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Abstract
Laboratory techniques for high-throughput sequencing have enhanced our ability to 
generate DNA sequence data from millions of natural history specimens collected prior 
to the molecular era, but remain poorly tested at shallower evolutionary time scales. 
Hybridization capture using restriction site-associated DNA probes (hyRAD) is a re-
cently developed method for population genomics with museum specimens. The hyRAD 
method employs fragments produced in a restriction site-associated double digestion as 
the basis for probes that capture orthologous loci in samples of interest. While promis-
ing in that it does not require a reference genome, hyRAD has yet to be applied across 
study systems in independent laboratories. Here, we provide an independent assess-
ment of the effectiveness of hyRAD on both fresh avian tissue and dried tissue from 
museum specimens up to 140 years old and investigate how variable quantities of input 
DNA affect sequencing, assembly, and population genetic inference. We present a mod-
ified bench protocol and bioinformatics pipeline, including three steps for detection and 
removal of microbial and mitochondrial DNA contaminants. We confirm that hyRAD is 
an effective tool for sampling thousands of orthologous SNPs from historic museum 
specimens to describe phylogeographic patterns. We find that modern DNA performs 
significantly better than historical DNA better during sequencing but that assembly per-
formance is largely equivalent. We also find that the quantity of input DNA predicts 
%GC content of assembled contiguous sequences, suggesting PCR bias. We caution 
against sampling schemes that include taxonomic or geographic autocorrelation across 
modern and historic samples.
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1  | INTRODUCTION

Over the past three decades, novel laboratory techniques have enhanced 
our ability to generate DNA sequence data from millions of natural his-
tory specimens collected prior to the molecular era (Payne & Sorenson, 
2002). The advent of ancient DNA methods has allowed researchers to 
obtain both nuclear and mitochondrial DNA (mtDNA) sequences from 
extinct taxa (Cooper et al., 1992; Fleischer et al., 2006), explore changes 

in genetic diversity and population genetic structure over time (Habel, 
Husemann, Finger, Danley, & Zachos, 2014; Weber, Stewart, Garza, & 
Lehman, 2000), incorporate threatened or difficult-to-collect taxa into 
population genetic or phylogenetic studies (Guschanski et al., 2013; Linck, 
Schaack, & Dumbacher, 2016), and take advantage of extant biological 
collections to boost sample size and inferential power (Linck, Schaack, & 
Dumbacher, 2016; Wójcik, Kawałko, Marková, Searle, & Kotlík, 2010). 
Now, high-throughput sequencing has dramatically increased both the 
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overall efficiency of data collection and the total amount of sequence 
data that it is possible to collect from museum specimens (Hofreiter 
et al., 2015; Rizzi, Lari, Gigli, De Bellis, & Caramelli, 2012) by overcom-
ing scalability hurdles intrinsic to traditional Sanger sequencing methods 
(Soltis & Soltis, 1993; Wandeler, Hoeck, & Keller, 2007).

Although high-throughput sequencing has already proved widely 
useful for incorporating museum specimens into phylogenomic studies 
(Besnard et al., 2015; Burbano et al., 2010; McCormack et al., 2012), 
its application for collecting genome-wide markers at the population 
level has lagged behind its use for addressing questions at deeper 
evolutionary time scales due to limitations in the most commonly 
employed library preparation methods for reduced-representation 
Illumina sequencing (Suchan et al., 2016). The limitations of historic 
museum samples include their high degree of fragmentation and low 
concentration of long DNA fragments, which reduces the amount of 
flanking sequence that can be captured using ultraconserved element 
probes (Faircloth et al., 2012) and lowers the likelihood that multiple 
restriction digest recognition sequences are retained in a given DNA 
fragment (Baird et al., 2008; Peterson, Weber, Kay, Fisher, & Hoekstra, 
2012). Only in the past few years have library preparation protocols 
suitable for population genomics become available (Bi et al., 2013; 
Jones & Good, 2016; McCormack, Tsai, & Faircloth, 2016), but their re-
cent proliferation has meant that few have yet to be applied to multiple 
study systems in independent laboratories (McCormack et al., 2016). 

As a result, our understanding of the efficacy and biases of different 
approaches to reduced-representation genome sequencing from de-
graded DNA remains incomplete relative to either Sanger sequencing 
(Soltis & Soltis, 1993; Wandeler et al., 2007) or high-coverage, single-
sample whole genome sequencing (Poinar et al., 2006).

One promising but under-tested approach to museum genomics 
suitable for population-level studies is hybridization capture of restriction 
site-associated DNA (RAD) probes (hyRAD) (Suchan et al., 2016). Briefly 
summarized, the hyRAD method uses fragments produced by a double 
digest RAD (ddRAD) protocol (Peterson et al., 2012; Suchan et al., 2016) 
as the basis for biotinylated probes that capture orthologous loci in other 
samples, allowing them to be enriched and indexed for pooled Illumina 
sequencing. Although the method requires a high molecular weight DNA 
sample to produce the probe set, hyRAD offers advantages over other 
targeted capture methods in requiring no prior knowledge of the or-
ganism’s genome, such as transcriptome data or pre-existing sequences 
for probe design (Bi et al., 2013; McCormack et al., 2016). Additionally, 
because hyRAD relies on hybridization capture of orthologous regions 
across samples rather than retained restriction-site recognition se-
quences, the method mitigates the concerns of allelic dropout due to 
polymorphisms at restriction sites with increasing phylogenetic distance 
intrinsic to other RAD-based protocols (Gautier et al., 2013).

