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Abstract
Sex identification provides important information for ecological and evolutionary 
studies, as well as benefiting snake conservation management. Traditional methods 
such as cloacal probing or cloacal popping are counterproductive for sex identification 
concerning very small species, resulting in difficulties in the management of their 
breeding programs. In this study, the nucleotide sequences of gametologous genes 
(CTNNB1 and WAC genes) were used for the development of molecular sexing mark-
ers in caenophidian snakes. Two candidate markers were developed with the two 
primer sets, and successfully amplified by a single band on the agarose gel in male (ZZ) 
and two bands, differing in fragment sizes, in female (ZW) of 16 caenophidian snakes 
for CTNNB1 and 12 caenophidian snakes for WAC. Another candidate marker was 
developed with the primer set to amplify the specific sequence for CTNNB1W ho-
molog, and the PCR products were successfully obtained in a female-specific 250-bp 
DNA bands. The three candidate PCR sexing markers provide a simple sex identifica-
tion method based on the amplification of gametologous genes, and they can be used 
to facilitate effective caenophidian snake conservation and management programs.
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1  | INTRODUCTION

Sex identification is important for mating systems and sexual behav-
ior in ecological and conservation research in vertebrates. Intriguingly, 
vertebrates display considerable diversity in their sex determination 
systems, especially in squamate reptiles which have both temperature-
dependent sex determination (TSD) and genotypic sex determination 
(GSD) with ZZ/ZW-type, XX/XY-type, or multiple (X1X2Y and Z1Z2W) 
sex chromosomes (Ezaz, Srikulnath, & Graves, 2017). Moreover, sex 
identification cannot be reliably determined in many squamate rep-
tiles, because males and females have similar morphology, and mor-
phological sexual dimorphism appears in the short period of time 
before mating (Frýdlová et al., 2011; Garland, 1985; Wangkulangkul, 
Thirakhupt, & Voris, 2005). Snakes (Serpentes) are a species-rich 
lineage of extant reptiles that exhibit phenotypically diverse radia-
tion (Castoe, Jiang, Gu, Wang, & Pollock, 2008; Castoe et al., 2009; 
Secor & Diamond, 1998), with distribution broadly found in arboreal, 
terrestrial, and aquatic habitats. The snakes are considered as excel-
lent model organisms for biomedical research, and snake venom is 
extracted for developing antivenoms to treat snakebites or for che-
motherapeutical development (Blackburn, 2006; Kerkkamp et al., 
2016; Ratanabanangkoon et al., 2016). Two distinct groups of snakes 
are classified as follows: (i) Scolecophidia including “blind” snakes, 
and (ii) Alethinophidia comprising Henophidia (pythons, boas, and 
other “primitive” snakes) and Caenophidia (advanced snakes) (Pyron, 
Burbrink, & Wiens, 2013; Wiens et al., 2012). Snake ecology, popu-
lation, and diversity have been widely studied (Laopichienpong et al., 
2016, 2017; Liu et al., 2015; Supikamolseni et al., 2015). Accurate 
sex identification is important for snake management and breeding. 
Improvements in conservation programs are necessary to identify 
the sex of juveniles before the development of primary and second-
ary sexual characteristics to reduce the risk of extinction, or when 
samples are obtained without handling individuals (e.g., noninvasive 
sampling). This is a very important feature when working with endan-
gered species (Waits & Paetkau, 2005). Sex identification of snakes 
is commonly conducted by observation of sexually dimorphic char-
acters such as size between sexes, with males usually having larger 
body, length of tail, and body color as basal practical procedure (Laszlo, 
1975). However, males and females have similar morphologies in sev-
eral snake species such as Acrochordus spp., thereby making it difficult 
to identify sexes in snakes (Wangkulangkul et al., 2005). This has led to 
the development of alternative sexing methods based on observation 
of the sex organ (hemipenes). Several methods have been developed 
to observe the sex organs, such as cloacal probing or cloacal popping 
(Laszlo, 1975). However, these methods induce stress with potential 
injury and require specific skills. There is a crucial need for the devel-
opment of a rapid, safe, and accurate method for sex identification in 
snakes.

