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Abstract
The	amount	of	variation	in	species	composition	among	sampling	units	or	beta	diversity	
has	become	a	primary	tool	for	connecting	the	spatial	structure	of	species	assemblages	
to	ecological	processes.	Many	different	measures	of	beta	diversity	have	been	devel-
oped.	Among	them,	the	total	variance	in	the	community	composition	matrix	has	been	
proposed	as	a	single-	number	estimate	of	beta	diversity.	In	this	study,	I	first	show	that	
this	measure	summarizes	the	compositional	variation	among	sampling	units	after	non-
linear	transformation	of	species	abundances.	Therefore,	it	is	not	always	adequate	for	
estimating	beta	diversity.	Next,	I	propose	an	alternative	approach	for	calculating	beta	
diversity	in	which	variance	is	substituted	by	a	weighted	measure	of	concentration	(i.e.,	
an	inverse	measure	of	evenness).	The	relationship	between	this	new	measure	of	beta	
diversity	and	so-	called	multiple-	site	dissimilarity	measures	is	also	discussed.
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1  | INTRODUCTION

The	 concept	 of	 beta	 diversity	 dates	 back	 to	 the	work	 of	Whittaker	
(1960),	which	coined	 this	 term	 to	define	 the	amount	of	variation	 in	
species	 composition	 among	 sampling	 units	 (or	 communities,	 assem-
blages,	plots,	 relevés,	sites,	quadrats,	etc.).	Since	then,	 the	measure-
ment	of	beta	diversity	has	become	a	fundamental	topic	for	connecting	
the	spatial	structure	of	species	assemblages	to	ecological	processes,	
such	 as	 species	 coexistence	 or	 environmental	 control	 (Anderson,	
Ellingsen,	&	McArdle,	2006;	Tuomisto,	2010a,b).

Given	a	set	of	N	plots,	Whittaker	(1960)	proposed	to	summarize	
beta	 diversity	 as	 the	 ratio	 of	 two	 inventory	 diversities	measured	 at	
different	scales	(i.e.,	local	scale	diversity	or	alpha	diversity	and	regional	
diversity	or	gamma	diversity),	such	that	β = γ/α,	where	α	is	the	average	
diversity	of	the	N	plots	and	γ	is	the	total	diversity	of	the	pooled	set	of	
plots	(for	details,	see	Jost,	2007).

An	 alternative	 approach,	 first	 proposed	 by	 McArthur,	 Recher,	
and	Cody	 (1966)	 and	 recently	 revitalized	by	Lande	 (1996),	 consists	
in	 measuring	 beta	 as	 the	 excess	 of	 regional	 diversity	with	 respect	

to	local	diversity:	β = γ	−	α.	However,	in	both	cases,	beta	diversity	is	
a	 derived	quantity	 that	 depends	on	 alpha	 and	gamma	 (Chao,	Chiu,	
&	Hsieh,	2012;	Jost,	 2007).	Therefore,	 several	 authors	pointed	out	
that	 it	would	be	desirable	to	develop	a	method	for	calculating	beta	
diversity	without	reference	to	alpha	and	gamma	(e.g.,	Ellison,	2010;	
Legendre	&	De	Cáceres,	2013).

Among	the	measures	of	beta	diversity	which	do	not	directly	de-
pend	on	alpha	and	gamma,	those	based	on	average	dissimilarity	be-
tween	pairs	of	plots	are	probably	the	most	commonly	used	(e.g.,	Izsák	
&	Price,	2001;	Ricotta	&	Marignani,	2007).	However,	as	emphasized	
by	Diserud	and	Ødegaard	 (2007),	measures	of	average	dissimilarity	
across	all	plots	are	generally	unable	 to	 tell	us	 to	what	extent	 there	
is	 a	 change	 in	 shared	 species	 between	 pairs	 of	 plots.	To	 get	 infor-
mation	on	the	species	shared	across	more	than	two	plots,	so-	called	
multiple-	site	 dissimilarity	measures	 (i.e.,	 generalizations	 of	 pairwise	
dissimilarity	measures	to	more	than	two	plots)	are	required.	Examples	
are	 the	 multiple-	site	 measures	 of	 Diserud	 and	 Ødegaard	 (2007),	
Baselga,	 Jiménez-	Valverde,	 and	Niccolini	 (2007),	 Chao	 et	al.	 (2012)	
and	Ricotta	and	Pavoine	(2015).
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Legendre,	 Borcard,	 and	 Peres-	Neto	 (2005)	 and	 Legendre	 and	 De	
Cáceres	(2013)	proposed	to	use	the	total	variance	in	the	community	com-
position	matrix	of	P	species	×	N	plots	as	a	single-	number	estimate	of	beta	
diversity.	This	total	variance	can	be	calculated	either	directly	or	through	
a	dissimilarity	matrix	obtained	using	any	dissimilarity	 index	suitable	for	
comparing	 community	 composition	 data.	 However,	 this	 method	 usu-
ally	 calculates	variance-	based	 beta	 from	 transformed	 abundance	 data.	
Therefore,	it	is	not	always	adequate	for	estimating	beta	diversity.