In their original paper, Suchan et al. (2016) validated their method 
by applying it to both fresh tissue and museum specimens of a butterfly 

TABLE  1 Sampling information

Specimen Subspecies
Sample 
type Locality

Date 
collected

Age of 
sample 
(years)

Total number 
 of reads

Number of 
cleaned 
reads

% 
Duplicate 
reads

Average 
coverage 
(X) Specificity

Fold 
enrichment Sensitivity Loci

Average 
locus 
length (nt)

Number 
of contigs 
over 1KB

Initial 
concentration 
(ng/μl)

GC content of 
on-target 
contigs

KU:Birds:5215 pseuestes Tissue Ivimka Camp, Gulf Province, Papua New Guinea 2003 13 18,713,496 2,915,214 68.1 12.74 16.87 16.58 84.93 22,568 518 489 71.6 44.22

KU:Birds:5464 pseuestes Tissue Sapoa Camp, Gulf Province, Papua New Guinea 2003 13 17,246,396 2,512,928 68.2 11.2 16.65 16.36 79.43 19,880 499 340 51.8 44.69

KU:Birds:6927 meeki Tissue Mt. Suckling, Oro Province, Papua New Guinea 2011 5 25,892,086 3,103,912 73.2 14.46 17.37 17.07 85.02 23,162 510 494 37 44.53

KU:Birds:7131 pseuestes Tissue Dark End Camp, Gulf Province, Papua New Guinea 2002 14 6,819,041 1,154,541 60.4 5.87 17.29 16.99 65.44 12,725 434 157 31.8 45.01

CAS:ORN:626 meeki Blood Varirata National Park, Central Province, Papua New 
Guinea

2011 5 15,548,547 1,945,868 70.2 9.38 17.06 16.77 77.25 18,519 488 262 43 44.62

KU:Birds:9145 torotoro Tissue Gahom Camp, East Sepik Province, PNG 2003 13 18,049,058 2,309,716 70.2 10.75 16.91 16.62 80.15 20,057 452 312 10.1 44.35

AMNH:Birds:637445 torotoro Toe pad Wasior, West Papua Province, Indonesia 1928 88 13,112,780 48,257 78.2 2.59 11.16 10.97 33.52 849 449 57 3.66 46.03

AMNH:Birds:329542 ochracea Toe pad Sewa Bay, Normanby Island, Papua New Guinea 1934 82 15,875,059 40,402 82.2 1.8 8.9 8.75 29.19 388 465 24 3.84 47.62

AMNH:Birds:637464 tentelare Toe pad Wannambai, Maluku Province, Indonesia 1896 120 21,058,924 139,248 59.9 9.2 11.07 10.88 50.24 3,197 449 154 10.2 44.98

AMNH:Birds:637450 torotoro Toe pad Humbolt Bay, Papua Province, Indonesia 1928 88 3,692,636 16,359 75.1 0.89 12.06 11.85 14.62 153 543 15 0.714 48.74

AMNH:Birds:637429 torotoro Toe pad Misool Island, West Papua Province, Indonesia 1900 116 13,531,142 35,925 79.8 2.13 9.46 9.30 30.09 412 448 26 2.54 46.44

AMNH:Birds:300723 torotoro Toe pad Waigeu Island, West Papua Province, Indonesia 1900 116 14,143,466 34,596 82.2 1.91 10.03 9.86 27.78 508 401 21 0.846 46.88

AMNH:Birds:637446 torotoro Toe pad Kepaur, West Papua Province, Indonesia 1897 119 20,487,169 36,627 84.1 2.15 8.02 7.88 23.19 177 600 22 1.07 48.18

NHMUK:ZOO:1911.12.20.823 pseuestes Toe pad Mimika River, Papua Province, Indonesia 1913 103 2,875,704 19,115 50.9 1.55 10.85 10.66 20.44 239 611 40 1.49 47.28

NHMUK:ZOO:1911.12.20.822 pseuestes Toe pad Satakwa River, Papua Province, Indonesia 1911 105 5,464,605 46,548 59.8 2.08 9.44 9.28 24.39 296 579 36 0.584 48.32

AMNH:Birds:437798 torotoro Toe pad Amberbaki, West Papua Province, Indonesia 1877 139 1,579,610 4,957 73.4 0.39 9.1 8.94 4.58 52 582 4 1.84 48.88

AMNH:Birds:637441 torotoro Toe pad Mt. Mori, West Papua Province, Indonesia 1899 117 6,803,386 19,623 76.9 1.3 9.5 9.34 21.38 157 512 11 7.36 47.89

AMNH:Birds:293741 torotoro Toe pad Ifaar, Papua Province, Indonesia 1928 88 27,602,106 49,786 91.1 2.14 12.48 12.27 23.84 493 447 28 0.124 50.41

AMNH:Birds:293715 torotoro Toe pad Kepaur, West Papua Province, Indonesia 1928 88 30,751,249 56,972 90.5 2.15 11.15 10.96 24.2 438 504 30 0.15 50.95
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(Lycaena helle) and grasshopper (Oedaleus decorus). They discussed the 
impact of library preparation, sample type, and bioinformatics pipeline 
on the number of SNPs produced. Here, we provide an independent 
assessment of the effectiveness of hyRAD using both fresh avian tis-
sues and dried tissue taken from museum specimens up to 140 years 
old. We present a modified version of the hyRAD protocol aimed at 
increasing efficiency and minimizing reagent use and employ a custom 
bioinformatics pipeline with steps for detecting and removing microbial 
contamination in raw reads, contiguous sequences, and SNPs. We uti-
lize hyRAD data to describe phylogeographic patterns in a New Guinea 
forest kingfisher (Syma torotoro) and we expand the available descrip-
tion of hyRAD’s performance by investigating how variable input DNA 
affects sequencing, assembly, and population genetic inferences.

