of interleukin-2 and IFNγ, which was 

positively correlated with the level of GPC3 expression on target cells. The presence of 

soluble GPC3 protein, which has been reported in the serum of some HCC patients, only 

mildly (10%) inhibited the cytotoxicity of CAR T cells. T cells equipped with the third-

generation CAR could suppress the growth of established orthotopic xenografts in 

immunodeficient mice [40].

Another group compared first-, second-, and third-generation anti-GPC3 CARs and found 

that the second- and third-generation constructs outperformed the first- generation CAR in 

vivo [68]. The choice of co-stimulatory domain might influence CART cell behavior. Anti-

GPC3 CARs containing CD28, 4-1BB or both have been tested against HCC [68]. The in 

vitro cytotoxicity of T cells equipped with a CAR signaling through CD28 was higher than 

one signaling through 4-1BB. Both CARs eliminated HCC cells in vitro and in mice. 

Whereas CD28 induced preferential production of Th2 cytokines (IL-4 and IL-10), 4-1BB 

induced generation of Th1 cytokines (IFNγ and GM-CSF) as well as superior T cell 

proliferation in vitro and in vivo. More recently, a fourth generation GPC3- specific CAR 

was generated containing three co-stimulatory domains (CD27, CD28, and 4-1BB) and the 

inducible caspase-9 suicide gene in a lentiviral backbone [62]. While this CAR induced 

efficient lysis of GPC3(+) cell lines in vitro, pre-incubation of targets with kinase inhibitor 

sorafenib improved CART cell cytotoxicity. However, the effect of sorafenib on CART cells 

was not reported.

Besides HCC, lung squamous cell carcinoma (SCC) also expresses GPC3. T cells expressing 

a third generation (CD28, and 4-1BB as co-stimulatory molecules) GPC3-specific CAR 

were able to infiltrate subcutaneously inoculated lung SCC tumors and significantly reduce 

their size in xenograft models [66].

1.3.2 Glypican-3 BsAb—Recently an FcγR-silenced IgG4-based humanized bispecific 

antibody bearing monovalent specificities for CD3 and GPC3 was successfully tested in 

mouse models of HCC (fig 2A). To reduce the chance of cytokine release, corticosteroids 

were tested without compromising the anti-tumor effect [47]. A phase I clinical trial to 

assess the safety and efficacy of the antibody is in progress (NCT02748837).
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Another bispecific antibody named trivalent IgG-Shaped (TriFab) construct was developed 

by fusing two anti-GPC3 Fab fragments via a flexible linker to one asymmetric third Fab-

sized binding domain [79]. The bivalent Fab arms bind GPC3 with similar affinity of the 

parent IgG antibody. The third domain was designed to bind another antigen or to carry a 

cytotoxic payload. No in vivo experiment was reported.

1.4 Viral antigens

It is well known that several viruses, called oncoviruses, can induce cancer. Hepatitis B 

(HBV) and C (HCV) viruses are key HCC risk factors accounting for approximately 80% of 

HCC cases [32]. These viruses can induce HCC via several mechanisms including 

insertional mutagenesis (mainly for HBV versus HCV) and accumulation of genetic damage 

due to chronic inflammation and oxidative stress. Furthermore, direct effects of hepatitis B 

virus x-protein (HBx) on regulatory non-coding RNAs, as well as its interaction with various 

signaling pathways such as p53, Wnt, and nuclear factor-κB could also account for HBV 

carcinogenesis [42, 43, 105].

1.4.1 Viral antigen CAR—A second-generation CAR specific for the S domain of all 

three envelope proteins (S, M, and L protein, combined as HBsAg) of HBV was generated 

and tested in immunocompetent HBV transgenic mice. Since HBsAg is expressed on the 

surface of HBV-replicting cells, it can be targeted by CARs [23]. Adoptively-transferred 

CAR-transduced murine T cells were able to control HBV infection with only transient liver 

damage. Besides, the high serum level of circulating HBV antigen did not affect the function 

of CAR T cells. However, anti-tumor effect of this CAR was not tested [61]. In another 

study, second-generation CARs (containing CD28 costimulation) specific for HBV S and L 

antigens enabled T cells to eliminate HBV-infected human hepatocytes and hepatoma cells. 

CART cells specific for the S antigen (that is expressed at higher levels on infected cells) 

outperformed those reactive to the L antigen (which is expressed at lower levels on infected 

cells) in the generation of interferon-γ and cytotoxicity [10].

