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Functional magnetic resonance imaging (fMRI) can generate brain images that show neuronal activity due to sensory, cognitive or motor tasks.
Haemodynamic response function (HRF) may be considered as a biomarker to discriminate the Alzheimer disease (AD) from healthy ageing.
As blood-oxygenation-level-dependent fMRI signal is much weak and noisy, particularly for the elderly subjects, a robust method is necessary
for HRF estimation to efficiently differentiate the AD. After applying minimum description length wavelet as an extra denoising step,
deconvolution algorithm is here employed for HRF estimation, substituting the averaging method used in the previous works. The HRF
amplitude peaks are compared for three groups HRF of young, non-demented and demented elderly groups for both vision and motor
regions. Prior works often reported significant differences in the HRF peak amplitude between the young and the elderly. The authors’
experimentations show that the HRF peaks are not significantly different comparing the young adults with the elderly (either demented or
non-demented). It is here demonstrated that the contradictory findings of the previous studies on the HRF peaks for the elderly compared
with the young are originated from the noise contribution in fMRI data.
1. Introduction: The Alzheimer disease (AD) is an advanced
neurodegenerative illness. AD generally causes a decline in
cognitive tasks such as progressive loss of memory, reasoning and
language. This disease mostly happens in the patients of the ages
between 40s and 90s [1] such that age is considered as a major
risk factor. In developed countries, the incidence rate is 8 and
30% for the individuals over 65 and 85 years, respectively. AD
often progresses gradually and the patients can seldom survive
more than 8–10 years after the beginning of symptoms [2].
Current consensus statements have emphasised the need for the

early diagnosis of AD [3]. However, there is actually no single
and comprehensive method for diagnosis of AD [4]. A well-trained
physician with an expertise in dementia may diagnose AD based
on medical history, physical examination, cognitive assessment
tests and laboratory and brain imaging results [4]. The diagnosis
is currently made using the criteria provided with by National
Institute of Neurological and Communicative Disorders and
Stroke – Alzheimer’s disease and Related Disorders Association
[4]. Typically, it takes a few weeks to complete a diagnostic evalu-
ation of the AD [3].
As mentioned, the detailed diagnosis of AD is primarily based on

clinical, neuropsychological and imaging evaluation. The choice for
the modality of the brain imaging [computed tomography (CT),
magnetic resonance imaging (MRI), single photon emission CT
(SPECT), positron emission tomography (PET) and functional
MRI (fMRI)] depends on the duration and severity of the condition.
Since MRI or CT scans cannot show brain tissue loss affecting the
brain activity, SPECT, PET or fMRI is often exploited to detect
the abnormalities for an early diagnosis [5, 6].
fMRI is advantageous compared with PET modality owing to its

higher spatial and temporal resolution. In fMRI, the brain activity
may be explored during cognitive, sensory and motor task.
Hence, it can be supposed as powerful means to identify disrupted
neuronal circuits underlying disorders such as AD. Considering the
cortices affected by AD, a ‘cognitive stress test’ can be used to
bring out subtle brain abnormalities that would otherwise remain
undetected during a resting state [7].
During fMRI procedure, a brief focal neural activation evokes

what is called a haemodynamic response function (HRF). The
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physiological processes underlying the blood-oxygenation-level-
dependent (BOLD) signal and HRF, including neural metabolism,
extracellular signalling, and cerebrovascular response are known
to vary with age [8–11]. The BOLD signal is modelled as the
product of convolution between this time-invariant HRF and an
impulse train of neuronal events [12]. However, the effects of
ageing on fMRI have been still undiscovered.