2  | METHODS

2.1 | Study species, sampling, and DNA extraction

A major promise of museum genomics is the ability to conduct 
population-level studies in regions that are too logistically difficult 
to be amenable to broad modern sampling programs. The island of 
New Guinea is an apt example of this scenario, with poorly known 
biodiversity, large historical collections, rugged terrain, and ongo-
ing political instability (Mack & Dumbacher, 2007; Pratt & Beehler, 

2014). Phylogeographic research in New Guinea has been limited 
(Deiner, Lemmon, Mack, Fleischer, & Dumbacher, 2011; Dumbacher 
& Fleischer, 2001), especially in the species inhabiting the island’s 
ring of lowland tropical rainforest. To evaluate the efficacy of for use 
in a broader study of the phylogeography of lowland new Guinea, we 
sampled 21 individuals of forest interior resident S. torotoro (Yellow-
billed Kingfisher), representing five named subspecies and the 
breadth of the species’ range on the island of New Guinea (Table 1). 
For seven individuals, we extracted whole-genomic DNA from 
fresh tissue using a DNeasy tissue extraction kit (Qiagen, Valencia, 
CA, USA) following the manufacturer’s protocol. For the remaining 
14 individuals, we extracted DNA from the toe-pads of museum 
study skins in a dedicated ancient DNA laboratory at the California 
Academy of Sciences using a phenol–chloroform and centrifugal dial-
ysis method described elsewhere (Dumbacher & Fleischer, 2001). No 
modern DNA or post-PCR products are handled in this laboratory, 
which is located on a separate floor from the main genetics facility.

2.2 | Library preparation, hybridization capture 
experiments, and sequencing

We prepared samples for reduced-representation whole genome 
sequencing using a modified version (Hanna & Sellas, 2016) of 
Suchan et al.’s (2016) hyRAD method aimed at increasing efficiency 
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Specimen Subspecies
Sample 
type Locality

Date 
collected

Age of 
sample 
(years)

Total number 
 of reads

Number of 
cleaned 
reads

% 
Duplicate 
reads

Average 
coverage 
(X) Specificity

Fold 
enrichment Sensitivity Loci

Average 
locus 
length (nt)
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of reactions and reducing reagent use. We present this protocol in a 
detailed bench-ready version online (https://github.com/calacademy-
research/hyRADccg) and summarize it below.

To produce biotinylated probes, we performed a double restriction 
digest with enzymes MluCl and SphI (New England Biolabs) on 400 ng 
of high molecular weight DNA extracted from fresh tissue of a single 
S. t. ochracea individual. After ligation of adapters to fragments, we 
size-selected the resulting fragments on a Pippin Prep (Sage Science, 
Beverly, MA, USA) with a target peak at 270 bp and “tight” size se-
lection range. We ran 16 cycles of real-time polymerase chain reac-
tion (RT-PCR) and purified products by gel excision and a Zymoclean 
Gel Recovery Kit (Zymo Research). We preserved one aliquot of this 
product for sequencing while performing an additional MluCl/SphI 
double digest to de-adapterize a second aliquot. We labeled this dead-
apterized aliquot with biotin-14-dATP, using a BioNick DNA Labeling 
System (Thermofisher Scientific).

To produce whole genome libraries, we sheared high molecular 
weight DNA from modern tissue samples to ~400 bp using a M-220 
Focused-ultrasonicator (Covaris). DNA from museum specimen toe-
pads was already fragmented as a product of natural degradation as-
sociated with the age of the samples and was therefore left untreated. 
For both modern and historic samples, we used a Kapa Hyper Prep 
Kit (Kapa Biosystems) to prepare dual-indexed libraries. We amplified 
libraries using 5–13 cycles of RT-PCR. After quantifying DNA con-
tent in each sample, we made standardized dilutions of each sample 
and combined equal amounts of these dilutions to create one pool of 
modern DNA samples (n = 6) and two pools of ancient DNA samples 
(n = 7 each). We used a 1–1.5× ratio of AmPure XP beads to remove 
small DNA fragments throughout the protocol and assessed DNA 
quantity and quality with a Qubit 2.0 fluorometer and an Agilent 2100 
Bioanalyzer between all major steps.

To perform hybridization capture reactions, we incubated each 
pool of samples with 250 ng of biotinylated probe for 72 hr at 55°C in 
a solution containing 20× saline-sodium citrate (SSC), 50× Denhardt’s 
Solution, 0.5 mol/L EDTA, 10% sodium dodecyl sulfate (SDS), and 
a blockers mix containing Chicken Hybloc (0.5 μg/μl), IDT’s xGen 
Universal Blocking Oligo -TSHT-  i5 (0.05 nmol/μl), and IDT’s xGen 
Universal Blocking Oligo -TSHT- i7 (0.05 nmol/μl). Following hybridiza-
tion, we prepared 50 μl Dynabeads MyOne Streptavidin C1 beads for 
use by washing three times with 1× binding buffer containing 2 mol/L 
NaCl, 10 mmol/L Tris–HCl (pH 7.5), 0.5% Polysorbate 20 (Tween-20), 
and 1 mmol/L EDTA, and final resuspension in 70 μl 2× binding buffer. 
We then bound the probes to the beads by mixing and incubating at 
room temperature for 30 min. After performing three 500 μl washes 
of the bead-probe mixture using a prewarmed buffer containing 10% 
SDS with 0.1× SSC, we concentrated our final pooled libraries in 30 μl 
10 mm Tris–HCl, 0.05% Tween-20 (pH 8–8.5). We next amplified these 
libraries using RT-PCR for 9–2 cycles, cleaned using 1.2× Ampure XP 
beads, and quantified using Qubit. We sent a single final pool with equi-
molar amounts of all three hybridized pools to University of California 
Bekeley’s QB3 Vincent J. Coates Genomics Sequencing Laboratory 
(hereafter called “QB3”) for sequencing with 100-bp paired-end se-
quence reads on a single lane of an Illumina HiSeq 4000.

2.3 | Sequence read quality control, assembly,  
and alignment

To clean and quality filter reads, assemble reads into contigs, align se-
quences across samples, and map reads to merged alignments for SNP 
discovery, we used a custom pipeline combining in-house R scripts as 
well as pre-existing genomics tools and wrapper scripts from QB3’s 
two de novo targeted capture bioinformatics pipelines (https://github.
com/CGRL-QB3-UCBerkeley; “denovoTargetCapturePopGen” and 
“denovoTargetCapturePhylogenomics”). We present our full pipeline 
online as both a tutorial and a list of shell commands (https://github.
com/elinck/hyRAD/) (Figure 1).