In	this	study,	I	propose	a	new	approach	for	calculating	beta	diver-
sity,	inspired	by	the	work	of	Legendre	and	De	Cáceres	(2013)	in	which	
variance	is	substituted	by	a	weighted	measure	of	concentration	(i.e.,	
an	 inverse	measure	of	evenness).	The	study	 is	organized	as	 follows:	
First,	a	short	overview	on	the	variance-	based	approach	is	presented.	
Next,	a	new	index	of	beta	diversity	is	proposed,	which	is	obtained	by	
averaging	 the	 concentration	values	of	 single	 species	 in	 the	 commu-
nity	composition	matrix.	Finally,	to	show	the	behavior	of	the	proposed	
metric,	a	worked	example	is	used	with	data	from	a	belt	transect	across	
the	beech	timberline	in	the	central	Apennines	(Italy).

2  | BETA DIVERSITY AS THE VARIANCE OF 
COMMUNITY DATA

Recently,	Legendre	et	al.	(2005)	and	Legendre	and	De	Cáceres	(2013)	
proposed	 to	measure	beta	diversity	as	 the	 total	 variance	of	a	 com-
munity	 composition	 data	 table.	 Using	 a	 notation	 similar	 to	 that	 of	
Legendre	and	De	Cáceres	(2013),	let	Y = [yjn]	be	a	community	compo-
sition	matrix	containing	the	presence/absence	or	the	abundance	val-
ues	of	P	species	(row	vectors	yj = y1,	y2,	…	yP	of	Y)	in	N	plots	(column	
vectors	xn = x1,	x2	…	xN	of	Y).	The	 total	 variance	of	 the	data	 table,	
Var(Y),	 can	be	computed	directly	 from	 the	 squared	deviations	 from	
the	row	(species)	means.	Let	sjn	be	the	squared	difference	between	the	
value	of	species	j	in	plot	n,	and	the	mean	value	of	species	j	such	that	
sjn=

(

yjn− ȳj+
)2with	 ȳj+ =

∑N

n=1
yjn∕N.	 Summing	 all	 values	 sjn	 the	 total	

sum	of	squares	of	Y	is	obtained:

where	SS(yj)=
∑N

n=1

�

yjn− ȳj+
�2.	The	total	sum	of	squares	SS(Y)	can	be	

directly	used	to	summarize	the	amount	of	variation	 in	species	com-
position	(or	beta	diversity)	in	Y.	However,	transforming	SS(Y)	into	the	
classical	unbiased	estimator	of	variance	Var(Y)=SS(Y)∕

(

N−1
)

,	a	more	
general	measure	of	beta	diversity	is	obtained,	which	can	be	used	for	
comparing	data	matrices	with	different	numbers	of	plots	 (Legendre	
et	al.,	2005).

Due	to	the	additive	nature	of	SS(Y)	and	Var(Y),	both	quantities	can	
be	partitioned	into	per-	species	contributions	(a	measure	of	the	degree	
of	variation	of	 individual	species	across	the	study	area)	and	per-	plot	
contributions	 (a	 measure	 of	 the	 degree	 of	 compositional/ecological	
uniqueness	of	single	plots).

Given	a	square	N	×	N	dissimilarity	matrix	D=
[

dkn
]

	of	Euclidean	dis-
tances	between	plots	k	and	n,	SS(Y)	can	be	also	obtained	as:

where	dkn	 is	 the	 classical	 Euclidean	distance	dkn=
�

∑P

j=1

�

yjk−yjn
�2. 

Hence,	according	to	Eq.	(2),	a	different	pathway	for	calculating	SS(Y)	
consists	in	summing	the	squared	Euclidean	distances	in	one	half	of	the	
dissimilarity	matrix	D	and	dividing	the	result	by	the	number	of	objects	
N	(Legendre	&	Fortin,	2010;	Legendre	et	al.,	2005).

A	 subtle	 although	 relevant	 shortcoming	 of	 this	 approach	 recog-
nized	by	Legendre	and	De	Cáceres	(2013)	is	that	the	relative	disper-
sion	of	species	abundances	within	the	row	vectors	yj	that	maximizes	
variance	 does	 not	 coincide	with	 the	 dispersion	 of	 abundances	 that	
maximizes	beta	diversity.	An	 intuitive	requirement	 for	beta	diversity	
measures	 is	 that	beta	 is	maximized	 if	all	plots	 in	Y	do	not	have	any	
species	in	common.	That	is,	beta	is	maximized	if	all	species	in	Y	occur	
only	in	one	plot,	meaning	that	all	plots	are	maximally	dissimilar	from	
each	other	(Ricotta	&	Pavoine,	2015).	Given	a	hypothetical	community	
composition	matrix	Y	composed	of	four	species	(S1–S4)	in	four	plots	
(P1–P4),	for	species	presence	and	absence	data,	if	the	number	of	pres-
ences	for	each	species	is	allowed	to	vary	freely	and	excluding	empty	
species	and	plot	vectors,	beta	diversity	is	intuitively	maximized	at

P1 P2 P3 P4

S1 1 0 0 0

S2 0 1 0 0

S3 0 0 1 0

S4 0 0 0 1

whereas	SS(Y)	and	Var(Y)	are	both	maximized	at

P1 P2 P3 P4

S1 1 1 0 0

S2 0 1 1 0

S3 0 0 1 1

S4 1 0 0 1

Also,	for	presence	and	absence	data,	the	community	composition	
matrix

P1 P2 P3 P4

S1 1 1 1 0

S2 0 1 1 1

S3 1 0 1 1

S4 1 1 0 1

produces	 the	 same	values	 of	 SS(Y)	 and	Var(Y)	 than	 the	 first	matrix,	
whereas,	intuitively,	the	beta	diversity	of	both	matrices	is	substantially	
different.