Several prior studies comparing haemodynamic response proper-
ties in the young and non-demented and demented elderly adults
using fMRI data have led to partially-opposite results [13–19]
(summarised in Table 3). In [15], Aizenstein et al. investigated
haemodynamic responses of the young and non-demented elderly
adults using an event-related (ER) sensory–motor paradigm. In
their study, the HRF has been simply extracted by averaging pro-
cedure. They found no significant difference for the HRF peaks
between the young and non-demented elderly adults in either
vision or motor region-of-interests (ROIs). In [16], Huettel et al.
and [18] D’Esposito et al. reported similar result using averaging
method as well, though implicitly reported an evident decrease of
signal-to-noise ratio (SNR) for the elderly.

In contrast to these results, in [14] Mohtasib et al. reported,
though cerebral blood flow response remains at the same level,
but the BOLD response significantly intensifies for the old
subjects in comparison with the young group. Then, the increase
of BOLD peak with ageing was interpreted to be associated with
a significant reduction in either the oxygen metabolism response
or the neural activity. Using an ER sensory–motor paradigm
and averaging scheme, in [17] Buckner et al. compared HRFs for
the young and non-demented and demented elderly adults as
well. According to their study, HRF peaks appear to be significantly
different between the young and the non-demented and demented
elderly adults in vision ROI. The motor ROI was nevertheless
reported to exhibit no significant difference in the HRF peaks,
but with a subtle time shift for the young compared with the old.
Considering a block design paradigm, in [19] Ross et al. reported
a significant decrease in the HRF peak for the non-demented
elderly adults compared with the young in vision ROI. On the
opposite, in [13] Gauthier et al. also found a decrease in the HRF
peak for the non-demented elderly adults in comparison with the
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young, though neuronal activity and haemodynamic response were
assumed to remain unchanged through the lifespan.

Trying to interpret the inconsistency of the results associated
with prior works, in [15] Aizenstein et al. suppose the abnormality
to appear because of the negative deactivating voxels included
in the HRF estimation. They address the problem of the reduced
activity or HRF peak, already reported for the elderly, to the inclu-
sion of these voxels in HRF estimation. In this paper, the con-
tradictory results are analysed and it is demonstrated that the
inconsistent findings have been originated from the simple aver-
aging algorithm shared by all the previous works in the HRF esti-
mation. Averaging method exhibits a large sensitivity to outliers.
Also, the estimation worsens when the number of samples is low
so that the background resting-state signal and noise terms appear
to be non-stationary. In fMRI case, there are only a very small
number of samples either [here, four samples at each time of repe-
tition (TR) period]. Moreover, it is should be reminded that the
noise contribution in fMRI data is much more critical for the
elderly subjects [16, 18, 20, 21].

It is still a research challenge. Moreover, there are contradictory
findings reported in the literature. This work tries to deal with this
challenge and to show some probable reasons for contradictory
findings of earlier works. In this paper, it is proposed to use a dif-
ferent procedure for extracting HRF to avoid the above-mentioned
problems. BOLD time series are here modelled as the product of
convolution operation between an invariant HRF and an impulse
train of stimuli [12]. Then, the averaging is then replaced with
deconvolution method for estimating HRF. Extracting HRF using
deconvolution method has also been used in other previous
works [22–28]. Selection of active voxels is here realised by
statistical t-test (only positive t-values) as mentioned in
Aizenstein et al. [15].

Due to high intrinsic noise in the functional MR images and the
weakness of the BOLD signal, the fMRI images suffer from low
SNR [29, 30]. The SNR becomes much lower for the ER design
experiments [31] where the subject receives a short stimulus or per-
forms single instance tasks in response to intermittently-presented
stimuli. Consequently, fMRI images are required to be preprocessed
before any statistical analysis. Furthermore, denoising is a common
preprocessing step that is applied before analysing the fMRI data.
To more suppress the noise effects, minimum description length
(MDL)-based wavelet method is here utilised as an extra denoising
step before HRF extraction [32–36].
2. Materials and methods
2.1. Individuals: Forty-one right-handed native English
speakers took part by being paid $75. Fourteen young subjects
consisting of five males between 18 and 24 years (mean
21.1 years) and without any history of neurological or visual
illness. Twenty-seven older subjects were picked up out of the
Washington University Alzheimer’s Disease Research Center
(ADRC) registry. The non-demented and demented were 14 (five
males, 66–89 years with mean age of 74.9 years) and 13 subjects
(six males, 68–83 years with mean age of 77.2 years),
respectively. All the elderly had normal visual legerity (corrected)
and checked out regarding the neurologic, psychiatric or medical
illnesses being associated with dementia.

