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Abstract

The Hotelling Observer (HO) is widely used to evaluate image quality in medical imaging. 

However, applying it to data that are not multivariate-normally (MVN) distributed is not optimal. 

In this paper, we apply two multi-template linear observer strategies to handle such data. First, the 

entire data ensemble is divided into sub-ensembles that are exactly or approximately MVN and 

homoscedastic. Next, a different linear observer template is estimated for and applied to each sub-

ensemble. The first multi-template strategy, adapted from previous work, applies the HO to each 

sub-ensemble, calculates the area under the receiver operating characteristics curve (AUC) for 

each sub-ensemble, and averages the AUCs from all the sub-ensembles. The second strategy 

applies the Linear Discriminant (LD) to estimate test statistics for each sub-ensemble and 

calculates a single global AUC using the pooled test statistics from all the sub-ensembles. We 

show that this second strategy produces the maximum AUC when only shifting of the HO test 
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statistics is allowed. We compared these strategies to the use of a single HO template for the entire 

data ensemble by applying them to the non-MVN data obtained from reconstructed images of a 

realistic simulated population of myocardial perfusion SPECT studies with the goal of optimizing 

the reconstruction parameters. Of the strategies investigated, the multi-template LD strategy 

yielded the highest AUC for any given set of reconstruction parameters. The optimal 

reconstruction parameters obtained by the two multi-template strategies were comparable and 

produced higher AUCs for each sub-ensemble than the single-template HO strategy.

Index Terms

Multi-template model observer; parameter optimization; model observers; objective image quality 
evaluation; task-based evaluation

I. Introduction

IN medical imaging, image quality is objectively assessed in terms of the performance of an 

observer on a relevant task [1]. Relevant tasks include classification and estimation tasks. 

For binary classification (i.e., detection) tasks with known signal locations, performance can 

be characterized by the receiver operating characteristics (ROC) curve. The area under the 

ROC curve (AUC) is an often-used figure of merit for detection tasks.

Several model observers have been formulated for objectively evaluating image quality on 

detection tasks. The ideal observer (IO) uses all the statistical information about the data and 

yields the maximum AUC of all possible observers [2, 3]. However, the IO is often 

complicated and difficult to compute, and may not predict human observer performance. 

Therefore, linear observers, in particular, the Hotelling observer (HO), have been widely 

used [4]. The HO uses the first- and second-order statistics of the image data to compute an 

observer template. When the data follow a multivariate normal (MVN) distribution with 

equal covariances under the signal-absent and signal-present hypotheses, the HO has 

equivalent performance to the IO.

The channelized version of the HO, referred to as the CHO, is also a commonly used model 

observer. When used with appropriate anthropomorphic channels that model the human 

visual system, the CHO has been shown to agree well with human performance for signal 

known exactly (SKE)/background known exactly (BKE) tasks [5, 6] and SKE-lumpy 

backgrounds tasks [7]. For SKE tasks where the channel outputs, often referred to as feature 

vectors, are MVN distributed and homoscedastic (i.e., when the two classes have equal 

covariance matrices), the CHO is theoretically optimal [8]. The CHO has been widely used 

to predict human performance for SKE tasks [6, 9, 10].

Clinical tasks have variability in both signal and background. The signal and the background 

may be known only statistically, thus resulting in a signal known statistically (SKS) and 

background known statistically (BKS) task. In the context of nuclear medicine imaging, 

signals vary in tracer uptake, size, and position. Similarly, variations in normal organ and 

tissue size, shape and uptake result in background variability. In recent work, we have shown 
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that signal or background variations, alone or in combination, can result in very non-MVN 

and even multi-modal [11] distributions of channel outputs.

It is thus desirable to have observer strategies that can handle non-MVN data. The IO can, in 

principle, optimally treat non-MVN data. Expressions for IO performance typically require 

explicit knowledge of the probability distribution of the data. However, for realistic data, 

these are often not known. Methods have been proposed for calculating IO performance in 

cases of background variability with realistic data [12–15]. In principle, these could be 

applied to channel output data for cases with statistical signal and background variations. 