Molecular and chromosomal processes underlying the sex deter-
mination of vertebrates have been extensively investigated, espe-
cially in mammals and birds (Ezaz et al., 2017). The homologous gene 
located in the nonrecombining region of differentiated sex chromo-
somes is known as a “gametologous gene.” In mammals, these are the 

ZFX and ZFY genes and in birds they are the CHDZ and CHDW, and 
ATP5A1Z and ATP5A1W genes which can be applied to determine 
the sex of individuals (Carmichael, Fridolfsson, Halverson, & Ellegren, 
2000; Ellegren & Fridolfsson, 1997; García-Moreno & Mindell, 2000; 
Lawson & Hewitt, 2002). Almost all caenophidian snakes exhibit GSD 
with ZZ/ZW-type sex chromosomes. Z sex chromosomes which have 
homology with chicken chromosomes 2 and 27 is the fourth or fifth 
largest metacentric chromosome in the karyotypes of most snake 
species (Matsubara et al., 2006, 2012; Rovatsos, Vukić, Lymberakis, 
& Kratochvíl, 2015; Vicoso, Emerson, Zektser, Mahajan, & Bachtrog, 
2013). Recently, sequence analysis of two gametologous genes as the 
catenin (cadherin-associated protein) beta 1 (CTNNB1) and the WW 
domain containing adaptor with coiled-coil (WAC) has provided infor-
mation on the evolutionary process of sex chromosome differentiation 
in snakes (Laopichienpong et al., 2017; Matsubara, Nishida, Matsuda, 
& Kumazawa, 2016; Matsubara et al., 2006). Size and sequence dif-
ferences between the Z and W homologs of these genes were found 
in many caenophidian snakes, leading us to develop molecular sex-
ing markers to identify male and female individuals. In this study, we 
developed novel molecular sexing markers using three primer pairs to 
amplify fragments from the Z and W homologs of the genes with a 
clear size difference of PCR products. This assay provides a rapid and 
reliable method to identify genetic sex across different caenophidian 
snake species.

2  | MATERIALS AND METHODS

2.1 | Specimen and DNA extraction

Twenty-two snake species containing both male and female indi-
viduals were examined, and detailed information was presented in 
Table 1. The sex of each species was identified morphologically and 
confirmed by mating observations and sexing probes that searched 
for the male hemipenes. Blood samples were collected from the ven-
tral tail vein using a 25-gauge needle attached to a 1-ml disposable 
syringe containing 10 mm ethylenediaminetetraacetic acid (EDTA). 
Whole genomic DNA was extracted following the standard salting-
out protocol as described previously (Supikamolseni et al., 2015) and 
used as templates for polymerase chain reaction (PCR). DNA qual-
ity and concentration were determined using 1% agarose gel elec-
trophoresis and spectrophotometric analysis. Animal care and all 
experimental procedures were approved by the Animal Experiment 
Committee, Kasetsart University, Thailand (approval no. ACKU00359) 
and conducted according to the Regulations on Animal Experiments 
at Kasetsart University.

2.2 | Molecular sexing marker development

For WAC genes, partial DNA fragments of exons 9–10 were amplified 
using target-specific primers Eq-WAC-int9-F: 5′-CTCAGCCATCTAAT 
CAGTCCCCAA-3′ and Eq-WAC-int9-R: 5′-GAACGCTGAAGACTTCGA 
GGAG-3′ (Matsubara et al., 2016). For the CTNNB1 gene, partial DNA 
fragments were amplified using PCR primers (Eq-CTNNB1-11-F1: 
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5′-AGAGACGTCCACAATCGGATTG-3′ and Eq-CTNNB1-13-R: 5′-CA 
GACGTTTCTTATAATCTTGTGG-3′) (Laopichienpong et al., 2017; 
Matsubara et al., 2016). The female-specific PCR products with differ-
ent size from the DNA fragments commonly found for both males and 
females (WACZ and CTNNB1Z) were expected to derive from the genes 
WACW and CTNNB1W (File S1). In addition, a new female-specific 
primer, CTNNB1W-F: 5′-GACAAAGAAGCAGCTGAGTCAG-3′, was 
designed, based on the nucleotide difference between the CTNNB1Z 
and CTNNB1W sequences at exon 11 identified in our previous study 
(Laopichienpong et al., 2017), to amplify a female-specific PCR prod-
uct using CTNNB1W-F and Eq-CTNNB1-13-R (File S1). The BDNF 
(brain derived neurotrophic factor) gene was used as a positive PCR 
control marker using primers BDNF-F (5′-GACCATCCTTTTCCTGA
CTATGGTTATTTCATACTT-3′) and BDNF-R (5′-CTATCTTCCCCT
TTTAATGGTCAGTGTACAAAC-3′) (Leaché & McGuire, 2006). PCR 
amplification was performed using 20 μl of 1× ExTaq buffer contain-
ing 1.5 mm MgCl2, 0.2 mm dNTPs, 5.0 μm the primers, and 0.25 U 
of TaKaRa Ex Taq (TaKaRa Bio, Otsu, Japan), and 25 ng of genomic 
DNA. PCR conditions was as follows: an initial denaturation at 94°C 
for 3 min, followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 
72°C for 1 min, and a final extension at 72°C for 7 min. The nucleo-
tide sequences of the DNA fragments derived from the PCR reaction 
of the primer sets Eq-CTNNB1-11-F1 and Eq-CTNNB1-13-R or Eq-
WAC-int9-F and Eq-WAC-int9-R were only determined directly using 
the DNA sequencing services of First Base Laboratories Sdn Bhd (Seri 
Kembangan, Selangor, Malaysia). Nucleotide sequences of the Z and 
W homologs from each species were searched for homologies with 
the nucleotide sequences in the National Center for Biotechnology 
Information (NCBI) database to identify DNA fragments of the tar-
get gene, using the BLASTx and BLASTn programs. All the sequences 
were then deposited in the DNA Data Bank of Japan (DDBJ) (Table 1).