All the subjects either non-demented (control) or with demented
subjects had an exam regarding the clinical dementia rating (CDR).
Using CDR, the subjects with normal or mild dementia of the
Alzheimer’s type (DAT) were clinically categorised into: CDR0:
no dementia; CDR0.5 and CDR1.0 relating to very mild and mild
DAT, respectively [37]. This method has shown an accuracy
about 93% for diagnosing the DAT even at the early stages (CDR
0.5) confirmed by the neuropathology validation [38]. The demen-
ted subjects in this study included 13 patients, 8 individuals showed
up with very mild dementia (CDR 0.5) and the rest (5 individuals)
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with mild DAT (i.e. CDR 1). The control non-demented subjects
ranked with CDR 0.

2.2. Stimuli: A Power Macintosh computer (Apple, Cupernico,
CA) was used to control the stimulus display (PsyScope software)
[39]. A PsyScope button box was connected to a fibre-optic
light-sensitive push-button key for recording the key press
response (Carnegie Mellon University, Pittsburgh, PA). The
buttons are all covered to avoid any response intricacy except
one. A screen was used to project the stimuli (Am- Pro Model
LCD-150, Ampro, Melbourne, FL) and was placed at the back of
the magnet bore. The subjects were able to see the display
through a mirror that was attached to the head coil. As the most
of the elderly subjects were needing corrective lenses to see, they
were provided with magnetic-compatible glasses.

The task paradigm was basically composed as follows: (i) a visual
stimulus was presented for 1.5 s; (ii) each subject then presses a key
with his right index as soon as the stimulus begins. The visual stimu-
lus included a checkerboard of 8 Hz counter phase flickering (black
to white) that was subtending about 128 of visual angle (68 in each
visual field) as used by Miezin et al. [40].

The trials were carried out in two distinct conditions. The stimuli
were presented either each one in isolation, or in pair come apart
with 5.36 s as inter-trial interval. Every trial condition lasted for
21.44 s to accomplish an eight-image acquisition. Every subject
performed 60 trials, in 4 runs, i.e. each run included 15 trials.
Those two conditions were pseudo-randomly distributed and inter-
mixed. Then, the evoked haemodynamic response could be
obtained for an isolated and transient event [41].

2.3. Image acquisition: The MRI scans were acquired using a 1.5 T
Vision System (Erlangen, Germany) system with a head coil
being standard circularly polarised. The scan parameters were:
128 images with TR = 2.68 s, TE = 30 ms, 90° flip angle, 30
slices (8 mm slice thickness), and the slice plane resolution of
3.75 × 3.75 mm2. Each run collected 128 total images of
sequential whole brain in four trials for each subject. Total four
runs lasted 5.5 min with a 2 min delay between runs for each
subject. The subjects got a rest during delay intervals.

2.4. fMRI data preprocessing: To make sure about longitudinal
magnetisation stabilisation, four initial volume images were
discarded. Then, preprocessing steps were applied including
correction of even/odd slice timing and realignment or motion
correction (SPM software) [42]. Next, the vision and motor
cortices were selected as desired ROI. Visual cortex included the
occipital cortex, the cuneus and the precuneus. Also, the motor
cortex was refined to the precentral gyrus and the supplementary
motor area. The AAL map was employed from MRIcro software
package [43]. Next, the selected vision and motor cortices were
applied to MNI single-subject’s space as well.