However, these methods are very computationally intensive.

We observed that non-MVN data (e.g., feature vectors) resulting from the statistical 

variations mentioned above were often multi-modal, and suitable partitioning of the data 

could produce sub-ensembles with near-Gaussian distributions. The data could thus be 

treated as a Gaussian mixture model. The parameters of the model could be estimated from 

the data, and the IO performance could then be calculated from these. However, estimating 

the Gaussian-mixture-model parameters would be complicated, and this method has not, to 

our knowledge, been investigated in the context of image quality evaluation. As an 

alternative, several strategies based on linear observers have been proposed.

The HO has frequently been applied to data (feature vectors) with signal and background 

variability [16–19]. Since one HO template is applied to all the images in the ensemble, we 

refer to this as a single-template HO strategy. However, for non-MVN distributed data, the 

application of the HO to these tasks can be problematic [20].

As noted, the non-MVN nature of the data was observed to arise from signal and 

background variations. Previous authors have proposed and applied a multi-template 

observer strategy to the data in SKS task [21–25]. In this strategy, a template (i.e., an 

instance of the linear observer whose dot product with an input data item yields the test 

statistic for that item) is generated for each possible realization of the signal. The test 

statistics for each image are obtained by applying all templates to the image data (projection 

data or feature vector) and are then combined using the optimal sum of likelihood rule [26]. 

Note that this observer strategy is not equivalent to the IO, and it is applicable only to the 

case where there are a finite number of signal types. In these studies, empirical evidence was 

provided for task performance correlations between human observers and this model 

observer strategy for the SKS task. This strategy is computationally expensive compared to a 

single-template observer strategy, especially when the number of possible signal types is 

very large.

Eckstein et al. [21, 27] have demonstrated that human performance on an SKS task can be 

approximated by the performance of a simplified signal known exactly but variable (SKEV) 

task for the range of signal type variations in their study. An SKEV task is one in which the 

signals vary from image to image but the observers know the exact signal type present in the 

image. They also proposed a multi-template strategy for SKEV tasks. Again, this strategy 

can still be computationally expensive when the number of possible signal types is very 

large.
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In this work, we describe two multi-template strategies to evaluate detection task 

performance when the data are non-MVN distributed. It should be noted that the focus is not 

on providing a general solution to SKS or SKEV tasks, but on handling the problem of non-

MVN data, which can arise due to signal or background variability. The strategies we 

provide are based on a sub-ensemble-based approach: the non-MVN data are divided into 

sub-ensembles with MVN-distributed and homoscedastic data. A different observer template 

is estimated and applied for each such sub-ensemble. We present two strategies for using the 

data in the sub-ensembles. In the first strategy, we adapt a multi-template HO strategy 

initially proposed by Eckstein et al. for SKEV tasks [21, 27]. We also propose a novel multi-

template linear discriminant strategy and discuss the theoretical motivation and the 

optimality of the classification performance in terms of the AUC for this strategy. We 

compared these two strategies with the commonly used and computationally-inexpensive 

single-template HO strategy. We applied these strategies to optimize the reconstruction 

parameters for a defect detection task performed on a realistic dual isotope myocardial 

perfusion SPECT (MPS) simulated dataset [28]. The channel outputs from the images in the 

study are non-MVN. The three strategies were compared in terms of their AUCs and the 

ranges of optimal parameters.

II. Theory

In this section, we describe the theory of the two multi-template linear observer strategies to 

handle non-MVN distributed data using a sub-ensemble-based approach proposed in this 

paper. These are the major contribution of this work. As a prelude to presenting this theory, 

we first discuss the sub-ensemble-based approach in general and methods used to partition 

the data into sub-ensembles.

A. Sub-ensemble-based Approach

The proposed method for handling non-MVN distributed data is to divide the data into sub-

ensembles that are exactly or approximately MVN distributed and homoscedastic. We can 

then apply optimal linear observers to each sub-ensemble and use the test statistics to 

compute a figure of merit, as described in Sections II.B and II.C.