3  | RESULTS

By agarose gel electrophoresis with the primer Eq-CTNNB1-11-F1 
and Eq-CTNNB1-13-R, one same-sized DNA fragment was observed 
in both males and females, and one additional DNA fragment was 
detected from females in each snake species: Daboia siamensis, 
Enhydris enhydris, Naja kaouthia, N. siamensis, Ophiophagus han-
nah, Bungarus candidus, B. flaviceps, Leioheterodon madagascariensis, 
Oligodon fasciolatus, Ahaetulla prasina, Boiga dendrophila, Coelognathus 
radiatus, Ptyas mucosa, and Pantherophis guttatus. This indicates that 
the same-sized DNA bands and the female-specific DNA bands were 
derived from the Z and W homologs, respectively. No female-specific 
DNA fragments were observed in Cylindrophis ruffus, Epicrates maurus, 
Xenopeltis unicolor, Python bivittatus, P. regius, Acrochordus javanicus, 
Gonyosoma oxycephalum, and C. flavolineatus (Table 1; Figures 1 and 
2; Files S2–S4). However, there was a wide variation in the DNA frag-
ment sizes between species, ranging from approximately 750 bp in 
C. ruffus, E. maurus, X. unicolor, P. bivittatus, and P. regius to 3,000 bp 
in E. enhydris for CTNNB1Z (Table 1). Individual size variation within 
the same species was also found in the Z-derived fragments in two 

species: G. oxycephalum and C. flavolineatus (Table 1). In addition to 
the results from PCR with Eq-CTNNB1-11-F1 and Eq-CTNNB1-
13-R primers, the primer pairs Eq-WAC-int9-F and Eq-WAC-int9-R 
yielded one similar-sized DNA fragment for both males and females, 
and one additional DNA fragment for females in each snake species: 
D. siamensis, E. enhydris, L. madagascariensis, O. fasciolatus, A. prasina, 
B. dendrophila, G. oxycephalum, C. flavolineatus, C. radiatus, P. mucosa, 
and P. guttatus, but no female-specific DNA fragments were observed 
in C. ruffus, E. maurus, X. unicolor, P. bivittatus, P. regius, A. javanicus, 
N. kaouthia, N. siamensis, O. hannah, B. candidus, and B. flaviceps. 
A wide size variation between species was found for both the Z- 
and W-derived fragments. The Z-derived fragments ranged from 
approximately 600 bp in E. maurus to 3,500 bp in A. javanicus, and 
the W-derived fragments range from 800 bp in L. madagascariensis, 
A. prasina, B. dendrophila, C. flavolineatus, C. radiatus, and P. guttatus 
to 2,200 bp in D. siamensis (Table 1). Individual size variation within 
the same species was also found in Z-derived fragments in one spe-
cies: A. javanicus.

Additionally, in PCR with the CTNNB1W-specific primer set, ampli-
fication of DNA fragments was found only in females as a single 250-bp 
DNA band (Figures 1 and 2). To distinguish the absences of PCR prod-
ucts in males from failures of PCR reactions, the BDNF primers were 
used separately as an internal control under the same PCR condition. 
The BDNF primers produced larger fragments than the CTNNB1W-
specific products. Samples were identified as female if two products 
of 250-bp (CTNNB1W) and 750-bp sized bands (BDNF) were observed 
and male if only the control band was amplified (Figure 2; File S5). If 
the control locus failed to amplify, then sex was not assigned.