The anatomical and functional images were coregistered using
the standard MNI space for each subject in two-step registration
as follows. First, mean functional image was obtained and
aligned with the respective anatomical image. Then, the anatomical
image was registered to the MNI template. Lastly, the related trans-
formation matrices were concatenated. That concatenated trans-
formation matrix were then applied to all the functional scans for
registering to MNI standard template. The alignment was realised
with 12 DOF as affine transformation in FSL package [44].
Finally, the mask was applied to the images for extracting the func-
tional sequences associated with visual and motor cortices [45].

A visual check was also carried out for all the subjects to make
sure about the accuracy of ROI selection.

2.5. fMRI data analysis
2.5.1 ROI selection: The time series of visual and motor cortices
were obtained from the preceding subsection. A t-test analysis
Healthcare Technology Letters, 2017, Vol. 4, Iss. 3, pp. 109–114
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Table 1 Per cent of voxels change

Different activated voxels in two states: without
and with MDL denoising (R-MDL)

Region

Vision, % Motor, %

demented adults 82.00 82.10
non-demented adults 87.17 83.22
young adults 82.93 81.68
was performed on each subject’s data. According to the neuronal
activation mechanism, it is supposed that the HRF peak occurs
around 4–6 s after the stimulus (finger tap), here at the third scan.
Subtracting the first scan from the third one, the difference is
used for activation detection. To maintain the compatibility with
the previous work of Aizenstein et al. [15] for comparison pur-
poses, top-32 voxels have been selected with the largest positive
t-values for studying HRF at each ROI. For ROI selection, the
threshold t-value was independently determined for each individual
subject. It should be reminded that the t-values of the remaining
voxels have been negligible compared with the selected top-32
voxels according to the experimentations (i.e. the group of selected
32 voxels are significantly important). The activation detection was
performed for both time series: original data and MDL-denoised
data. According to the experimentations, a considerable part of
voxels [80% of top-32 voxels (Table 1)] has changed after applying
MDL denoising procedure.

2.5.2. HRF extraction with averaging: For comparison purposes,
HRF was estimated using averaging procedure like prior works as
well. For each subject, the top-32 voxels were selected for both
vision and motor regions. The HRF was supposed as the mean
MR signal for each voxel at each eight time points (i.e. scans).
Then, the average of these mean MR signals was used as the
HRF. The resulting HRF was considered with respect to baseline
(scan 1) in per cent for standard presentation.

2.5.3. HRF extraction with deconvolution: BOLD time-series
data are here modelled as the product of convolution operation
between an invariant HRF and an impulse train of neural events
[12]. For each subject and for both regions, top-32 voxels were con-
sidered. To estimate the HRF, the BOLD time series was decon-
volved with the stimuli (train of impulses at the known onsets of
the events – activity-inducing signal time) supposing a constant
length for HRF. Deconvlolution algorithm has been realised in
five steps [46] as follows:

† Suppose the matrix X with the size of time series × length of
HRF, filled initially out with zero.
† Change X so that a vector of unity with the length of HRF is
placed in each row at the onset of stimuli.
† Add a column of unity at the ninth column of X, to account for
estimating the baseline as a regressor to estimate the baseline.
† Estimate the HRF by calculating Moore–Penrose pseudo-inverse
of matrix X and multiply the product with the BOLD time series.
† HRF is corrected with adding the baseline.

2.5.4. MDL wavelet denoising: As mentioned in the previous
section, it is necessary to use an extra denoising with robust per-
formance to sufficiently suppress the noise contributions because
of low SNR of BOLD signal, particularly in the elderly [29, 30].
This low SNR particularly becomes a problem for ER design
experiments [31] where the subject receives a short stimulus or per-
forms single tasks in response to intermittently presented stimuli.
The noise contribution gets larger and more important as age
increases [16, 18, 20, 21]. In the HRF estimation, the noise terms
Healthcare Technology Letters, 2017, Vol. 4, Iss. 3, pp. 109–114
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are much more critical. Then, an extra denoising procedure with
robust performance is essential. One of the most common tools
for denoising is the wavelet transform along with thresholding
procedure [47, 48]. The threshold value critically determines the
performance of denoising algorithms based on discrete wavelet
transform (DWT) [48]. Many algorithms have been proposed for
selecting this critical threshold such as VisuShrink [48],
SureShrink [49], MDL or crude MDL (C-MDL) [36] and refined
MDL (R-MDL) [34].