Other investigators using T cells transduced with a T cell receptor (TCR) specific for the S 

domain showed that although electroporation of T cells with anti-HBV TCR mRNA could 

equip nearly 80% of T cells with the transgene, TCR expression was transient and 

disappeared within 72 hours. In contrast to retrovirally-transduced T cells that were able to 

completely eliminate the HCC xenografts after a single T cell transfer, multiple injections of 

RNA-electroporated T cell were necessary to suppress, while not able to eradicate, HCC 

tumors [58]. Since HBV antigens such as the S antigen are expressed on HCC as well as 

infected hepatocytes, the risk of collateral damage by CART cells against infected liver 

could be dose-limiting [14].

HCV E2 glycoprotein (HCV/E2) is the key target for the host immune system during HCV 

infection and also the most variable HCV protein. In an attempt to control this infection in 

vitro, a second generation CAR was constructed based on a broadly cross-reactive/cross 

neutralizing anti HCV/E2 monoclonal antibody. Human T cells retrovirally transduced with 

this CAR were able to generate anti-viral and proinflammatory cytokines and lyse HCV-

infected hepatoma cells [96]. However, whether the CAR-transduced T cells can completely 
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eliminate the HCV infection in vivo or eradicate HCV-associated liver cancers remains an 

open question.

1.4.2 Viral antigen BsAb—To engage T cells to the site of HBx-expressing HCC, an 

anti-HBx × anti-CD3 BsAb was generated by hybrid-hybridoma technology where anti-HBx 

and anti-CD3 hybridoma cell lines are fused together. When administered in combination 

with in vitro-cultured effector cells, the bispecific reagent induced apoptosis and suppressed 

the growth of HCC xenografts in immunodeficient mice [70]. Other investigators reported a 

tetravalent BsAb composed of one anti-CD3 and one anti-CD28 scFv connected to two anti-

HBs antigen scFv via the IgG1 Fc-domain [11]. To minimize the chance of FcγIIR (CD16)-

mediated antibody dependent cell mediated cytotoxicity (ADCC), the Fc domain was 

mutated. The BsAb mediated activation of T cells and redirected their cytotoxicity to HBs 

antigen infected hepatocytes in vitro.

1.5 Epithelial cell adhesion molecule (EpCAM)

Epithelial cell adhesion molecule (EpCAM, CD326) is a 39–42kDa glycoprotein comprised 

of a large extracellular domain, a transmembrane anchor, and a short cytoplasmic tail. The 

extracellular sequence contains a thyroglobulin type-1 and an epidermal growth factor-like 

domain [86]. EpCAM is expressed on the surface of various epithelial cells and plays 

important roles in cell proliferation, differentiation and migration [86]. EpCAM was 

reported as a cancer stem cell (CSC) marker in HCC [104, 116]. Expression of this marker 

was associated with poorly differentiated HCC and poor prognosis [73, 103, 104].

1.5.1 EpCAM CAR—Although not tested in HCC, anti-EpCAM CARs have been assessed 

in other solid tumors [6, 26, 94]. Transduction of the clinically-relevant NK-92 cells with 

IL-15 and an anti-EpCAM CAR resulted in proliferation of CART cells in the absence of 

exogenous cytokines and redirected their cytotoxicity against breast cancer cells that were 

resistant to unmodified NK cells [94]. In another study, peripheral blood lymphocytes 

transduced with an anti- EpCAM CAR preferentially lysed EpCAMhi cells in vitro and 

suppressed the growth of corresponding cells in vivo [26]. Peritoneal carcinomatosis can 

occur in patients with advanced gastrointestinal or gynecological neoplasms. To target 

peritoneal carcinomatosis, CD28/41BB-containing third generation anti-EpCAM CART 

cells were generated using lentiviral vectors or mRNA transfection. Whereas a single 

intraperitoneal injection of 10 million lentivirally-transduced EpCAM specific CART cells 

dramatically reduced the signal of established peritoneal ovarian cancer cells, frequent 

injections of mRNA-electroporated T cells was necessary to slow down tumor growth. 

Temporary expression of CAR on electroporated T cells might provide some safety though 

at the expense of efficacy. Furthermore, life threatening side effects after CART cell 

injection might rapidly occur [82] necessitating swift methods for eliminating T cells 

including the inducible caspase-9 system [27]. EpCAM-specific CART cells are undergoing 

clinical testing in nasopharyngeal carcinoma (NCT02915445).