4  | DISCUSSION

Sex identification is very important, not only for the basic understand-
ing of the ecology and behavior of endangered or protected animals 
but also for establishing management and conservation plans (Dubey 
et al., 2011; Webb, Brook, & Shine, 2002). To contribute to breeding 
programs, the sexes of the snakes must be precisely identified while 
avoiding snake injury and stress. Traditional methods of cloacal prob-
ing or cloacal popping are counterproductive in very small species, 
whereas PCR has the advantage of identifying sexually heteromorphic 
PCR products as genomic DNA from small quantities of tissue such as 
blood in this study, or applied for skin remnants, slough, or eggshell 
membranes left behind after hatching as shown in birds (Martín-Gálvez 
et al., 2011). Based on the hypothesis of sex chromosome differentia-
tion, the cessation of recombination between sex chromosomes leads 
to the accumulation of gene mutations, resulting in the occurrence 
of sexually antagonistic alleles or the functional inactivation of genes, 
followed by the partial deletion of the sex chromosomes (Ezaz et al., 
2017). In snake lineages, Boidae and Pythonidae have morphologically 
homomorphic Z and W chromosomes (Matsubara et al., 2006; Olmo & 
Signorino, 2005). By contrast, the W chromosomes are highly degen-
erated in caenophidian snakes that predominantly showed hetero-
morphic ZW sex chromosomes (Beçak & Beçak, 1969; Beçak, Beçak, 
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TABLE  1 Molecular sexing markers of 22 snake species with both males and females

Species Families Abbreviation

CTNNB1

Accession number

WAC

Accession number

CTNNB1W specific

No. of used 
snakes

DNA band 
patterns Ta

Size (bp)
DNA band 
patterns Ta

Size (bp)
DNA band 
patterns Ta

Size (bp)

Male Female Male Female Male Female

Cylindrophis ruffus Cylindrophiidae CRU ++ 55 750 750 LC076763, LC076764 ++ 63 1,200 1,200 LC213910, LC213921 − 65 1 male, 
1 female

Epicrates maurus Boidae EMA ++ 55 750 750 LC213019, LC213020 ++ 63 600 600 LC213911, LC213912 − 65 1 male, 
1 female

Xenopeltis unicolor Xenopeltidae XUN ++ 55 750 750 LC076761, LC076762 ++ 63 2000 2000 LC213922, LC213923 − 65 2 males, 
2 females

Python bivittatus Pythonidae PBI ++ 55 750 750 LC076765, LC076766 ++ 63 2000 2000 LC213924, LC213925 − 65 1 male, 
1 female

Python regius Pythonidae PRE ++ 55 750 750 LC213021, LC213022 ++ 63 2000 2000 LC213926, LC213927 − 65 4 males, 
2 females

Acrochordus javanicus Acrochordidae AJA ++ 55 1,000 1,000 LC213023, LC213024 +++ 63 2000 3,500, 1,000 LC213928, LC213929, 
LC213930

− 65 1 male, 
1 female

Daboia siamensis Viperidae DSI +++ 55 1,100 1,100, 700 LC076767, LC076768, LC076769 +++ 63 1,200 2,200, 1,200 LC213931, LC213933, 
LC213932

+ 63 250 1 male, 
1 female

Enhydris enhydris Homalopsidae EEN +++ 55 3,000 3,000, 700 LC213904, LC213905, LC213918 +++ 63 1,000 1,200, 1,000 LC213934, LC213913, 
LC213935

+ 65 250 2 males, 
2 females

Naja kaouthia Elapidae NKA +++ 55 1,100 1,100, 700 LC076789, LC076790, LC076791 ++ 63 1,000 1,000 LC213936, LC213937 + 63 250 1 male, 
1 female

Naja siamensis Elapidae NSI +++ 55 1,100 1,100, 700 LC076792, LC076793, LC076794 ++ 63 1,000 1,000 LC213938, LC213939 + 63 250 2 males, 
1 female

Ophiophagus hannah Elapidae OHA +++ 55 1,200 1,200, 700 LC076795, LC076796, LC076797 ++ 63 1,000 1,000 LC213940, LC213941 + 63 250 2 males, 
1 female