In MDL method, a cost function is proposed so that the optimum
threshold may be obtained by optimising this cost function. Thus,
the complexity of thresholding may be automatically controlled.
In this study, the denoising is applied to fMRI applications for
extracting the HRF at the activated voxels. The denoising method
and particularly the thresholding step plays an important role in
determining the overall performance [35].

2.5.5. R-MDL algorithm: The observed time series, yn = (y1,…,yn)T

is assumed to have an additive noise in general linear model
(GLM), as follows:

yn = xn + 1n. (1)

where the noise term ɛn is often assumed to be Gaussian and xn is
the desired noiseless time series (e.g. BOLD signal). In fact, the
main objective is to optimally extract the uncorrupted original
signal xn. In GLM method, the original signal is supposed to be
the activation coefficients multiplied by the design matrix. Since,
it is here desired to denoise the fMRI signal before the HRF extrac-
tion using deconvolution operation, then, the design matrix has
been developed and considered in accordance with the input
impulse train (stimuli vector). GLM method generally invokes the
convolution operation in the matrix form (design matrix). Given
the orthonormal regression matrix W, the DWT of the noisy data
is defined as

cn = WTyn. (2)

Invoking MDL principle, the DWT coefficients may be considered
as two categories: signal and noise. The MDL classification tries to
achieve the minimum description of both data and the model itself
simultaneously [50–53]. The length of the description is defined by
the negative logarithm of the so-called normalised maximum-
likelihood (NML) expression [34, 36]. The NML represents a
universal model supposing a parametric distribution profile with
parameters û yn

( )
as follows [54–56]:

fnml y
n( ) = f yn; û yn

( )( )

�
A f zn; û yn

( )( )
dzn

. (3)

where A represents the set of coefficients with length n. û yn
( )

is the
NML estimate of the parameters. The NML is used to optimise the
parameters for the minimum cost.

For MDL-based denoising, the wavelet coefficients are cate-
gorised into two groups of k and n− k members. First group of
coefficients are considered for reconstruction and the remaining n
− k are set to zero. In C-MDL, a subset γ including the k largest
wavelet coefficients are selected to minimise the following cost
function [36]

n− k

2
ln
S yn
( )− Sg yn

( )

n− k
+ k

2
ln
Sg yn
( )

k
+ 1

2
ln k n− k( ). (4)

Here, S(yn) and Sγ(y
n) stand for the sum squares of all wavelet

coefficients and the coefficients belonging to γ, respectively.
The number of coefficients in γ is equal to k and n is the length
of time series. The upper limit for k always meets k < 0.95n [33].
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In R-MDL as discussed in [34], the cost function is modified
as follows:

n− k

2
ln
S yn
( )− Sg yn

( )

n− k( )3 + k

2
ln
Sg yn
( )

k3
. (5)

Larger the number of model classes, more important generally is the
selection of class index. For MDL denoising, there are 2n possible
conditions to select. The encoding of the class index affects so
much on the performance of fMRI data denoising [34].

3. Results
3.1. Denoising effects on activation detection: The effects of
denoising fMRI data are here studied on the selection of activated
voxels. The noise contribution gets larger and more important
through ageing [16, 18, 20, 21]. For both the vision and motor
regions, all-time series were first denoised by R-MDL for the
young and non-demented and demented elderly adults as in
[32, 33], followed by the t-test for selecting activated voxels. The
activated voxels have been selected as shown in Fig. 1 (vision).