We first processed reads from our probe library with pyRAD ver-
sion 2.17 (Eaton, 2014) to create a pseudo-reference genome to use 
as the basis for aligning sequences from samples in our hybridization 
capture reactions. After quality-filtering reads and trimming adapter 
contamination, pyRAD used the vsearch algorithm (Rognes, Flouri, 
Nichols, Quince, & Mahé, 2016) to cluster reads into loci within sam-
ples, cluster loci into stacks between samples, and aligned putatively 
orthologous loci using MUSCLE version 3.8 (Edgar, 2004). We imple-
mented strict adapter filtering, retained reads longer than 70 bp after 
trimming, set a minimum sequence identity threshold of 97% for clus-
tering, and kept four sites per cluster with a Phred Quality Score <20. 
(This strict identity threshold was selected to generate an estimate of 
the total number of fragments in our probe library.) We removed re-
petitive genomic regions and paralogs with the NCBI BLAST+ version 
2.4 tool BLASTn (Boratyn et al., 2013) by aligning the output file of 
assembled clusters against itself and retained only cluster sequences 
that aligned uniquely to themselves using an e-value of 0.00001.

To remove reads that failed to pass Illumina quality control fil-
ters, trim reads for quality and adapter contamination, merge over-
lapping reads, remove PCR duplicates, and remove endogenous 
E. coli contamination, we used QB3’s denovoTargetCapturePop-
Gen “2-ScrubReads” wrapper around the Trimmomatic version 0.36 
(Bolger, Lohse, & Usadel, 2014), Bowtie 2 (Langmead, 2010), Cutadapt 
(Martin, 2011), Cope (Liu et al., 2012), FastQC (http://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/), and FLASh (Magoc & 
Salzberg, 2011) tools. We assembled cleaned and filtered reads for 
each sample using QB3’s denovoTargetCapturePhylogenomics wrap-
per script “2-GenerateAssembliesPhylo” around the SPAdes version 
3.8.1 genome assembler (Bankevich et al., 2012), which automatically 
selects a k-mer value based on read length and dataset type. To deter-
mine which contigs from our capture libraries were orthologous with 
probe regions, we used the denovoTargetCapturePopGen wrapper 
“5-FindingTargets” around the BLAST+ (Boratyn et al., 2013) and cd-
hit-est (Fu, Niu, Zhu, Wu, & Li, 2012) tools. Analyzing samples from 
modern and historical DNA separately, we used a clustering identity 
threshold of 95% and permitted 100 bp of sequencing flanking the 
core probe region. After determining matches, we collapsed overlap-
ping, orthologous contigs from all modern samples with the probe 
library to generate an extended pseudo-reference genome to which 
we aligned cleaned reads using QB3’s denovoTargetCapturePopGen 
wrapper “7-Alignment” around the Novoalign version 3.04.06 tool 

https://github.com/calacademy-research/hyRADccg
https://github.com/calacademy-research/hyRADccg
https://github.com/CGRL-QB3-UCBerkeley
https://github.com/CGRL-QB3-UCBerkeley
https://github.com/elinck/hyRAD/
https://github.com/elinck/hyRAD/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


     |  4759LINCK et al.

(http://www.novocraft.com/products/novoalign/). We ran Novoalign 
with an average library insert size of 235 and a maximum alignment 
score of 90.

2.4 | SNP discovery

Traditional SNP calling algorithms based on allele counting and qual-
ity scores are characterized by high degrees of uncertainty with low-
coverage sequence data (Korneliussen, Albrechtsen, & Nielsen, 2014). 
We incorporated uncertainty into genotype estimation by calling SNPs 
and estimating allele frequencies using an empirical Bayesian frame-
work implemented in the software ANGSD version 0.913 (http://
www.popgen.dk/angsd/index.php/ANGSD). ANGSD uses the likeli-
hood of all 10 possible genotypic configurations for each site passing 
quality filters in all individuals to estimate a site frequency spectrum, 
which is then used as a prior to estimate the posterior probabilities for 
all possible allele frequencies at each site in each sample. Using these 
estimates, we called SNPs with a 95% probability of being variable and 
a minimum minor allele frequency of 5%.

2.5 | Contamination control and data filtering

In order to identify if any contigs in our assemblies represented off-
target mtDNA captures, we performed a BLAST+ (Boratyn et al., 2013) 
nucleotide search with each of our assemblies as a query against a da-
tabase of the full mitochondrial genome of S. torotoro relative Halcyon 
santcus. We then removed all matching contigs from each sample’s 
assembly fasta with in-house R scripts (“excerptcontigIDs.R” and 
“cutcontigsbatch.R”) and used these mtDNA-free sequences for all sub-
sequent assembly performance calculations. To prepare our sequence 
alignment in.sam/.bam format for SNP calling, we followed Bi et al. 
(2013) in hierarchically filtering out individuals, contigs, and sites that 
appeared to be quality outliers and implemented additional steps for re-
gions derived from microbial contamination or mtDNA. We determined 
no individuals had abnormal coverage (defined as <1/3 or >3× the av-
erage coverage across all individuals) and we created merged, sorted 
BAM files and generated raw variant call format files (.vcf) with sam-
tools version 1.3 (Li et al., 2009) and bcftools version 1.3.1 (Narasimhan 
et al., 2016), processing modern and historical DNA samples separately.