Bungarus candidus Elapidae BCA +++ 55 1,100 1,100, 700 LC076798, LC086064, LC086065 ++ 63 1,000 1,000 LC213942, LC213943 + 63 250 1 male, 
1 female

Bungarus flaviceps Elapidae BFL +++ 55 1,100 1,100, 700 LC213025, LC213026, LC213027 ++ 63 1,000 1,000 LC213944, LC213945 + 63 250 1 male, 
1 female

Leioheterodon madagascariensis Lamprophiidae LMA +++ 55 1,100 1,100, 700 LC213028, LC213029, LC213030 +++ 63 1,000 1,000, 800 LC213946, LC213947, 
LC213948

+ 65 250 1 male, 
1 female

Oligodon fasciolatus Colubridae OFA +++ 55 1,500 1,500, 700 LC076772, LC076773, LC076774 +++ 63 1,000 1,200, 1,000 LC213949, LC213914, 
LC213950

+ 65 250 2 males, 
1 female

Ahaetulla prasina Colubridae APR +++ 55 1,500 1,500, 700 LC076775, LC076776, LC076777 +++ 63 2,500 2,500, 800 LC213951, LC213952, 
LC213915

+ 63 250 2 males, 
2 females

Boiga dendrophila Colubridae BDE +++ 55 1,700 1,700, 700 LC076778, LC076779, LC076780 +++ 63 1,000 1,000, 800 LC213953, LC213954, 
LC213955

+ 65 250 2 males, 
2 females

Gonyosoma oxycephalum Colubridae GOX +++ 55 1,300 1,500, 700 LC076781, LC076782, LC076783 +++ 63 2,500 2,500, 1,300 LC213916, LC213917, 
LC213956

+ 63 250 1 male, 
1 female

Coelognathus flavolineatus Colubridae CFL +++ 55 1,500 2000, 700 LC076784, LC076785, LC076786 +++ 63 1,000 1,000, 800 LC213957, LC213958, 
LC213959

+ 63 250 1 male, 
1 female

Coelognathus radiatus Colubridae CRA +++ 55 2,200 2,200, 700 LC213906, LC213907, LC213919 +++ 63 1,000 1,000, 800 LC213960, LC213961, 
LC213962

+ 63 250 3 males, 
5 females

Ptyas mucosa Colubridae PMU +++ 55 1,500 1,500, 700 LC213908, LC213909, LC213920 +++ 63 1,000 1,500, 1,000 LC213963, LC213965, 
LC213964

+ 63 250 2 males, 
1 female

Pantherophis guttatus Colubridae PGU +++ 55 1,500 1,500, 700 LC213031, LC213032, LC213033 +++ 63 1,000 1,000, 800 LC213966, LC213967, 
LC213968

+ 63 250 6 males, 
3 females

“−” No DNA band in both male and female.
“+” One DNA band in female only.
“++” One DNA band in both male and female.
“+++” One DNA band in male and two DNA bands in female.
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TABLE  1 Molecular sexing markers of 22 snake species with both males and females

Species Families Abbreviation

CTNNB1

Accession number

WAC

Accession number

CTNNB1W specific

No. of used 
snakes

DNA band 
patterns Ta

Size (bp)
DNA band 
patterns Ta

Size (bp)
DNA band 
patterns Ta

Size (bp)

Male Female Male Female Male Female

Cylindrophis ruffus Cylindrophiidae CRU ++ 55 750 750 LC076763, LC076764 ++ 63 1,200 1,200 LC213910, LC213921 − 65 1 male, 
1 female

Epicrates maurus Boidae EMA ++ 55 750 750 LC213019, LC213020 ++ 63 600 600 LC213911, LC213912 − 65 1 male, 
1 female

Xenopeltis unicolor Xenopeltidae XUN ++ 55 750 750 LC076761, LC076762 ++ 63 2000 2000 LC213922, LC213923 − 65 2 males, 
2 females

Python bivittatus Pythonidae PBI ++ 55 750 750 LC076765, LC076766 ++ 63 2000 2000 LC213924, LC213925 − 65 1 male, 
1 female

Python regius Pythonidae PRE ++ 55 750 750 LC213021, LC213022 ++ 63 2000 2000 LC213926, LC213927 − 65 4 males, 
2 females