Therefore,	 SS(Y)	 and	Var(Y)	 should	not	be	 calculated	directly	on	
raw	species	abundances.	This	is	because	calculating	these	quantities	
on	raw	species	abundances	implies	that	the	dissimilarity	between	pairs	
of	plots	 is	calculated	with	the	Euclidean	distance,	which	 is	generally	

(1)SS(Y)=

P
∑

j=1

SS(yj)=

P
∑

j=1

N
∑

n=1

sjn

(2)SS(Y)=
1

N

N
∑

n=1

N
∑

k>n

d2
kn
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considered	 inappropriate	 for	 compositional	 data.	 The	 raw	 species	
abundances	 should	 be	 first	 transformed	 in	 ecologically	 meaningful	
ways,	such	as	those	proposed	in	Legendre	and	Gallagher	(2001)	and	
Legendre	and	De	Cáceres	(2013,	Appendix	S1).	One	can	then	calculate	
SS(Y)	from	either	the	transformed	species	abundance	data	or	from	a	
Euclidean	distance	matrix	D	calculated	from	the	transformed	data.

A	consequence	of	the	conceptual	difference	between	variance	and	
beta	diversity	is	that,	after	data	transformation,	the	relative	dispersion	
of	species	abundances	within	row	vectors	is	no	longer	linearly	related	
to	the	original	dispersion	of	raw	species	abundances.	To	understand	
why	 transformed	data	do	not	measure	 the	 same	degree	of	beta	di-
versity	as	the	non-transformed	data,	take,	for	example,	the	following	
matrix	with	the	raw	abundances	of	four	species	in	four	plots:

P1 P2 P3 P4

S1 10 10 10 0

S2 0 10 10 0

S3 0 0 10 0

S4 0 0 0 10

After	Hellinger	transformation	(i.e.,	one	of	the	“appropriate”	data	
transformations	listed	in	Legendre	&	De	Cáceres,	2013,	Appendix	S1),	
which	 consists	 in	 transforming	 the	 raw	 abundances	 yjn	 into	 relative	
values	per	plot	by	dividing	each	value	by	 the	plot	 sum	y+n=

∑P

j=1
yjn 

and	 then	 taking	 the	 square	 root	 of	 the	 resulting	 values	 such	 that	
y�
jn
=
√

yjn∕y+n,	we	obtain	the	transformed	matrix:

P1 P2 P3 P4

S1 1 0.71 0.58 0

S2 0 0.71 0.58 0

S3 0 0 0.58 0

S4 0 0 0 1

in	which	the	transformed	species	abundances	within	rows	are	no	lon-
ger	linearly	related	to	the	original	ones.

This	nonlinear	relationship	between	the	raw	and	the	transformed	
species	abundances	may	be	a	problem	for	a	correct	partition	of	beta	
diversity	into	per-	species	and	per-	plot	contributions.	For	instance,	the	
preservation	of	the	linear	relationship	between	the	relative	dispersion	
of	 species	abundances	within	 row	vectors	after	data	 transformation	
is	 a	 crucial	 aspect	of	 the	 calculation	of	beta	diversity.	As	 shown	by	
Eq.	(1),	beta	is	obtained	as	the	sum	of	the	squared	deviations	from	the	
means	of	single	species	regardless	of	the	abundances	of	the	other	spe-
cies,	meaning	that	the	species	vectors	yj	of	Y	act	as	independent	units	
for	the	calculation	of	beta	diversity	(see	also	Ricotta	&	Pavoine,	2015).

A	different	solution	consists	in	calculating	SS(Y)	with	Eq.	(2)	using	
dissimilarity	indices	other	than	the	Euclidean	distance.	These	indices,	
which	were	developed	 to	 summarize	plot-	to-	plot	 dissimilarity	 from	
many	different	perspectives	and	motivations,	should	conform	to	a	set	
of	properties	 listed	 in	Legendre	and	De	Cáceres	 (2013)	 that	 render	
them	adequate	 for	summarizing	beta	diversity.	Like	 in	 the	previous	
case,	 this	 operation	 implies	 some	 sort	 of	 nonlinear	 standardization	

of	the	raw	abundance	data	in	Y	by	row	sums,	column	sums,	or	both,	
which	 necessarily	 change	 the	 relative	 dispersion	 of	 species	 abun-
dances	within	row	and	column	vectors	 (Anderson	et	al.,	2006).	This	
transformation	 is	 performed	 automatically	 by	 the	 index.	Therefore,	
computing	the	total	sum	of	squares	SS(Y)	from	a	dissimilarity	matrix	D 
using	an	appropriate	dissimilarity	coefficient	other	than	the	Euclidean	
distance	equals	to	transforming	the	original	community	composition	
matrix	Y	to	a	new	matrix	Y′ = [y′jn]	and	then	computing	SS(Y′)	from	
the	 new	 species	 abundances	 y′

jn
	 (Legendre	 &	 Fortin,	 2010).	 From	

SS(Y),	one	can	then	compute	Var(Y)	in	the	usual	way	by	dividing	SS(Y)	
by	(N	−	1).