There may not be a unique sub-ensemble partitioning method that provides subsets of data 

that meet the MVN and homoscedasticity conditions. The problem of partitioning the data in 

the general case is potentially very complicated. Thus, in this paper, we do not provide either 

a general or an optimal method. Instead, we provide two feasible partitioning methods that 

were applicable to the data used in this work. The first is based on partitioning the data into 

SKE tasks; the second is to use characteristics used in generating the data such as the defect 

type (i.e., location, extent, and severity) and phantom anatomical parameters. This latter 

approach is, for reasons described below, the one used in the remainder of the paper. In the 

discussion section, we discuss the possibility of using data-centric approaches, such as 

clustering methods, to provide a more general solution to this partitioning problem.

The MVN and homoscedasticity conditions are often, though not always, satisfied when 

each sub-ensemble represents an SKE task. Thus, one straight-forward method is to partition 

the data into different sub-ensembles for each different SKE task. However, this SKE sub-
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ensemble approach is not always practical due to the large number of possible SKE tasks. 

For example, in our clinically-realistic dataset described later, the possible number of SKE 

tasks was 861,840. Estimating observer templates for such a large number of SKE tasks 

would require generating millions of images and is thus highly impractical.

In a previous study [20], it was observed that an SKS task might also have approximately 

MVN distributed data (feature vectors) when the signal and background variations are 

sampled from a relatively continuous distribution. Thus, each sub-ensemble can also be an 

SKS task that is approximately MVN. The homoscedasticity condition will be 

approximately satisfied if the signal variations are relatively small compared to the 

background variations and the signal and background are uncorrelated, as proved in 

Appendix A. Based on these observations, the second feasible and more practical 

partitioning method is to divide the data into groups with signal variations that are small in 

comparison to background variations and with variations sampled from a relatively 

continuous distribution. In this study we did this based on characteristics used in the 

generating the data, in this case the defect type, as will be described in detail in Section 

III.C. Note that in these sub-ensembles, the signal is known only statistically. Compared to 

partitioning data into SKE sub-ensembles, this method has the advantage of reducing the 

number of sub-ensembles and thus reducing the time and number of images required to 

estimate all the observer templates.

In practice, both visual and quantitative evaluations are useful to test whether the MVN and 

homoscedasticity conditions are met. To test for normality, visual assessment of the feature 

vector histograms and metrics such as kurtosis and skewness [20] can be used. To test for 

homoscedasticity, we used visual assessment of the feature vector histograms and the two 

metrics introduced below.

The first metric used to assess homoscedasticity is the Correlation Matrix Distance (CMD) 

[29] defined as

(1)

where Ki denotes the covariance matrix of the data under hypothesis Hi (i = 0, 1), and ||.||f 
and tr{.} denote the matrix Frobenius norm and trace. This metric measures the similarity of 

two positive definite matrices up to a scale. The CMD has a value between 0 and 1. It is zero 

when the two matrices are equal up to a scaling factor and increases as the extent of 

difference increases.

The second metric is:

(2)
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where |.| denotes the matrix determinant. This metric is always greater than 1 if K0 and K1 

are positive definite [30], which is true for all covariance matrices. This metric measures the 

average scale difference of the two covariance matrices. We refer this metric as the 

determinant ratio. Suppose the two matrices are the same up to a scale factor m, i.e., K0 = 

mK1 (m > 0). For this case, the closer m is to 1, the closer this determinant ratio is to 1. In 

practice, if either of the conditions is not satisfied for the SKS sub-ensembles, the data can 

always be partitioned into SKE sub-ensembles.

When each sub-ensemble is an SKE task, the entire task is SKEV. If, on the other hand, 

when the sub-ensembles are SKS, as in the partitioning method described above, then the 

overall task is also SKS. It should be noted, however, that applying a linear observer to an 

SKS task is not guaranteed to produce optimal performance. Thus, in the case where the 

sub-ensembles are SKS, as is the case with the data presented here, the resulting observer is 

quite likely sub-optimal.