F IGURE  1 Bioinformatics pipeline for 
S. torotoro hyRAD data. We demultiplexed 
100-bp paired-end reads from three 
genomic libraries and filtered for adapter 
contamination/quality scores (A), or 
adapter contamination/quality scores and 
E. coli contamination (A1). Reads were 
clustered (as consensus fasta files) (B), 
and repeat regions removed from probes 
(C). After determining which assembled 
clusters were orthologous with probe 
regions (D), we merged flanking regions 
from on-target loci in modern samples with 
the repeat-free probe sequence to create 
a pseudo-reference genome (E). To identify 
which contigs represented contamination 
in the original probe sample library from 
exogenous microbes or mitochondrial 
DNA, we BLAST searched against both the 
NCBI nt database and a full mitochondrial 
genome from S. torotoro relative Halcyon 
sanctus (F). We aligned quality filtered 
reads to this pseudo reference (G), called 
SNPs to produce a raw.vcf file for historic 
and modern DNA libraries separately 
(H). After filtering SNPs for origin in 
contaminant contigs and then restricting 
our matrix to sites present in both sample 
types (I), we filtered SNPs by read depth, 
quality scores, probability of being variable 
sites, and minor allele frequencies (J) prior 
to downstream analyses
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Because our SNP matrix was derived independently from our as-
semblies, we performed a second step of contamination filtering by 
removing SNPs originating from read alignments to regions of exog-
enous microbial DNA and/or mtDNA present in the original probe 
sample RAD library. We used our full pseudo-reference genome as 
the query in a search of the entire BLAST+ (Boratyn et al., 2013) nu-
cleotide database and our H. sanctus mtDNA BLAST+ database. We 
then used Henderson and Hanna’s (2016) “GItaxidIsVert.py” script to 
identify sequences that were potentially microbial in origin and per-
formed a second BLAST+ search with this subset to further select only 
the subset of contigs that had their best or only alignment with non-
vertebrate reference genomes. To exclude such sequences as well as 
those aligning with mtDNA sequence, we used the vcftools version 
0.1.11 “–not-chr” flag and removed indels in the same step with the 
“–remove-indels” flag.

We estimated independent empirical gene coverage and site 
depth distributions using QB3’s denovoTargetCapturePopGen 
“9-preFiltering” script and used these distributions as input to the 
QB3 “10-SNPcleaner” script. Run separately for modern and historical 
samples, this script removed all sites with coverage below 6×, sites 
missing in more than half of our samples, and sites with variant iden-
tity biases associated with quality score, mapping quality, or distance 
of alleles from the ends of reads. Because hydrolytic deamination of 
cytosine (C) to uracil (U) residues is the most common form post-
mortem nucleotide damage present in historic museum specimens, 
which may result in misincorporation of thymines (Ts) instead of uracil 
during PCR amplification and bias population genetic inference, this 
script also eliminated all C to T and G to A SNPs (Axelsson, Willerslev, 
Gilbert, & Nielsen, 2008; Briggs et al., 2007; Hofreiter, Jaenicke, Serre, 
von Haeseler, & Pääbo, 2001). Finally, we used the BEDtools version 
2.26.0 “intersect” function (Quinlan & Hall, 2010) to retain only the 
sites that passed all filters for both historic and modern specimens.

2.6 | Statistical analyses

To assess the differences in sequencing and assembly performance 
between modern and historical samples, we implemented Wright’s 
two-sample t tests in the R (R Core Team 2016). We evaluated dif-
ferences between groups in the mean percentage of duplicate reads, 
the mean number of on-target contigs, the mean length of on-target 
contigs, and the percentage of sequenced reads successfully map-
ping to our pseudo-reference genome. Because some commonly used 
polymerases bias against amplification of targeted DNA in favor of 
the GC-rich microbial contamination common to extracts from mu-
seum specimens (Dabney & Meyer, 2012), we assessed differences 
in GC content present in assembled on-target contigs. In order to 
determine whether sample age, initial sample DNA concentration, or 
sequencing effort were significant predictors of %GC content among 
historical samples and mean number or length of on-target contigs, 
we used simple linear regression. We used stepwise model selec-
tion with corrected Akaike information criterion scores to determine 
best-fit models and did not include interaction terms to avoid over-
parameterization given our small sample size.

2.7 | Population genetic clustering and discriminant 
analysis of principal components

Although accurate estimation of population genetic structure in 
S. torotoro was not the primary goal of our study, we were nonethe-
less interested in assessing hyRAD’s ability to produce biologically 
meaningful results by testing whether our data reflected the sig-
nature of phylogeographic processes such as isolation by distance 
(IBD) and vicariance, rather than the signature of DNA degradation, 
contamination, or other artifacts of library preparation and sequenc-
ing. We implemented k-means clustering and discriminant analysis of 
principal components (DAPC) in the R package adegenet (Jombart, 
2008), using 100% complete data matrix (1,690 SNPs) to avoid bi-
asing inferences with nonrandom patterns of missing data. We re-
tained all principal component (PC) axes for k-means clustering and 
inspected both population assignments and change in Bayesian in-
formation criterion (BIC) scores across multiple values of K to select 
an optimal partitioning scheme. To maximize among-population vari-
ation and calculate ancestral population membership probabilities 
for each sample, we performed DAPC on the first six PCs using two 
discriminant axes. We then chose to retain these six PCs to optimize 
the a-score value for our data, which is the difference between the 
proportion of successful reassignment of the analysis and values ob-
tained using random groups. However, because the change in BIC 
scores failed to clearly indicate any “true” value of K, we repeated our 
analysis with clustering assignments for K values of 1–8. To explore 
correlations between our three retained PCs and variables expected 
to differ between modern and historic samples (specificity, sensitiv-
ity, fold enrichment, age, initial concentration), we again performed 
simple linear regressions. Finally, to test for patterns of IBD across 
our samples, we performed a Mantel test among all individuals based 
on 999 simulated replicates using the R package ade4 (Thioulouse & 
Dray, 2007).