In both vision and motor regions, the initial connected regions
of activated voxels (without applying MDL denoising) have
been extended for both the non-demented elderly adults and the
young cases after applying MDL denoising. In the non-demented
elderly, new connected sub-regions or spots have nonetheless
appeared as well. It may be referred to the lower SNR of fMRI
data in the non-demented elderly adults (0.35) compared with the
young (0.52) [16, 21]. However, for the demented elderly adults,
these changes are very small. The correlation of fMRI data of dif-
ferent voxels may decrease because of independent noise elements.
Hence, MDL denoising leads to an extension of activated voxels
sub-regions. In the non-demented elderly adults, the large
Fig. 1 Automatic labelling of grey matter in vision. Activation detection of
fMRI data in young subject
a Without applying MDL denoising
b With applying MDL denoising by R-MDL
c New voxels
d Activation detection of fMRI data in non-demented elderly adults without
applying MDL denoising
e Activation detection of fMRI data in non-demented elderly adults with
applying MDL denoising by R-MDL
f New voxels
g Activation detection of fMRI data in demented elderly adults without
applying MDL denoising
h Activation detection of fMRI data in demented elderly adults with
applying MDL denoising by R-MDL
i New voxels
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contribution of noise may have resulted in the disappearance of
activated spots or little sub-regions.

To better evaluate the MDL denoising process, the activated
voxels associated with the top32 correlation values are compared
without and with applying MDL denoising. Table 1 demonstrates
the per cent of activated voxels of top32 correlation being not
common between two sates: without and with MDL denoising.
Accordingly, the noise appears to be dominant in the activation
detection, i.e. the noise component leads to different selection of
voxels in the activation detection.

Table 2 demonstrates the per cent of new voxels included in the
top32 activated voxels selected after applying MDL denoising
to original fMRI images. Accordingly, the noise appears to be
dominant in the activation detection. It is reminded that the
activation detection is because the selected activated voxels will
be then used for HRF estimation to contrast the non-demented
and demented elderly from the young.

3.2. HRF extraction: The HRF is here estimated from the fMRI
volume images. To better study the noise effects, the estimation
has been here applied to the fMRI volume images before and
after applying MDL denoising.
3.2.1. Without MDL denoising: All previous studies [13–19] tried
to investigate the changes in HRF amplitude peaks as a marker for
ageing study. Also modulation of the amplitude of the HRF arising
from a brief, temporally well-characterised stimulus would be con-
sistent with neuronal mechanisms, e.g. altered firing rates and syn-
aptic input [57]. Though, variation of the HRF shape might be
associated with vascular mechanisms, e.g. vascular time constants
assuming that the temporal profile of neural responses is similar
across volunteers [58]. However, the neuronal mechanisms would
implicitly cause vascular mechanisms (O2 demand etc.). Then, it
may be imagined that the HRF peaks can indirectly demonstrate
the vascular time constants. In the averaging method, the results
Table 2 Per cent of new voxels

New voxels in Top32 actives voxels after MDL
denoising (R-MDL)

Region

Vision, % Motor, %

demented subjects 48.17 46.68
non-demented subjects 43.16 57.61
young subjects 38.68 34.56

Table 3 Comparison of HRF peak amplitudes between the elderly adults
and the young

Study reference ROIs

Vision Motor

This work (2017) [N & D] = [Y] [N & D] = [Y]
Mohtasib et al. (2012) — [N] > [Y]
Aizenstein et al. (2004) [N] = [Y] [N] = [Y]
Huettel et al. (2001) [N] = [Y] [N] = [Y]
Buckner et al. (2000) [N & D] < [Y] [N & D] = [Y]
D’Esposito et al. (1999) — [N] = [Y]
Ross et al. (1997) [N] < [Y] —

Gauthier et al. (2013) grey matter of the whole brain
[N] < [Y]