B. Multi-template Linear Observer Strategy 1

We adapted the previous multi-template observer strategy for SKEV tasks proposed by 

Eckstein et al. [21, 27] and applied it to the sub-ensemble based data as described below. In 

this strategy, a different HO observer template was estimated for each sub-ensemble, the 

AUC was computed for each sub-ensemble, and the AUC for the entire dataset was the 

weighted sum of AUCs for all sub-ensembles. The weight applied to the AUC for each sub-

ensemble was the fraction of cases in each sub-ensemble relative to the total cases in the 

entire ensemble. This strategy is referred to as the multi-template HO with averaged AUCs 

strategy. Note that the AUC used here is equivalent to the percent correct used in the strategy 

proposed by Eckstein et al. because they are equivalent for any two-alternative forced choice 

(2AFC) experiment [31]. In addition, when each sub-ensemble is from an SKE task, this 

strategy is the same as the observer strategy for an SKEV task proposed by Eckstein et al.

It should be noted that averaging the AUCs from different tasks is not theoretically 

rigorously justified. Averaging the AUCs is equivalent to averaging the ROC curves, which 

is equivalent to averaging the true positive fraction (TPF) for each false positive fraction 

(FPF). Since the (FPF, TPF) pair on each ROC curve results, in principle, from a different 

decision threshold, the exact meaning of averaging the TPFs for a given FPF is difficult to 

define.

C. Multi-template Linear Observer Strategy 2

In this section, we propose a novel multi-template linear observer strategy. We first present 

the motivation for this strategy and then discuss the properties and optimality.

1) Motivation: the relation between the Hotelling Observer and likelihood 
ratios—This section examines the relationship between the HO test statistics and likelihood 

ratios. This relationship is the justification for the proposed strategy, as will become clear 

below.

Consider the task of classifying an object into signal-absent or signal-present classes based 

on some measurement, denoted by a data vector g. The data vectors can be projection data or 
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feature vectors, such as vectors of channel outputs obtained from a reconstructed image. We 

denote the signal-absent and signal-present hypotheses by H0 and H1, respectively. If g 
follows an MVN distribution under both hypotheses, we can describe its probability 

distribution under both hypotheses using:

(3)

where  and Ki denote, respectively, the mean data vector and covariance matrix of the data 

under hypothesis Hi (i = 0, 1), |Ki| is the determinant of matrix Ki, M denotes the dimension 

of the data vector g, and T denotes vector transpose operation.

Assuming the signal variations are minor in comparison to the other sources of variation, the 

two covariance matrices can be regarded as equal, i.e. K0 = K1, as proved in Appendix A. If 

we write the covariance matrix under both hypotheses as Kg, then the logarithm of the ratio 

of pr (g|H1) and pr (g|H0), referred to as the log of the likelihood ratio, can be written as

(4)

where  Note that using any monotonic transformation of the likelihood ratio 

(e.g., the log of the likelihood ratio) as the decision variable maximizes the classification 

performance in the sense that Bayes risk is minimized [32–34]. The resulting observer is 

referred to as the IO. Ignoring terms that are independent of g yields the following 

expression, which gives the Hotelling test statistic, λZHO (g):

(5)

The term  is the Hotelling template. The term in (4) that was ignored is:

(6)

and, as noted, is independent of the input data, g.

Note that addition of the term defined in (6) to an observer template does not affect the value 

of the AUC obtained using that observer. Thus, in the scenario where the same template is 

applied to the entire dataset, the template as defined in (5) is used instead of that defined in 

(4). However, if a multi-template observer strategy is used, i.e., each sub-ensemble of data is 

treated using a different observer template, then (6) is different for different sub-ensembles 

since the terms ,  and Kg depend on the signal and background statistics for each 

different sub-ensemble.
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2) Proposed strategy: multi-template Linear Discriminant (LD) with pooled test 
statistics—Based on the fact that the term defined in (6) is, in general, different for 

different sub-ensembles, we propose a multi-template observer strategy: For each sub-

ensemble, we include the term defined in (6) in the test statistics, i.e., we use the test statistic 

as defined in (4). The resulting test statistics for each sub-ensemble are pooled to calculate 

the AUCs for the entire dataset. Since equation (4) is referred to as the Linear Discriminant 

[35–38] (LD), we refer to the proposed strategy as the multi-template LD with pooled test 

statistics strategy. We now provide the theoretical justification for using this strategy.