3  | RESULTS

3.1 | Hybridization capture experiments and 
sequencing

We obtained a total of 397 million sequence reads for the probe 
and hybridization capture libraries, successfully demultiplexing 
20/21 samples, with one sample failing due to bar code error. The 
total reads per sample ranged from 1.6 million to 30.7 million, and 
the average number of reads per sample did not vary significantly 
between modern and historical samples (t = −0.946, df = 14.6, 
p = .359). Of the original 397 million reads, 19.8% passed initial 
Illumina quality filters, contamination checks, adapter trimming, 
and removal of PCR duplicates (Table 1). The resulting number of 
cleaned reads per sample ranged from approximately 16,000 to 
3.1 million, with an average count of 766,662, and significantly 
fewer reads for historic samples (t = −3.185, df = 13.088, p = .007). 
Most reads lost to quality control were PCR duplicates, with a range 
of 50.9%–91.1% duplicate reads per sample. 2,455 reads were 
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removed as E. coli contamination from 12 of 20 individuals (range 
1–2,318 reads per individual) (Table 2). The average depth of read 
coverage per sample, calculated as the read depth per base aver-
aged across the length of the pseudo-reference genome, ranged 
from 7.6 to 26.4, and was significantly lower in historic samples 
(t = −3.754, df = 12.632, p = .002).

3.2 | Assembly and alignment results

Assembly of our probe library in pyRAD resulted in a total of 554,048 
contigs and 61.9 million nucleotides (nt), which was reduced to 
160,014 unique contigs and 16.1 million nt after excluding repeti-
tive regions. We captured orthologous loci from all successfully se-
quenced samples, and after merging the probe library with flanking 

regions from assemblies of other modern tissue samples our ex-
tended pseudo-reference genome contained 29,297 loci. The num-
ber of contigs per sample that was orthologous to our probe library 
ranged from 55 to 23,155 and was significantly higher in modern 
samples (Table 1; Figure 2). Across all samples, we discarded 55%–
92% of the total number of assembled clusters as off-target loci, los-
ing significantly more from historic samples (t = 6.6035, df = 16.889, 
p < .001). We removed an additional eight contigs from the modern 
samples and 53 contigs from the historic samples due to their mi-
tochondrial origin (Table 2). Mean contig size ranged from 401 to 
611 nt and did not differ significantly between modern and historic 
samples. However, the historic samples had significantly fewer con-
tigs exceeding 1 knt in length (t = –3.181, df = 5.004, p = .025). The 
percentage of reads passing quality filters that successfully mapped 

Contamination 
filtering step Sample type Total count Count removed Percent removed

Raw reads Modern 13,942,179 4 <0.001

Historic 548,415 2,451 0.44

Assembled contigs Modern 296,828 8 <0.001

Historic 36,109 53 0.15

SNP matrix Modern 6,915,902 6,620 <0.001

Historic 749,091 3,945 0.53

TABLE  2 Results of microbial and 
mitochondrial contamination removal at 
three distinct steps. Raw reads were 
filtered for E. coli contamination; 
assemblied contigs were filtered for 
mitochondrial DNA; SNP matrices were 
filtered for both microbial DNA and 
mitochondrial DNA

F IGURE  2 Differences in sequencing and assembly performance between historical and modern DNA extractions. We observed significantly 
higher specificity (t = −17.711, df = 14.015, p < .001), sensitivity (t = –12.928, df = 14.014, p < .001), fold enrichment (t = −17.711, df = 14.015, 
p < .001), and average coverage (t = −6.248, df = 7.555, p < .001) in modern samples. We recovered a significantly higher total number of on-
target loci in modern samples (t = −12.239, df = 5.221, p < .001), but significantly higher mean percent GC content in historic samples (t = 6.997, 
df = 13.368, p < .001). We observed no significant differences between modern and historic samples for mean contig size or mean percentage of 
duplicate reads
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to the pseudo-reference genome (also known as specificity) ranged 
from 51.8% to 57.7% and was significantly higher on average for 
modern samples (Figure 2). Additionally, %GC content was sig-
nificantly higher in historic than modern samples (Figure 2). Among 
historic samples, the number of cleaned reads was a significant pre-
dictor of the number of captured loci and sample input DNA quantity 
was a significant predictor of %GC content in on-target assembled 
contigs (Figure 3).

3.3 | SNP discovery and filtering

We identified two contigs of mitochondrial origin and eight contigs of 
potential nonvertebrate origin in our pseudo-reference genome and 
excluded all sites from these contigs in our alignment prior to SNP 
calling (Table 2). Using ANGSD, we identified 39,105 high-quality 
SNPs with at least a 95% probability of being variable from 3,206 loci, 
for a matrix completeness of 62.8% (or 37.2% missing data across 
all individuals). Per individual, the proportion of missing sites ranged 
from 5.6% to 90.6%, with a significantly higher mean percentage miss-
ing data for historic samples (54.5%) than modern samples (28.3%) 
(t = 6.727, df = 14.594, p > .001). The total number of SNPs in our 
data matrix decreased linearly after the first 10 individuals when we 
increased the minimum number of individuals successfully genotyped 
to retain each SNP (Figure 4).

3.4 | Population genetic clustering and discriminant 
analysis of principal components

Discriminant analysis of principal components analysis of our 100% 
complete data matrix revealed a linear pattern of increase in the total 
amount of genetic variation explained when retaining additional PCs. 
Replicate attempts to optimize a-score values alternatively suggested 
retaining either five or six PCs to maximize discrimination ability with-
out overfitting the model. Similarly, BIC scores from DAPC decreased 
in an approximately linear fashion as more clusters were added and 
did not indicate a clear shift to a slower rate of BIC change. Therefore, 

we repeated our analysis for values of K from 1 to 8, which revealed 
patterns of increasingly fine, geographically coherent structure from 
K = 1 to K = 5 (Figure 5). At K = 2, DAPC separated individuals from 
mainland Papua New Guinea (PNG) from individuals in western New 
Guinea and Normanby Island in PNG, which also reflected the break 
between modern and historic samples. At K = 3, DAPC identified an 
additional cluster from West Papua that included individuals from the 
southwest New Guinea Coast and the Aru Islands. At K = 4, DAPC 
isolated an individual from the northern slope of the Arfak Mountains 
in Western New Guinea, which, collected in 1877, was also the old-
est sample included in our study. A fifth cluster distinguished the 
single individual from Normanby Island, PNG. At K = 6 and greater, 
DAPC began subdividing individuals into additional clusters without 
a shared geographic basis. Our Mantel test did not find statistically 
significant correlation between geographic and genetic distance 
(p = .251). Linear regression analyses showed significant correlations 
between all variables and PC1 but no other PC and sample variable 
pairs (Table 3).