Note	that	calculating	beta	diversity	with	Eq.	(2)	is	conceptually	
identical	to	the	usual	way	of	obtaining	beta	diversity	from	the	av-
erage	 dissimilarity	 between	 pairs	 of	 plots.	The	 only	 difference	 is	
that	the	average	dissimilarity	between	pairs	of	plots	d̄kn	 is	usually	
calculated	by	summing	all	pairwise	dissimilarities	 (not	necessarily	
Euclidean	distances)	dkn	between	plots	k	and	n	in	D	(with	k	≠	n)	and	
then	dividing	the	result	by	N×

�

N−1
�

: d̄kn=1∕N
�

N−1
�
∑N

n=1

∑N

k=1
dkn. 

By	contrast,	in	Eq.	(2),	only	the	upper	or	lower	half	of	the	dissimilar-
ity	matrix	is	considered,	such	that	Var(Y)=1∕N

�

N−1
�
∑N

n=1

∑N

k>n
dkn. 

Accordingly,	both	quantities	differ	only	by	a	factor	two:	d̄kn=2Var(Y).
The	 key	 lessons	 learned	 from	 this	 short	 overview	 are	 that:	 (1)	

The	 total	variance	of	 the	 raw	community	 composition	matrix	 does	
not	 provide	 a	 correct	 estimate	 of	 beta	 diversity	 because	 the	 rela-
tive	dispersion	of	species	abundances	that	maximizes	beta	diversity	
does	not	correspond	to	the	dispersion	that	maximizes	variance.	Chao	
and	Chiu	 (2016)	showed	that,	although	the	calculation	of	 the	total	
variance	 of	 the	 raw	 community	 composition	matrix	 does	 not	 nec-
essarily	 require	α	 and	γ	 formulas,	nonetheless	variance	 is	 implicitly	
constrained	by	α,	γ,	and	the	total	species	abundances	in	Y.	Therefore,	
it	cannot	be	compared	across	multiple	sets	of	communities	with	dif-
ferent	α,	γ,	or	total	species	abundances.	Before	beta	diversity	is	com-
puted,	the	raw	species	abundance	data	in	Y	should	be	transformed	in	
an	appropriate,	usually	nonlinear	way.	This	transformation	will	thus	
affect	 the	 partition	 of	 beta	 diversity	 into	 per-	species	 and	 per-	plot	
contributions.

(2)	 The	 average	 dissimilarity	 between	 pairs	 of	 plots	 d̄kn	 rep-
resents	 an	 adequate	 way	 for	 calculating	 beta	 diversity	 directly	
from	raw	species	abundances,	provided	that	 the	selected	dissim-
ilarity	coefficients	conform	to	a	 set	of	empirical	properties	 listed	
in	 Legendre	 and	 De	 Cáceres	 (2013).	 Half	 this	 quantity	 can	 be	
also	 interpreted	 as	 the	variance	of	 a	 new	 (usually	 unknown)	ma-
trix	Y′ = [y′jn]	obtained	by	nonlinear	transformation	of	the	original	
community	composition	matrix	Y.	However,	being	based	on	plot-	
to-	plot	dissimilarities,	this	“distance-	based	option”	does	not	allow	
to	decompose	overall	beta	diversity	into	the	contributions	of	indi-
vidual	species	or	plots.

In	 the	 following	 sections,	 building	 on	 Legendre	 and	De	Cáceres	
(2013),	I	will	show	that	beta	diversity	can	be	adequately	summarized	
by	 a	 weighted	 average	 of	 the	 concentration	 values	 of	 the	 species	
vectors	yj	 of	Y.	The	proposed	method	gives	 rise	 to	a	new	 family	of	
multiple-	site	dissimilarity	measures,	which	preserve	 the	 relative	dis-
persion	of	species	abundances	within	rows.
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3  | BETA DIVERSITY AS THE WEIGHTED 
CONCENTRATION OF COMMUNITY DATA

Given	a	community	composition	matrix	Y= [yjn]	containing	the	pres-
ence/absence	scores,	number	of	individuals,	cover	or	biomass	values	
of	P	species	in	N	plots,	to	coherently	frame	the	notion	of	beta	diversity,	
I	will	start	from	three	fundamental	requirements	that	an	index	β	in	the	
range	0–1	should	meet	to	reasonably	behave	in	ecological	research:	
(1)	β	takes	the	value	one,	denoting	maximum	diversity,	if	all	species	in	
Y	occur	only	in	one	plot;	(2)	β	takes	the	value	zero,	denoting	minimum	
diversity	if	each	species	occur	in	all	plots	with	the	same	abundance;	(3)	
the	species	vectors	yj	of	Y	should	act	as	independent	units	for	the	cal-
culation	of	beta	diversity,	meaning	that	each	species	should	contribute	
to	beta	diversity	regardless	of	the	abundance	of	the	other	species	in	Y. 
The	first	two	requirements	are	related	to	the	extreme	values	of	β,	while	
the	third	requirement	makes	a	distinction	between	classical	measures	
of	beta	diversity	and	measures	of	ecological	 complexity,	which	 take	
into	account	the	amount	of	“correlation”	between	the	system	compo-
nents,	such	as	the	degree	of	co-	occurrence	between	species	and	their	
spatial	arrangement	(for	details,	see	Ricotta	&	Anand,	2006).