[N]: HRF amplitude peak for the non-demented elderly adults.
[D]: HRF amplitude peak for the demented elderly adults.
[Y]: HRF amplitude peak for the young.
=: no significant difference.
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Fig. 2 Mean HRF for vision and motor regions extracted from fMRI data
with applying MDL denoising
a Mean HRF due to averaging in vision region (with applying MDL
denoising)
b Mean HRF due to averaging in motor region (with applying MDL
denoising)
c Mean HRF obtained from deconvolution in vision region (with applying
MDL denoising)
d Mean HRF obtained from deconvolution in motor region (with applying
MDL denoising). Error bars represent ±1 SEM. The black, green and red
solid lines are associated with the mean HRF for the young,
non-demented and demented elderly adults, respectively
show no significant difference in HRF peaks between the young and
the elderly adults in both vision and motor regions (p > 0.1).
Considering the fMRI data without MDL denoising, in contrast

with averaging method, the HRF amplitude peaks appear to be sig-
nificantly different in vision region between the young and the
elderly adults (p < 0.05). In vision cortex, the HRF peaks are sig-
nificantly larger for the young compared with the elderly adults
(non-demented and demented).
3.2.2. With MDL denoising: The effects of noise are here studied
on the HRF estimation to compare the HRF extraction methods
of averaging (used in earlier works) and deconvolution (this
work). Fig. 2 demonstrates the mean HRF extracted after applying
MDL denoising fMRI data for visual and motor cortices.
Figs. 2a/1b and 2c/1d are associated with the averaging and

the deconvolution techniques, respectively. In the case of averaging
algorithm, no significant difference at the peak amplitudes is
observed between the elderly adults (non-demented and demented)
and the young for both motor and vision regions.
Figs. 2c and d demonstrate the mean HRF extracted by deconvo-

lution after applying MDL denoising for vision and motor ROIs, re-
spectively. A significant difference is not obtained for motor and
vision regions either. It may be seen that the results after applying
MDL denoising is different with the one found in the earlier sub-
section for the case of fMRI data without applying MDL denoising.
The noise contribution gets larger and more important through age
increasing [16, 18, 20, 21]. According to Table 2, it is observed that
the percentage of new voxels for the elderly adults (non-demented
and demented) is much more than the young. Then, the result of the
HRF extraction after applying MDL denoising may be more reli-
able. Also, it is highlighted that the averaging and deconvolution
techniques lead to the same results after applying MDL denoising.
Healthcare Technology Letters, 2017, Vol. 4, Iss. 3, pp. 109–114
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4. Declaration of interests: In the step of HRF estimation,
deconvolution appears to be much more robust against noise
contribution because the related haemodynamic function is, at
the same time, optimised through the whole time series scans.
Consequently, the averaging method yields contradictory results
for HRF peak amplitudes as reported in the previous works
(Table 3). Considering deconvolution method, it may be
concluded that the HRF peak amplitudes exhibit no significant
difference in the visual and motor cortices between the elderly
adults (non-demented and demented) and the young. The findings
of this study have been summarised in Table 3 in comparison
with the previous works. The divergence of earlier works on the
results concerning HRF peak amplitude may be easily observed.

5. Conclusion: In this paper, a comparative study has been
realised on the HRF peaks amplitudes being compared between
the young and the elderly adults (non-demented and demented old
populations) assuming simple visual and motor tasks. It was
shown that the previous works led to conflicting results on the
HRF peak amplitudes because of averaging algorithm as well as
noise contributions in fMRI data. In fact, fMRI data are heavily
noisy particularly in the elderly adults. Accordingly, it is necessary
to employ an HRF estimation algorithm which is sufficiently robust
against noise. Employing the robust MDL-based wavelet denoising,
it was shown that a large per cent of the selected voxels changed in
the activation detection at both motor and visual cortices. According
to the experimentation results, the area of activated voxels is
extended for both the elderly adults and the young. In the step of
HRF estimation, deconvolution appears to be much more robust
against noise contribution. Considering deconvolution method, it
may be concluded that the HRF peak amplitudes exhibit no signifi-
cant difference in the visual and motor cortices between the elderly
adults and the young.
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