Acrochordus javanicus Acrochordidae AJA ++ 55 1,000 1,000 LC213023, LC213024 +++ 63 2000 3,500, 1,000 LC213928, LC213929, 
LC213930

− 65 1 male, 
1 female

Daboia siamensis Viperidae DSI +++ 55 1,100 1,100, 700 LC076767, LC076768, LC076769 +++ 63 1,200 2,200, 1,200 LC213931, LC213933, 
LC213932

+ 63 250 1 male, 
1 female

Enhydris enhydris Homalopsidae EEN +++ 55 3,000 3,000, 700 LC213904, LC213905, LC213918 +++ 63 1,000 1,200, 1,000 LC213934, LC213913, 
LC213935

+ 65 250 2 males, 
2 females

Naja kaouthia Elapidae NKA +++ 55 1,100 1,100, 700 LC076789, LC076790, LC076791 ++ 63 1,000 1,000 LC213936, LC213937 + 63 250 1 male, 
1 female

Naja siamensis Elapidae NSI +++ 55 1,100 1,100, 700 LC076792, LC076793, LC076794 ++ 63 1,000 1,000 LC213938, LC213939 + 63 250 2 males, 
1 female

Ophiophagus hannah Elapidae OHA +++ 55 1,200 1,200, 700 LC076795, LC076796, LC076797 ++ 63 1,000 1,000 LC213940, LC213941 + 63 250 2 males, 
1 female

Bungarus candidus Elapidae BCA +++ 55 1,100 1,100, 700 LC076798, LC086064, LC086065 ++ 63 1,000 1,000 LC213942, LC213943 + 63 250 1 male, 
1 female

Bungarus flaviceps Elapidae BFL +++ 55 1,100 1,100, 700 LC213025, LC213026, LC213027 ++ 63 1,000 1,000 LC213944, LC213945 + 63 250 1 male, 
1 female

Leioheterodon madagascariensis Lamprophiidae LMA +++ 55 1,100 1,100, 700 LC213028, LC213029, LC213030 +++ 63 1,000 1,000, 800 LC213946, LC213947, 
LC213948

+ 65 250 1 male, 
1 female

Oligodon fasciolatus Colubridae OFA +++ 55 1,500 1,500, 700 LC076772, LC076773, LC076774 +++ 63 1,000 1,200, 1,000 LC213949, LC213914, 
LC213950

+ 65 250 2 males, 
1 female

Ahaetulla prasina Colubridae APR +++ 55 1,500 1,500, 700 LC076775, LC076776, LC076777 +++ 63 2,500 2,500, 800 LC213951, LC213952, 
LC213915

+ 63 250 2 males, 
2 females

Boiga dendrophila Colubridae BDE +++ 55 1,700 1,700, 700 LC076778, LC076779, LC076780 +++ 63 1,000 1,000, 800 LC213953, LC213954, 
LC213955

+ 65 250 2 males, 
2 females

Gonyosoma oxycephalum Colubridae GOX +++ 55 1,300 1,500, 700 LC076781, LC076782, LC076783 +++ 63 2,500 2,500, 1,300 LC213916, LC213917, 
LC213956

+ 63 250 1 male, 
1 female

Coelognathus flavolineatus Colubridae CFL +++ 55 1,500 2000, 700 LC076784, LC076785, LC076786 +++ 63 1,000 1,000, 800 LC213957, LC213958, 
LC213959

+ 63 250 1 male, 
1 female

Coelognathus radiatus Colubridae CRA +++ 55 2,200 2,200, 700 LC213906, LC213907, LC213919 +++ 63 1,000 1,000, 800 LC213960, LC213961, 
LC213962

+ 63 250 3 males, 
5 females

Ptyas mucosa Colubridae PMU +++ 55 1,500 1,500, 700 LC213908, LC213909, LC213920 +++ 63 1,000 1,500, 1,000 LC213963, LC213965, 
LC213964

+ 63 250 2 males, 
1 female

Pantherophis guttatus Colubridae PGU +++ 55 1,500 1,500, 700 LC213031, LC213032, LC213033 +++ 63 1,000 1,000, 800 LC213966, LC213967, 
LC213968