1.5.2 EpCAM BsAb—The first bispecific anti-EpCAM antibody tested against HCC was a 

bispecific T cell engager (BiTE, fig 2B) comprised of an anti-EpCAM scFv fused to an anti-

CD3 scFv via a Gly4Ser linker. While the parent anti-EpCAM monoclonal antibody failed to 
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suppress tumor growth, the co-administration of peripheral blood mononuclear cells 

(PBMCs) and BiTE was able to suppress the growth of HCC cell lines in vitro and in vivo. 

Furthermore, it was shown that overexpression of galectin-1 (Gal-1) on target cells inhibited 

the BiTE-induced cytotoxicity while Gal-1 knock-down broke the tumor resistance to 

therapy [123]. Solitomab (AMG110, MT110) is a humanized anti-EpCAM×anti-CD3 BiTE. 

Co-administration of this BiTE and γδ T cells caused a near-complete lysis of HCC and 

hepatoblatsoma cell lines in vitro [50]. In addition to liver cancers, anti- EpCAM bispecific 

antibodies have been tested against some other tumors [9, 33, 36, 37, 87, 88, 97, 98]. Ex 

vivo, incubation of autologous tumor-associated lymphocytes with EpCAM(+) cancer cells 

in the presence of Solitomab led to activation and proliferation of effector cells and 

diminished the number of target cells including uterine serous papillary carcinoma [9], and 

Uterine and ovarian carcinosarcomas [33, 37]. Furthermore, intraperitoneal administration of 

catumaxomab, an IgG-based antibody with monovalent specificity against EpCAM and CD3 

(fig 2C), led to regression of breast cancer-induced liver metastases [87]. In Europe, 

catumaxomab has been approved for treatment of malignant ascites in patients with 

EpCAM(+) carcinomas [98]. It is important to note that EpCAM shedding occurs in some 

cancer patients. Although controversial, soluble EpCAM can interfere with the function of 

anti-EpCAM bispecific antibodies in vitro [88, 97]. More studies are needed to clarify if 

EpCAM shedding compromises the anti-tumor effects of CART or BsAb directed at this 

antigen.

1.6 Angiogenic factors and BsAb

Vascular endothelial growth factor-A (VEGF-A) and osteopontin are two angiogenic factors 

with different characteristics. Either of these factors can induce the expression of the other 

and they can function synergistically [91]. Both factors can induce endothelial cell motility 

that is essential for angiogenesis; however, VEGF chemotaxis is RAC dependent while 

osteopontin’s effect is independent of RAC activation [91, 101] Whereas osteopontin 

suppresses lipid raft clustering, VEGF stimulates it [109].

VEGF-A gene is comprised of 8 exons that when alternatively-spliced, generate various 

isoforms with different characteristics. The most common VEGF-A isoform is a secreted 

45kDa heparin-binding homodimeric glycoprotein [35]. It has been reported that VEGF 

mRNA and protein expression is increased in HCC cells [81, 110]. Furthermore, VEGF 

overexpression was reported in HCC cases with recurrence [119]. Moreover, it was shown 

that the expression of VEGF was higher in HCC samples overexpressing the CSC markers 

than in those samples with a lower CSC profile [119].

Osteopontin (also known as secreted phosphoprotein 1 (SPP1), early T-lymphocyte 

activation 1 (ETA-1), and bone sialoprotein 1 (BSP-1)), is an O-glycosylated phosphoprotein 

that belongs to the Small integrin binding ligand N-linked glycoprotein family. It is 

expressed by various cell types including lymphocytes, fibroblasts, endothelial and epithelial 

cells, macrophages, dendritic cells, and neutrophils. Upon binding to its receptors (CD44 

and various integrins) on target cells, osteopontin plays various physiological and 

pathological roles [7]. In HCC, osteopontin is overexpressed in carcinomas with capsular 

infiltration and osteopontin-positive cells are positioned in the cancer-stroma interface [16, 
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44]. Furthermore, osteopontin overexpression was associated with vascular invasion, tumor 

metastasis, resistance to cisplatin chemotherapy, poor prognosis, and was introduced as an 

early HCC diagnostic marker and an HCC-stem cell marker [15, 29, 59, 71, 99, 122].

In an attempt to target both VEGF and osteopontin, two bispecific antibodies named dual-

variable domain immunoglobulin (DVD-Ig) were generated (Fig 2D) in which the binding 

moieties of an anti-VEGF antibody bevacizumab, and an anti-osteopontin antibody were 

fused together in two different orders. Results demonstrated that while the antibody with the 

VEGF-osteopontin orientation retained its parent antibody affinity, the osteopontin-VEGF 

format suffered a great loss in the VEGF-domain affinity. The former antibody was able to 

confer therapeutic efficacy against a human HCC cell line in mouse [60].