Hence,	for	calculating	the	overall	beta	diversity	of	the	community	
composition	matrix	Y,	we	first	have	to	calculate	the	beta	diversity	of	
single	row	vectors	β(yj).	To	this	purpose,	we	need	a	family	of	measures	
attaining	their	maximum	values	if	species	j	occurs	only	in	one	plot	and	
its	minimum	value	if	j	occurs	in	all	N	plots	with	equal	abundance.	This	is	
usually	performed	with	concentration	measures.	These	measures,	also	
known	as	dominance	or	inequality	measures,	are	typically	expressed	as	
the	complement	of	evenness,	with	indices	of	evenness	being	basically	
relative	diversity	measures	or	normalizations	of	diversity	measures	in	
the	range	0–1.	Given	a	set	of	Q	objects	with	relative	abundances	pi 

(i = 1,	2,	…,	Q)	such	that	0	⩽ pi ⩽	1	and	
∑Q

i=1
pi=1,	evenness	measures	

quantify	the	equality	of	the	relative	abundances	of	the	Q	objects,	max-
imum	evenness	arising	for	an	equiprobable	object	distribution,	and	the	
more	the	relative	abundances	of	objects	differ	the	lower	the	evenness	
is.	While	in	ecology,	evenness	is	traditionally	used	for	calculating	the	
equality	of	P	species	in	one	single	plot,	here	I	suggest	to	use	the	com-
plement	of	evenness	to	quantify	the	(in)equality	of	the	relative	abun-
dances	of	one	single	species	in	the	N	plots.

The	ecological	literature	is	full	of	evenness	measures	with	differ-
ent	properties	and	different	 sensitivity	 to	 rare	and	common	species	
(Hill,	1973;	Jost,	2010;	Ricotta,	2003),	such	that	the	practitioner	can	
select	the	index	that	best	matches	his	specific	requirements.	Among	
the	multitude	of	available	evenness	measures,	Pielou’s	 (1966)	 index	
seems	an	 adequate	 choice	 for	 estimating	beta.	 First,	 the	 raw	abun-
dances	yjn	in	each	row	are	normalized	into	relative	values	by	dividing	
each	value	by	the	row	sum	yj+ =

∑N

n=1
yjn	such	that	pjn=yjn∕yj+	This	data	

transformation	preserves	the	relative	dispersion	of	abundances	within	
species	vectors.	Next,	Pielou’s	evenness	of	each	row	is	calculated	as	
EVE(yj)	=	H(yj)/log	N,	where	H(yj)=−

∑N

n=1
pjn log pjn	is	the	Shannon	en-

tropy	 of	 species	 yj	 and	N	 is	 the	 number	 of	 plots	 in	 the	 community	
composition	 matrix.	 The	 beta	 diversity	 of	 single-	species	 vectors	 is	
then	obtained	as:

For	a	fixed	number	of	plots	N,	β	takes	the	value	one	if	species	j	is	
present	only	in	one	plot	with	relative	abundance	pjn	=	1	and	the	value	
zero	if	j	is	present	in	all	plots	with	relative	abundance	1/N.	Note	that	
β(yj)	can	be	interpreted	as	a	rescaled	version	of	Theil’s	(1967)	inequal-
ity	measure	Th(yj)	=	log	N	−	H(yj)	used	in	econometrics	for	summariz-
ing	 the	 inequality	 of	 household	 incomes.	 For	 instance,	 according	 to	
Eq.	(3)	β(yj)	=	1	−	H(yj)/	log	N	=	Th(yj)/	log	N.

Finally,	the	total	beta	diversity	of	Y	can	be	obtained	as	the	weighted	
average	of	the	single-	species	values	β(yj):

the	weights	wj	(with	0	≤	wj	≤	1	and	
∑P

j=1
wj=1)	can	be	determined	ac-

cording	to	the	users’	requirements	within	the	specific	context	of	the	
analyses.	If	all	species	are	considered	equally	important,	like	for	pres-
ence	and	absence	data,	the	weights	can	be	uniformly	set	to	1/P.	On	
the	other	hand,	 for	 species	 abundance	data,	 a	 reasonable	 approach	
is	 to	 set	 the	weights	 proportional	 to	 the	 total	 species	 abundances	
within	the	community	composition	table,	such	that	wj = yj+/y++	where	
y++ =

∑P

j=1

∑N

n=1
yjn	is	the	grand	total	of	all	species	abundances	in	Y.

As	 shown	 in	 Eq.	(4),	 being	 a	weighted	 average	 of	 single-	species	
values,	 β(Y)	 can	 be	 additively	 decomposed	 into	 the	 contribution	 of	
its	constituting	elements	wjβ(yj),	such	that	the	relative	contribution	of	
species	j	to	overall	β	is	

∑N

n=1
wj×β(yj)∕β(Y).