+ 63 250 6 males, 
3 females

“−” No DNA band in both male and female.
“+” One DNA band in female only.
“++” One DNA band in both male and female.
“+++” One DNA band in male and two DNA bands in female.
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& Nazareth, 1964; Matsubara et al., 2006, 2016; O’Meally et al., 
2010; Oguiura, Collares, Furtado, Ferrarezzi, & Suzuki, 2009; Ray-
Chaudhuri, Singh, & Sharma, 1971; Singh, 1972; Vicoso et al., 2013). 
Considering the practically routine technique, cytogenetic approaches 
to examine the sex chromosomes require large sample volume with 
long cell culture and chromosome preparation time. Therefore, they 
are not practical in terms of wildlife ecological studies and conser-
vation programs. A molecular sexing method utilizing sex-specific 
sequences is, thus, more advantageous than cytogenetic analyses to 
identify sex chromosome systems. We developed novel PCR-based 
molecular sexing methods with three primer sets to identify individual 
caenophidian snake sex, based on the nucleotide sequence differ-
ences of two gametologous genes. In molecular sexing with two of the 
three sets, Eq-CTNNB1-11-F1 and Eq-CTNNB1-13-R, and Eq-WAC-
int9-F and Eq-WAC-int9-R, the males with the homogametic sex 
chromosome (ZZ) were characterized by a single DNA fragment band 
from the two Z homologs, and the females with the heterogametic sex 
chromosome (ZW) were identified by two bands differing in fragment 
sizes from the one Z and one W homologs. The two primer sets Eq-
CTNNB1-11-F1—Eq-CTNNB1-13-R and Eq-WAC-int9-F—Eq-WAC-
int9-R were available for molecular sexing in 16 and 12 caenophidian 
snakes, respectively. These two markers exhibited co-dominant DNA 
pattern type. This suggests that the Z and W forms of the CTNNB1 or 
WAC genes were differentiated by the cessation of recombination in 

these caenophidian lineages, which led to insertions and deletions of 
nucleotide sequences on the Z and W chromosomes.

No female-specific PCR products of W homolog were found in 
A. javanicus for the CTNNB1 gene with the primer set Eq-CTNNB1-
11-F1 and Eq-CTNNB1-13-R and N. kaouthia, N. siamensis, O. hannah, 
B. candidus, and B. flaviceps for the WAC gene with the primer set Eq-
WAC-int9-F and Eq-WAC-int9-R, even though these species belong 
to Caenophidia. This suggests that the absence of the size differences 
with female-specific PCR products was caused by the accumulation 
of mutations at existing primer sites, leading to failure of PCR reac-
tion at the W homologs. Moreover, large insertions in the amplified 
target fragments could result in failure of PCR amplification for the 
extended W sequences. Alternatively, CTNNB1 and WAC may have 
been lost independently from the W chromosomes in the species. 
This result agreed with the chromosome and genomic map of snakes 
which showed the absence of these two genes in some snake lineages 
(Matsubara et al., 2006; Vicoso et al., 2013). The third explanation is 
that there is none or little difference in sizes of PCR products between 
the Z and W homologs, as a consequence of a very small region of the 
nonrecombining portion of the W chromosome which did not have 
time to diverge significantly from the Z chromosome in these genes. 
Snake W sex chromosomes are known to degenerate at varying rates 
and undergo substantial reorganization over short periods of evolu-
tionary time (Oguiura et al., 2009). The observation of DNA bands of 

F IGURE  1 Agarose gel electrophoresis 
of PCR products in males and females of 
seven snake species using Eq-CTNNB1-
11-F1 and Eq-CTNNB1-13-R (a), Eq-
WAC-int9-F and Eq-WAC-int9-R (b), and 
CTNNB1W-F and Eq-CTNNB1-13-R (c). 
Molecular size of DNA is indicated in the 
left lane using VC 100-bp Plus DNA ladder 
(Vivantis Technologies Sdn Bhd, Selangor 
Darul Ehsan, Malaysia). EMA, Epicrates 
maurus; PRE, Python regius; DSI, Daboia 
siamensis; BFL, Bungarus flaviceps; LMA, 
Leioheterodon madagascariensis; OFA, 
Oligodon fasciolatus; PGU, Pantherophis 
guttatus. M, male F, female
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the two primer sets revealed high variability in length between spe-
cies or individuals, which probably determined individual sex difficulty 
(Table 1; Figure 1). Such individual variation in the Z form of the game-
tologous gene within the same species was also reported by nucleo-
tide analysis for the CHD1Z gene of birds (Casey, Jones, Sandercock, 
& Wisely, 2009; Friesen, Congdon, Walsh, & Birt, 1997; Trimbos et al., 
2013) and for the CTNNB1 gene of snakes (Laopichienpong et al., 
2017).