1.7 TCR mimics

One of the limitations of antibodies and CARs is that they target cell surface antigens; 

however, the majority of tumor associated antigens are intracellular. These proteins are 

processed within the cytoplasm and expressed as major histocompatibility (MHC)-peptide 

complexes on the cell surface. Alpha-fetoprotein (AFP) is a CSC marker on HCC and is 

associated with poorer prognosis [113, 115]. To target AFP, an scFv specific to the AFP 

peptide-MHC (HLA-A*02:01) complex was isolated from a human phage library and 

incorporated into a second-generation CAR containing the CD28 domain [72]. While 

intratumoral injection of CART cells had a profound and lasting anti-tumor effect, 

intravenously-injected CART cells were only able to reduce the growth of subcutaneously-

injected HCC xenografts in immunodeficient mice. This led the investigators to propose 

local delivery of CART cells to the site of tumor via direct injection into the tumor or 

administration via the hepatic artery. Hepatic artery infusion (HAI) of chemotherapy agents 

is an established clinical technique. Compared to systemic administration, this method can 

increase local concentration of chemotherapeutic agents, reduce systemic toxicities, and 

improve treatment success [55]. In fact, HAI of CART cells specific for carcinoembryonic 

antigen(+) liver metastasis have been tested in a phase I clinical trial [56].

1.8 Other targets

In an attempt to generate bispecific constructs against liver cancer, antibody-producing cells 

that secrete antibodies against human hepatoma and a CD3-associated determinant, were 

fused together. Whereas phytohemagglutinin-activated lymphocytes lysed hepatoma cells in 

the presence of the bispecific molecule, resting peripheral blood lymphocytes failed to do so 

[19]. In another study, the Fab or Fab’ fragments of anti-CD3 or anti-CD16 antibodies were 

chemically attached to the Fab or Fab’ fragments of an anti HCC antibody to generate two 

bispecific antibodies. Lymphokine-activated killer cells (LAK) or pokeweed mitogen-

activated LAK cells (PWM-LAK) were used as effector cells. Whereas 55% of the LAK 

cells after three days of culture expressed CD16, the phenotype of these cells shifted to 

CD3+ T cells afterwards. This is why the CD16-containing bispecific antibody mediated 

cytotoxicity only when it was administered with early LAK cells (day three of culture). On 

the other hand, CD3-containing bispecific molecule was effective whether early or late LAK 

cells or PWM-LAK cells were used [95]. Despite the well known immunobiology of natural 
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killer cells biology of the human liver, the role of CD16(+) Natural Killer and NKT cells in 

HCC has not been adequately explored.

2. Summary and future directions

T cells are highly proficient killer showing successful clinical results in various human 

cancers [1, 2, 78, 89, 92, 93]. In HCC, NK cells comprise 90% of lymphocytes [39]. 

Redirection of these cells against HCC may hold therapeutic potential. While CART cells 

should migrate to the tumor site upon administration, BsAb can redirect tumor-residing NK 

cells against cancer cells and eliminate the homing step.

Targeting CSCs is of paramount importance if a cure for tumors is envisaged. Growing 

evidence points to the origination of HCC from transformation of liver stem and progenitor 

cells [48]. Several candidate antigens expressed on CSCs have been discovered including 

CD13 [46], CD24 [63], CD44 [80], CD56 [18], CD90 [114, 120], CD133 [121], DLK1 

[112], EpCAM [104, 106, 116], cytokeratin-19 (CK-19) [5], and OV6 [118]. Besides, it was 

shown that cells expressing two CSC markers, CD133/EpCAM or CD133/CD44, might be 

better representatives of CSCs and demonstrate superior tumorigenicity in vitro and in vivo 

[22, 124].

Parallel to the enhancement in effectiveness and potency of immunotherapeutic agents, side 

effects might also increase, which could jeopardize or slow down their regulatory approval. 

Therefore the choice of target is critical especially with CAR-modified effector cells which 

can persist for a long time in vivo or with bispecific antibodies that can recruit polyclonal 

effector cells. The presence of tumor cells in a vital organ or the unexpected upregulation of 

even low levels of the target antigen in normal tissues could cause catastrophic side effects. 

For example, localization of anti-ERBB2 CAR-modified T cells to the pulmonary tissue due 

to the low expression of ERBB2 on lung epithelial cells culminated in fatal pulmonary 

edema in a patient with metastatic colon cancer [83]. The lack of dose-limiting adverse 

effects in early clinical trials does not always guarantee the absence of life-threatening late 

complications. To reduce the chance of adverse effects mediated by CAR T cells, 

incorporation of suicide genes, such as the inducible caspase 9, into the CAR constructs 

would enable rapid destruction of effector cells when needed [28].