3) Properties of the multi-template LD observer—In this section, we prove that 

adding the term (6) to the HO maximizes classification performance in terms of the AUC 

when shifting the distributions of HO test-statistics by a different constant for each sub-

ensemble is allowed. This can be proved using the following two theorems.

Theorem 1: Consider a dataset that can be grouped into multiple sub-ensembles where, in 

each sub-ensemble, the data are MVN distributed and homoscedastic. Consider applying 

different linear observer templates to each sub-ensemble, each of which yields a test 

statistic. If only shifting of these test statistics by an input-data-independent term is allowed, 

the AUC of the pooled test statistics is maximized when the distribution functions of the test 

statistics under the two hypotheses cross (i.e., have the same probability density) at the same 

test statistic value for all sub-ensembles.

The proof is as follows. Any linear observer can be defined by a template w, such that, when 

applied to the input data g, it yields a test statistic λ(g), given by

(7)

The test statistics of a linear observer are a linear combination of the values in the data 

vector. Thus, if g is MVN, the test statistics will be normally distributed [39, 40]. Also, from 

(7), if the distributions of the input data vectors are homoscedastic under the two hypotheses, 

then the distribution of test statistics of a linear observer under the two hypotheses will have 

the same variance. Thus, if the input vectors under both hypotheses are MVN and 

homoscedastic, the test statistics will be normally distributed and homoscedastic.

Now suppose that the ensemble of input vectors g are not MVN or do not have equal 

covariance, but that they can be divided into N sub-ensembles (N ≥ 2) that do have these 

properties. In this case, the test statistics obtained from each sub-ensemble will be normal 

and homoscedastic. To describe this mathematically, for the jth sub-ensemble, denote the 

standard deviation for the linear observer test statistics under the two classes by σj, the 

crossing point of the distributions under the two classes by dj, and the means by dj − αj and 

dj + βj for signal absent and present classes, respectively. Without loss of generality, assume 

αj, βj > 0. Since the test statistics for the sub-ensemble are normally distributed and 

homoscedastic, αj = βj. Define μj = αj = βj (μj > 0). These symbols are illustrated in Fig. 1 

for the case of N sub-ensembles.
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Suppose the test statistic distributions for the jth sub-ensemble are shifted by Δdj, where Δdj 

is independent of the input data, g. Denote cj ≡ dj + Δdj. Then, as proven in Appendix B, 

when cj = c1(∀ j ∈ [2, N]), i.e. that test statistic distributions under the two classes cross at 

the same test statistic value for all the different sub-ensembles, as shown in Fig. 2, the 

pooled test statistics from the N sub-ensembles achieve the highest AUC.

Theorem 2: When the sub-ensembles of data are MVN distributed and homoscedastic, if the 

LD is used to generate the test statistics for each sub-ensemble, the distributions of the test 

statistics under the two hypotheses for all sub-ensembles cross at test statistic λ = 0.

Rephrasing theorem 2 mathematically, for the jth sub-ensemble, when 

 as defined by (6)), where  and Kg j are, respectively, 

the mean data vector and covariance matrix of the data under hypothesis Hi(i = 0,1), then cj 

= 0. In other words, the LD accomplishes the alignment of the test statistic distributions of 

different sub-ensembles shown in Fig. 2. This theorem is proved in Appendix C.

From Theorems 1 and 2, we can conclude that when the input ensemble of data vectors can 

be separated into sub-ensembles that are MVN and homoscedastic, and if only shifting of 

the HO test statistics by a different constant for each sub-ensemble is allowed prior to 

pooling them, then using the proposed multi-template LD strategy maximizes the AUC.