F IGURE  3 Among historic samples, 
the number of trimmed reads was a 
significant predictor of the number of 
captured loci (R2 = .872, p < .001) and the 
initial sample DNA input quantity was a 
significant predictor of percent GC content 
in on-target assembled contigs (R2 = .370, 
p = .016)
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F IGURE  4 This displays the relationship between the cutoff for 
the minimum number of genotyped individuals required for a given 
SNP to be included in the data matrix and the total number of SNPs 
included in the resulting matrix
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4  | DISCUSSION

4.1 | Hybridization-RAD is an effective tool for 
sampling thousands of orthologous SNPs from historic 
museum specimens

In their description of hyRAD, Suchan et al. (2016) suggest that it al-
lows “sequencing of orthologous loci even from highly degraded DNA 
samples” and can be used to retrieve sequence data using museum 
samples up to 100 years old.

Our hybridization capture experiments in an independent labora-
tory with an independent study organism (S. torotoro) largely support 
this conclusion. Assessed by the total number assembled contigs, or-
thologous loci, SNPs collected, and number of SNPs recovered across 
multiple individuals (Table 1; Figure 4), our modified version of Suchan 
et al.’s hyRAD protocol generated sufficient quantities of genome-
wide data for a wide range of phylogenetic and population genetic 
questions. In particular, we note that our application of standard li-
brary preparation methods for both modern and historic libraries 

(as opposed to protocols optimized for degraded DNA, as in Suchan 
et al., 2016) does not appear to have negatively affected data recov-
ery rates. We believe this reflects the relative robustness of the ap-
proach to different taxa, laboratory conditions, specimen preparation 
conditions, and bioinformatics pipelines. Even with stringent filtering 
for quality and postmortem damage, our 100% complete data ma-
trix of 1,690 SNPs is similar to the number of orthologous SNPs col-
lected in similar studies of museum genomics that used UCE capture 
(McCormack et al., 2016), exon sequence capture (Bi et al., 2013), or 
even ddRAD methods with fresh tissues (Shultz, Baker, Hill, Nolan, & 
Edwards, 2016), with the caveat that differences in starting material, 
evolutionary timescale, and experimental design preclude direct com-
parisons across studies. For phylogenetic or population genetic anal-
yses methods that correct for nonrandom patterns of missing data, 
our full matrix of 39,105 SNPs potentially offers significant power to 
resolve rapid, recent divergences, detect fine scale patterns of pop-
ulation structure, infer historical effective population sizes with high 
accuracy, and reveal histories of drift, selection, and migration (Toews 
et al., 2016).

F IGURE  5  Individual membership 
probabilities for K = 3 ancestral populations 
inferred from analyzing 1,690 SNPs (100% 
complete data matrix) using discriminant 
analysis of principal components and 
retaining six principal component axes with 
two discriminant axes. Individual sampling 
locations are color coded accordingly
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Suchan et al. (2016) included historical museum specimens up to 
58 years old in their validation experiment and up to 100 years old in 
their pilot study. We successfully captured 55 on-target loci, including 
four contigs exceeding 1 kb in length, from a specimen collected in 
1877, and as many as 508 loci from specimens collected from 1896 to 
1934 (Table 1). Moreover, and contrary to similar analyses by Suchan 
et al. (2016) and McCormack et al. (2016), we found no significant 
linear relationship between age and assembly or sequencing success 
metrics across historical samples. While this is possibly an artifact of 
small sample size relative to both previous studies, it may also suggest 
a relatively shallow trend of degradation during a period when many 
bird specimens in natural history museums were originally collected. 
This is an encouraging result for researchers looking to make use of 
these specimens as a genomic resource.

4.2 | Variation in sequencing and assembly 
performance across sample types reduces efficiency

Our small sample size prevents us from making broad conclusions 
about factors affecting variation in enrichment, sequencing, and as-
sembly performance. However, preliminary statistical analyses re-
vealed variation between modern and ancient DNA libraries across 
numerous metrics. Modern DNA samples had significantly higher 
specificity (% mapped cleaned reads), sensitivity (% of probe sequence 
with at least 1× coverage), and fold enrichment (the fold increase in 
% mapped reads over baseline random expectations) (Figure 2). While 
initially intuitive, our findings contrast with the results of Bi et al. 
(2013) and Suchan et al. (2016), who found improved capture effi-
ciency with historic samples, potentially related to smaller fragment 
size. We encourage future studies to explore how variation in hy-
bridization capture protocols affects relative performance of different 
sample DNA sources.

Encouragingly, there were no significant differences between the 
two sample populations for the overall percentage of duplicate reads. 
However, we wish to highlight the high percentage of duplicate reads 
present in all samples (50.9%–91.1%). This may be due to combination 
of the relatively high number of amplification cycles used to amplify 
libraries with low input DNA prior to pooling. While high duplicate 
read percentages have also been reported in RADseq studies with 
fresh tissue (Andrews et al., 2016), this inefficiency is important to 
consider when working with valuable, low-quality historical samples, 
as increased sequencing effort may be required to generate sufficient 
read depth for variant detection and accurate assembly of contiguous 
sequences.