Currently, only few centers hold the necessary technology and expertise for development 

and implementation of CAR-based therapies. This and also the high cost of CAR and 

bispecific antibody therapeutics, which in most cases are not supported by the insurance 

companies, would impede widespread commercialization of these therapies. Development of 

manufacturing processes and technology transfer for widespread generation of affordable 

therapeutic agents on the one hand and improvement in the insurance companies’ coverage 

for treatment costs on the other hands will enable more patients to benefit from these 

powerful anti cancer remedies.
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Highlights

1. Hepatocellular carcinoma (HCC), the second most common cause of cancer 

deaths worldwide.

2. Chimeric antigen receptors (CAR) contain the antigen binding domain of an 

antibody to redirect effector cells to cancer cells.

3. Bispecific antibodies (BsAb) redirect effector cells toward cancer cells for 

their killing.

4. HCC targets for which CARs and bispecific antibodies have been generated 

will be discussed in this paper.
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Figure 1. 
Structure of chimeric antigen receptors (CAR). CARs are composed of a single-chain 

fragment variable (scFv, containing the heavy chain variable domain (VH) and the light 

chain variable domain (VL) of a monoclonal antibody attached together via a flexible linker) 

linked via a spacer sequence to a transmembrane (TM) domain and to the CD3ζ chain (first-

generation CARs). Second- and third-generation CARs additionally contain one or two 

costimulatory domains, respectively. VH, heavy chain variable domain; VL, light chain 

variable domain; TM, transmembrane domain; co-1, costimulatory domain 1; co-2, 

costimulatory domain 2.
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Figure 2. 
Structure of BsAbs used against HCC. Heavy chains are depicted in dark colors while light 

chains are in the same but lighter colors. Linkers are shown by continuous lines and disulfide 

bonds are demonstrated by dotted lines. (A) ERY974 is an anti-GPC3/CD3 Bispecific 

Antibody. (B) BiTE consists of two scFv linked together via a flexible linker. (C) 

Catumaxomab is an anti-EpCAM/CD3 Bispecific Antibody. (D) DVD-Ig is formed by 

connecting the variable domains of an antibody to the variable domains of an IgG. DVD-Ig, 

Dual-Variable-Domain Immunoglobulin; VH, variable heavy chain; VL, variable light chain; 
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CL, constant light chain; CH1-3, constant heavy chains 1 to 3. BiTE, bispecific T cell 

engager.
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Table 1

Advantages and disadvantages of HCC-associated antigens for CAR and antibody development

Marker Advantages Disadvantages

GPC3 1 Expressed on the majority of HCC and 
hepatoblatsoma samples [32–34, 109].

2 GPC3 expression on HCC is associated 
with poor prognosticindicators [37].

1 Expressed on various tissues 
including brain, liver, respiratory 
system, skin, kidney, digestive tract, 
and testicular germ cells [59, 110].

2 Not expressed in all HCC samples 
[109].

3 Soluble GPC3 protein in the serum of 
some HCC patients can mildly inhibit 
the cytotoxicity of anti-GPC3 CAR T 
cells [38].

Viral antigens 1 Not expressed on normal tissues (because 
they are viral antigens).

1 Not expressed in HCC cases 
unrelated to chronic viral hepatitis.

EpCAM 1 Expressed on 56% of HCC samples [57].

2 Expressed on HCC CSCs [57, 58, 102].

1 Expressed on normal tissues such as 
pancreas, colon, kidney tubules, 
bronchus, thyroid, and parathyroid 
glands [111].

2 Not expressed in all HCC samples 
[57, 112].

3 Soluble EpCAM might interfere with 
the function of anti-EpCAM 
bispecific antibodies in vitro [71].

VEGF-A and osteopontin 1 Expression of VEGF was higher in HCC 
samples overexpressing the CSC markers 
[75].

2 Overexpression of VEGF was associated 
with recurrence and reduced overall 
survival [75].

3 Osteopontin overexpression was associated 
with vascular invasion, tumor metastasis, 
and poor prognosis [79, 82, 84].

4 Osteopontin promotes a CSC-like 
phenotype in HCC [81].

5 Osteopontin overexpression promotes 
resistance to cisplatin chemotherapy in 
HCC [83].

1 Are secreted from cells so T cell 
responses cannot be redirected 
against HCC cells.

2 Not expressed in all HCC cases [84].
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