To avoid the misidentification of sexes through size variation, 
we designed the additional primer at the exon of the CTNNB1W 
gene which yielded a female-specific 250-bp PCR products in 16 

caenophidian snakes and indicated dominant DNA pattern type. 
Internal PCR control with the BDNF gene was also used to avoid ampli-
fication failure which might result in a misidentification of a female 
as a male. The present results of the three sexing markers could also 
be applied to identify the sex of individuals in new snake species as a 
simple procedure for males and females. We highlight that all the three 
sexing markers, with an additional BDNF control marker, could be 
simultaneously used to identify sex with higher diagnostic accuracy.

In the two henophidian snakes P. bivittatus and B. constrictor, 
CTNNB1 and WAC genes were located on both Z and W chromosomes, 
and no sex-specific sequence was detected for the two gametologous 

F IGURE  2 Phylogenetic relationships among sampled snake species illustrating the sex-specific amplification of CTNNB1 and WAC genes 
using the primers: Eq-CTNNB1-11-F1 and Eq-CTNNB1-13-R; Eq-WAC-int9-F and Eq-WAC-int9-R; and CTNNB1W-F and Eq-CTNNB1-13-R. 
Phylogeny was partially derived from Vidal, Rage, Couloux, and Hedges (2009). Agarose gel electrophoresis of PCR products in males and 
females of twenty-two snake species using three sexing markers: Eq-CTNNB1-11-F1 and Eq-CTNNB1-13-R (column A), Eq-WAC-int9-F and 
Eq-WAC-int9-R (column B), and CTNNB1W-F and Eq-CTNNB1-13-R (column C) are indicated at the right edge of the tree. M, male; F, female
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genes (Matsubara et al., 2006, 2016; Vicoso et al., 2013). In this study, 
five henophidian snakes (C. ruffus, E. maurus, X. unicolor, P. bivittatus, 
and P. regius) showed the absence of female-specific PCR products 
in molecular sexing with our three primer sets. This implies that the 
CTNNB1 and WAC genes on the Z and W chromosomes have not been 
differentiated in henophidian snakes (Laopichienpong et al., 2017; 
Matsubara et al., 2006, 2016; Vicoso et al., 2013). However, more 
intensive sampling over a wider range of individuals or species within 
the same family is required to confirm the absence of CTNNB1 and 
WAC genes on the W chromosome. Simple PCR assay could not iden-
tify the sex of species with homomorphic sex chromosomes or highly 
similar Z and W sex chromosomes. Advanced molecular techniques are 
required to investigate cryptic sex-specific sequences in these species.

Currently, only two PCR methods have been described to deter-
mine the sex in caenophidian snakes. Firstly, a simple PCR assay is used 
to amplify at the gametologous genes CTNNB1 and WAC on the Z and 
W chromosomes that showed size difference of DNA bands, or the 
simple presence/absence sex-linked marker or a specific allele based 
on nucleotide substitution. The alternative approach uses a single set of 
primers with a quantitative real-time PCR (qPCR) technique to amplify 
Z-specific genes without homologs in the W chromosome (Rovatsos & 
Kratochvíl, 2017; Rovatsos et al., 2015). Males (ZZ) have twice as many 
copies of genes linked to the Z-specific part of sex chromosomes than 
females (ZW), while genes in autosomal or pseudoautosomal regions 
should have equal copy numbers in both sexes. Although qPCR tech-
niques offer a high-throughput environment for routine genotyping, 
the cost of the qPCR reaction is high compared to the simple PCR assay 
and needs extra equipment. By contrast, simple PCR assay provides a 
rapid, reliable, sensitive, cost-effective, and highly accurate result for 
sex identification. However, both the two PCR methods cannot be used 
for species with poorly differentiated sex chromosomes.

This study reveals the potential and usefulness of gametologous 
sequences which develop new candidate sexing markers in caeno-
phidian snakes. Our work opens a new tool kit for further application 
with the genomic DNA of small and degraded tissues such as slough as 
noninvasive sampling. To facilitate application of this tool, we provide 
a “know-how” guide to apply Loop-mediated lsothermal Amplification 
(LAMP) or aptamer to conservation program where species identifi-
cation or sex determination is needed in real time and in situ. Future 
work in this direction will enormously facilitate the work of wildlife 
managers, researchers, and exotic snake breeders with important con-
servationist, economic, and commercial benefits.
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