4  | WORKED EXAMPLE

To	illustrate	how	the	proposed	metric	works,	I	used	data	from	a	belt	
transect	across	 the	beech	 timberline	 in	central	 Italy.	The	data	were	
collected	by	Di	Giustino,	Stanisci,	Acosta,	and	Blasi	(2002)	on	the	west	
side	of	Majella,	in	the	central	Apennines,	to	investigate	the	vegetation	
dynamics	at	the	timberline	following	grazing	abandonment.	The	high-
est	peak	is	Mt.	Amaro	(2,793	m)	and	the	substrate	consists	mainly	of	
carbonate	rocks.	Annual	precipitation	 is	about	1,500	mm,	and	mean	
annual	temperature	is	5–6°C	with	no	dry	season.

A	belt	 transect	 composed	of	 23	quadrats	 of	 1	m	×	1	m	was	 laid	
out	 across	 the	 upper	 forest	 line	 between	 the	 Fagus sylvatica	 forest	
and	a	dry	Brachypodium genuense	grassland	at	an	altitude	of	1,750	m	
on	a	gentle	slope	with	deep	soil	(i.e.,	about	150	m	below	its	potential	
upper	limit;	Stanisci,	Lavieri,	Acosta,	&	Blasi,	2001).	In	each	quadrat,	all	
vascular	plants	were	recorded	and	the	cover	of	each	species	was	visu-
ally	estimated	by	an	experienced	botanist	using	a	10%	interval	scale	
(Table	1).	 The	 quadrats	were	 then	 hierarchically	 clustered	 using	 the	
Chord	 distance	 and	 a	 contiguity-	constrained	 segmentation	 method	
(see	Legendre	&	Legendre,	2012).	With	this	clustering	method,	only	
adjacent	quadrats	are	considered	for	merging,	such	that	the	transect	is	
divided	into	a	hierarchical	structure	of	compositionally	homogeneous	
clusters	of	adjacent	plots,	or	segments	(Figure	1).

(3)β(yj)=1−EVE(yj)

(4)β(Y)=

P
∑

j=1

wj×β(yj)=1−

P
∑

j=1

wj×EVE(yj)
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Finally,	using	Eq.	(4),	I	calculated	the	beta	diversity	for	each	node	
of	the	dendrogram	in	Figure	1.	For	the	calculation	of	the	beta	diver-
sity	of	a	given	node,	all	species	were	weighted	proportionally	to	their	
total	 cover	within	 the	 corresponding	 segment.	All	 calculations	were	
performed	with	the	R	script	available	in	Appendix	S1.

5  | RESULTS

In	the	study	area,	like	in	many	other	regions	of	high	grazing	pressure	in	
the	 central	Apennines,	 the	 beech	 forest	 reaches	 the	 timberline	 giving	
rise	 to	 an	 abrupt	 contact	with	 grasslands	without	 the	 presence	 of	 an	
intermediate	 transition	 belt	 of	 shrub	 species,	 such	 as	 Juniperus alpina, 
Arctostaphylos uva-ursi, Rhamnus alpina, Rosa pendulina, Rubus idaeus or 
Lonicera alpigena	(Stanisci	et	al.,	2001).	Such	abrupt	contacts	are	usually	
found	about	100–200	m	below	the	potential	upper	limit	of	the	treeline,	
in	physiographic	conditions	which	favor	intense	grazing	activity.	In	such	
conditions,	vegetation	dynamics	is	blocked	by	disturbance	and	beech	for-
est	may	spread	only	slowly	to	higher	altitudes	(Di	Giustino	et	al.,	2002).

As	a	result,	the	transect	in	Table	1	can	be	clearly	divided	into	two	
main	compositionally	distinct	clusters	with	only	two	transitional	quad-
rats	represented	by	plots	12	and	13	(Figure	1).	As	expected,	the	floris-
tic	homogeneity	within	each	group	of	adjacent	plots	is	generally	high	
(i.e.,	beta	diversity	 is	 low)	and	 tends	 to	decrease	more	or	 less	grad-
ually	 along	 the	 nodes	 of	 the	 dendrogram,	meaning	 that	 community	
composition	tends	to	become	more	and	more	“beta	diverse”	along	the	
hierarchy	of	 the	dendrogram	when	 the	different	 groups	of	 adjacent	
plots	are	merged	into	a	higher-	level	cluster.	The	highest	compositional	
heterogeneity	 is	associated	with	the	upper	node	of	 the	dendrogram	
when	the	forest	plots	are	pooled	with	the	grassland	plots.

Looking	at	the	contribution	of	single	species	to	overall	beta	diver-
sity	 (Table	1),	we	have	that	 the	dominant	species	Fagus sylvatica	and	
Brachypodium genuense	account	for	roughly	one-	third	(32.93%)	of	the	
beta	diversity	of	the	whole	transect	(i.e.,	to	the	beta	diversity	associ-
ated	with	the	upper	node	of	the	dendrogram	in	Figure	1).	By	contrast,	
due	 to	 their	 low	 abundance,	 the	 10	 singleton	 species	with	 just	 one	
presence	in	the	whole	transect	(i.e.,	with	β(yj)	=	1)	account	for	a	mere	
13.05%	of	total	beta.	However,	weighting	all	species	equally,	the	con-
tribution	of	the	singleton	species	raises	to	44.63%,	whereas	the	con-
tribution	of	Fagus sylvatica	 and	Brachypodium genuense	 decreases	 to	
2.02%	(data	not	shown).	This	emphasizes	the	crucial	role	of	the	weight-
ing	criteria	for	the	calculation	of	a	biologically	reasonable	beta	diversity	
figure	that	conforms	to	the	specific	users’	requirements.