Lastly, following assembly, the total number of captured on-target 
loci was higher among modern samples, likely reflecting higher copy 
number and limited degradation of DNA from fresh tissues. In con-
trast, mean contig length did not vary significantly among samples, 
indicating similar assembly performance relative to the amount of 
high-quality data for each sample type. While we believe this result 
will prove robust to different assembly methods, we encourage future 
studies to explore their influence on resulting assemblies and down-
stream analyses.

4.3 | Input DNA quantity predicts GC content, 
suggesting PCR bias

Although inferences are similarly limited by sample size, our regres-
sion analyses largely failed to reveal significant correlations between 
input DNA/sequencing variables and assembly performance except in 
two comparisons (Figure 2). First, an increase in the number of filtered 
reads was positively correlated with the total number of assembled 
on-target contigs, which matches a standard expectation of increased 
recovery with greater sampling of a genomic library with an uneven 
distribution of fragments, suggested for our libraries by the high lev-
els of duplication (Table 1). Second, the initial quantity of input DNA 
in a sample was negatively correlated with %GC content in resulting 
assemblies, for example, the two samples in our study that with the 
lowest input DNA quantity also the highest percentage of GC content 
across all assembled contigs (Table 1). This finding may reflect biased 
PCR enrichment of GC-rich exogenous microbial contamination in 
samples with low initial input DNA quantity (Dabney & Meyer, 2012) 
and explain the significantly higher GC content of historic samples 
overall. While our SNP calling pipeline and data filtering removed sites 
potentially originating from nonvertebrate sequences (although see 
further discussion below), we nonetheless recommend researchers 
interested in applying hyRAD to historical specimens heed the recom-
mendations of recent empirical studies (Gamba et al., 2016) to select 
an extraction protocol suited to degraded DNA and maximize input 
tissue quantity whenever possible.

4.4 | Geographic and/or taxonomic autocorrelation 
with input DNA type is potentially problematic with 
hyRAD studies

We implemented rigorous and conservative laboratory and bioin-
formatic protocols to reduce the influence of exogenous DNA con-
tamination and postmortem DNA degradation, the results of which 
we summarize as a reference for future studies in Table 2. Despite 
these precautions, repeated DAPC with different parameters failed 
to change a basic pattern where all modern DNA samples (n = 6) clus-
tered until the chosen K value of ancestral populations was seven or 
more (Figure 5). Unfortunately, as the close geographic proximity of 
modern DNA samples would also lead to this pattern, we could not 
easily determine from our sampling scheme if this pattern reflected 
biological reality or whether factors correlated with sample type, such 
as undetected microbial contamination, DNA degradation, and/or li-
brary amplification artifacts, were affecting population genetic infer-
ence. We first attempted to disentangle its potential drivers during 
PCA and DAPC analyses by examining histograms of %GC content 
per read for anomalous distributions, but failed to detect a significant 
second peak indicative of contamination with exogenous GC-rich mi-
crobes. We next performed linear regressions with specificity, sen-
sitivity, fold enrichment, specimen age, and input DNA quantity as 
predictors for each of our first three retained PCs. From these regres-
sion analyses, we found significant correlations of all variables with 
PC1, but no other PCs (Table 3). While these results are consistent 
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with the possibility that biased sequencing performance affected 
population genetic inference, the exact mechanism responsible re-
mains unclear. To avoid artifacts related to the separate treatment 
of different sample types, we suggest randomizing individuals from 
both modern and historic DNA sources throughout library prepara-
tion, hybridization capture, and sequencing. Additionally, we suggest 
researchers intending to use hyRAD in studies with both modern and 
historic tissue attempt to avoid geographic and taxonomic autocor-
relation wherever possible and include a control in their sampling 
scheme to indicate potential DNA input quality problems.

4.5 | The phylogeography of S. torotoro reflects 
biogeographic barriers in New Guinea

Our DAPC results are consistent with previous studies of lowland 
avian phylogeography in New Guinea, and we interpret them as in-
dependent confirmation the ability of hyRAD to reveal biologically 
meaningful patterns. K-means clusters recovered for three ancestral 
populations reflect broad trends in codistributed taxa and expected 
patterns of genetic variation given geographic barriers and the geo-
logic history of New Guinea (Figure 5) (Deiner et al., 2011; Dumbacher 
& Fleischer, 2001). Although IBD across all samples was not signifi-
cant (see Section “3” for details), the initial division of samples into 
mainland eastern and western clusters is consistent with both the 
primary latitudinal axis of the island and the barriers to gene flow in 
lowland forest taxa presented by the Bewani Mountains and Trans-
Fly savannah region (Deiner et al., 2011; Mack & Dumbacher, 2007). 
Inclusion of Normanby Island subspecies S. t. ochracea in the west-
ern New Guinea cluster is consistent with previous studies that have 
reported genetic similarity between other taxa in far eastern and far 
western New Guinea, such as birds of the genus Pitohui (Dumbacher 
& Fleischer, 2001). Samples from southwest New Guinea clustered 
with those from the Aru Islands, suggesting shared ancestry among 
these currently allopatric populations. This is potentially explained by 
both the linkage of these landmasses during the Pleistocene via the 
Sahul Shelf (Voris, 2000) and the subsequent emergence of previously 
identified barriers to avian gene flow to the north, east, and west in 
the form of the Central Ranges, the Trans-Fly Savannah, and Aetna 
Bay, respectively (Dumbacher & Fleischer, 2001; Deiner et al., 2011;.) 
Our analysis reveals broad similarities between the phylogeography 
of S. torotoro and the codistributed lowland bird species Colluricincla 
megarhyncha (Deiner et al., 2011), albeit with lower resolution due 
to the inherent limitations of our sampling. We believe that future 
studies of resident lowland forest species with similar ranges that use 
hyRAD or other means of capturing nuclear DNA markers will con-
tinue to aid in building a cohesive picture of the comparative phyloge-
ography of this biodiverse region.
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