Rare	 species	 usually	 constitute	 an	 heterogeneous	 pool	 of	 occa-
sional	plants	of	low	persistence	and	low	fidelity	of	association	with	spe-
cific	communities	(Grime,	1998).	As	such,	they	are	also	quite	unevenly	
distributed	among	the	plots.	Therefore,	according	to	this	general	direct	
relationship	between	rarity	and	spatial	unevenness,	weighting	the	spe-
cies	by	their	abundances	emphasizes	the	role	of	dominant	species,	re-
ducing	at	the	same	time	the	relevance	of	occasional	species	with	very	
low	abundances.	On	the	other	hand,	using	equal	weights	for	all	species	
emphasizes	the	role	of	rare	species	irrespective	of	their	overall	abun-
dances	and	their	fidelity	of	association	with	specific	community	types.Sp
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6  | DISCUSSION

In	this	study,	I	introduced	a	method	for	calculating	the	beta	diversity	
of	a	community	composition	table,	which	preserves	the	relative	dis-
persion	of	abundances	within	species	vectors.	The	proposed	method	
allows	to	shed	new	light	on	the	relationships	between	α,	β,	and	γ di-
versity:	α	and	γ	are	computed	from	single	plot	vectors	xn	and	from	the	
vector	of	species	sums	x+ = [yj+],	respectively,	whereas	β	is	computed	
from	the	species	vectors	yj.	Hence,	in	a	sense,	α	and	γ	are	the	warp,	
and	β	is	the	weft	of	the	community	composition	table.	The	major	dif-
ference	between	alpha,	gamma,	and	beta	diversity	is	that,	for	a	fixed	
number	of	species,	α	and	γ	increase	with	increasing	evenness,	whereas	
for	a	fixed	number	of	plots,	β	increases	with	decreasing	evenness.

Being	based	on	a	weighted	average	of	inverse	evenness	measures,	
β(Y)	is	very	flexible	and	allows	for	various	types	of	weighting	methods,	
which	can	be	determined	depending	on	the	specific	ecological	ques-
tion.	For	presence/absence	scores,	a	reasonable	strategy	may	consist	
in	weighting	all	species	equally,	whereas	for	abundance	data,	the	spe-
cies	may	be	weighted	proportionally	to	the	row	sums	yj+.

From	 an	 ecological	 viewpoint,	 this	weighting	method	 is	 directly	
related	 to	 the	mass-	ratio	 hypothesis	 of	 Grime	 (1998),	which	 states	
that	ecosystem	processes,	 like	water	balance	or	nutrient	cycling,	are	
largely	determined	by	the	functioning	of	the	dominant	species	and	are	
relatively	 insensitive	 to	 the	 presence	 of	 less	 abundant	 species.	This	
effect	is	dictated	by	the	fact	that,	especially	for	autothrophs	such	as	
plants,	a	 larger	body	mass	 involves	major	contribution	to	syntheses,	
resource	fluxes,	and	degradative	processes	(Grime,	1998).	Accordingly,	
if	our	aim	consists	 in	relating	the	amount	of	variation	of	the	species	
composition	in	Y	to	the	spatial	organization	of	ecosystem	functioning,	
weighting	the	species	according	to	their	abundances	in	the	data	table	
may	represent	an	adequate	choice.	Alternatively,	within	a	more	func-
tional	context,	the	species	weights	wj	may	also	be	set	proportional	to	
the	 average	or	minimum	 functional	 dissimilarity	 of	 j	 from	 the	 other	
species	in	the	community	composition	table,	such	that	more	weight	is	
given	to	the	most	functionally	distinct	species.

As	 highlighted	 by	Anne	 Chao	 (pers.	 comm.),	when	 the	 species	
weights	 are	proportional	 to	 their	 abundances	 (i.e.,	wj = yj+/y++)	 and	
the	 beta	 diversity	 of	 single-	species	 vectors	 β(yj)	 is	 calculated	with	
Pielou’s	evenness,	overall	beta	β(Y)	is	the	same	as	the	mutual	infor-
mation	measure	of	beta	diversity	derived	 in	Chao	and	Chiu	 (2016,	
Eq.	 11c).	This	 index,	which	 is	 part	 of	 a	 larger	 parametric	 family	 of	
information-	theoretical	 measures	 of	 beta	 diversity,	 bridges	 the	
gap	between	the	normalized	variance	of	a	community	composition	
matrix	 (after	 removing	 the	 constraints	 by	 alpha,	 gamma,	 and	 total	
abundance)	and	traditional	diversity	decomposition	methods	(based	
on	 partitioning	 gamma	 diversity	 into	 alpha	 and	 beta	 components).	
Hence,	the	observed	relationship	between	β(Y)	and	Chao	and	Chiu’s	
beta	highlights	once	again	the	connection	between	diversity	theory	
and	information-	theoretical	measures.

Concerning	the	choice	of	an	appropriate	measure	of	evenness	for	
calculating	beta,	 in	 this	 study,	 I	 used	 the	classical	Pielou’s	evenness	
(see	Jost,	2010).	However,	in	ecology,	there	is	a	plethora	of	available	
evenness	 measures	 such	 that,	 according	 to	 Kvålseth	 (2015):	 “a	 re-
searcher	seeking	an	evenness	index	to	use	in	a	particular	study	is	faced	
with	a	bewildering	choice”.	Extensive	reviews	of	evenness	measures	
and	their	properties	can	be	found	in	Smith	and	Wilson	(1996),	Ricotta	
(2003),	Tuomisto	(2012),	and	Kvålseth	(2015).	While	a	variety	of	prop-
erties	have	been	advocated	for	evenness,	there	does	not	appear	to	be	
any	general	consensus	as	to	which	is	really	necessary.	With	a	focus	on	
the	measurement	of	beta	diversity	of	single-	species	vectors,	an	intu-
itively	relevant	property	 is	the	so-	called	principle	of	transfers,	which	
was	 introduced	 in	econometrics	by	Dalton	 (1920)	 in	 the	 framework	
of	income	distribution.	In	its	very	essence,	given	a	relative	abundance	
distribution	

(

p1,p2,… ,pQ
)

	and	two	objects	 i	and	 j	with	relative	abun-
dances	pi > pj,	 evenness	 is	 increased	 if	 the	quantity	Δ	 is	 transferred	
from	pi	to	pj	so	long	as	the	transfer	does	not	reverse	the	ranking	of	the	
two	abundances	pi	−	Δ > pj + Δ.	Hence,	consistently	with	our	intuitive	
notion	of	beta	diversity,	the	transfer	property	states	that,	for	a	given	
species,	evenness	 is	 increased	 (beta	 is	decreased)	when	 the	 species	
abundance	is	transferred	from	one	plot	to	another	plot	in	which	the	

F IGURE  1 Dendrogram	of	the	
constrained	cluster	analysis	of	the	belt	
transect	used	in	the	worked	example.	
The	clustering	algorithm	is	based	on	the	
Chord	distance	calculated	from	the	species	
abundance	values	in	Table	1.	For	each	
node,	the	corresponding	beta	diversity	
value	is	shown
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species	is	less	abundant.	For	mathematical	details,	see	Patil	and	Taillie	
(1982)	and	Kvålseth	(2015).

Another	desirable	property	of	β(Y)	 is	 its	ability	 to	be	additively	
decomposed	into	species-	level	contributions,	thus	enabling	to	high-
light	 the	 relevance	 of	 single	 species	 to	 overall	 beta	 diversity.	This	
property	arises	directly	from	the	definition	of	β(Y)	as	the	weighted	
average	of	the	single-	species	values	β(yj).	Therefore,	it	 is	preserved	
even	if	β(Y)	is	calculated	with	an	evenness	index	other	than	Pielou’s	
evenness.	To	the	contrary,	decomposing	beta	into	plot-	level	contri-
butions	is	much	less	obvious,	such	that	the	role	of	specific	plots	in	
shaping	overall	beta	diversity	is	best	summarized	by	other	methods;	
for	 example,	 by	 calculating	 the	mean	 dissimilarity	 of	 a	 given	 focal	
plot	from	all	other	plots	in	Y.	For	deeper	discussion	on	the	decompo-
sition	of	β(Y)	 into	single-	plot	contributions,	see	Appendix	S2.	Note	
that,	for	a	single	pair	of	plots,	if	β(Y)	is	calculated	from	presence/ab-
sence	scores	with	equal	weights	wj = 1/P,	beta	reduces	to	the	well-	
known	Jaccard	dissimilarity	coefficient,	whereas	if	the	weights	wj	are	
set	proportional	 to	the	number	of	species	presences	 in	both	plots,	
beta	reduces	to	the	Sørensen	dissimilarity	(proof	in	Appendix	S3).	As	
a	result,	β(Y)	can	be	considered	a	multiple-	site	dissimilarity	measure	
sensu	Diserud	and	Ødegaard	(2007),	thus	bridging	the	gap	between	
beta	 diversity,	 evenness,	 and	 dissimilarity.	 At	 the	 same	 time,	 the	
connection	between	evenness	and	dissimilarity	gives	rise	to	a	new	
family	of	plot-	to-	plot	(dis)similarity	coefficients	based	on	the	rich	ar-
senal	of	available	evenness	and	concentration	measures.	In	addition	
to	 species	presence/absence	scores,	 such	evenness-	based	dissimi-
larity	measures	can	also	include	the	species	relative	abundances	and	
between-	species	 functional	 and	 phylogenetic	 resemblances	 (see	
Ricotta	&	Pavoine,	2015).

Can	the	proposed	method	be	further	generalized	to	include	other	
approaches	to	the	measurement	of	beta	diversity?	For	example,	can	
the	 method	 be	 extended	 to	 other	 multiple-	site	 dissimilarity	 coeffi-
cients,	or	can	Pielou’s	evenness	be	generalized	to	 include	the	entire	
family	of	information-	theoretical	measures	of	beta	diversity	proposed	
by	Chao	and	Chiu	(2016)?	These	are	critical	questions,	and	their	an-
swers	may	provide	valuable	insights	into	the	effects	of	ecological,	evo-
lutionary,	and	human-	driven	mechanisms	on	community	composition.
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