III. Methods

A. Phantom Design and Projection Data Simulation

To demonstrate the utility of the strategy in a realistic and clinically relevant setting, we used 

projection data from a previously-developed XCAT phantom population modeling dual-

isotope MPS imaging [41]. The population included a total of 54 adult anatomies: 2 genders, 

3 body core sizes, 3 heart sizes, and 3 thicknesses of subcutaneous adipose tissue. We 

modeled 6 defect types including 2 defect locations in the myocardium, anterior and inferior, 

with 3 severity (defect to normal myocardium activity ratio) and extent (volume percentage 

of the myocardial defect) combinations. The defect parameters are summarized in Table I 

(from Table II in [42]), and sample images of each defect type are shown in Fig. 3. Note that 

in all cases the product of the extent and severity was constant, representing a constant total 

reduction in myocardial uptake. An extent of 5% or severity of 10% represents difficult 

clinically relevant tasks. Note that in this paper, the same defect type implies that two defects 

are from the same location, have the same relative activity in comparison to the uptake in the 

corresponding myocardium, and the same relative volume in comparison to the volume of 

the myocardium. Since the sizes of and uptakes in the myocardium are different for different 

patients in the population, the absolute values of the activity and volume of the defect are 

different for different patients with the same defect type.

Low-noise projections were generated using the SimSET Monte Carlo code [43] and the 

angular response function method [44] for various organs (heart, liver, lung, blood pool, gall 

bladder, kidney, and background). The projections were scaled to a count level 

corresponding to injected activities of 10 mCi of Tc-99m sestamibi and 2 mCi of Tl-201, 
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which are among the optimal injected activities suggested in [45]. The acquisition energy 

windows were 20% centered at 140.5keV for Tc-99m and 28% centered at 72keV for 

Tl-201. Attenuation, scatter, collimator-detector response and crosstalk between the two 

isotopes were modeled. The projections were generated at 60 views over 180° from left 

posterior oblique to right anterior oblique modeling a body-contouring orbit and a low-

energy high-resolution collimator. The projection bin size was 0.442 cm. A total of 20 

random uptake realizations each for Tc-99m and Tl-201, based on organ uptake distributions 

obtained from patient data, were generated for each anatomy by appropriately scaling the 

organ projections. Poisson noise was then added to the projection images. A more detailed 

description of the generation of the projection data is in [41].

B. Reconstruction and Post-processing

Images were reconstructed using the ordered subsets-expectation maximization (OS-EM) 

[46] algorithm with compensation for attenuation, collimator-detector response, scatter, and 

crosstalk contamination between projection data from the two radionuclides. Scatter 

compensation was based on the effective source scatter estimation (ESSE) method [47]. For 

each isotope, we used the true noise-free crosstalk projection data from the other in the 

crosstalk compensation, modeling an ideal crosstalk compensation method. We used four 

subsets per iteration for both Tc-99m and Tl-201 and evaluated images obtained after 

iterations 1, 2, 3, 5, 7, 10, 15, 20, 30, 45 and 60 for Tc-99m and 1, 2, 3, 5, 7, 10, 15 and 20 

for Tl-201. After reconstruction, images were filtered using a Butterworth filter of order 8 

and cutoff frequencies 0.08, 0.1, 0.12, 0.14, 0.16, 0.2 and 0.24 pixels−1. The filtered images 

were then reoriented to short axis slices. A 64×64 image having the centroid of the defect at 

the center of the image was extracted, windowed so that the range [0, the maximum in the 

heart] was mapped to the range [0, 255], truncated to integers, and used in the observer 

studies.

C. Implementation and Evaluation of Observer Strategies

We evaluated three observer strategies by applying them to optimize the reconstruction 

parameters for this dual-isotope MPS study.

The first strategy was a conventional computationally-inexpensive HO strategy that used a 

single HO template for the entire ensemble. This strategy is referred to as the single-

template HO strategy. The implementation in this work was similar to that described in [19, 

48]. First, feature vectors were calculated by applying six rotationally symmetric frequency 

channels. The first channel had a starting frequency and channel width of 1/128 cycles per 

pixel. Subsequent channels abutted the previous one and had double the previous width. We 

calculated the HO test statistics using a leave-one-out technique [19, 49]. In that technique, 

the HO was trained on an ensemble including all data except a single image. The resulting 

HO template was then applied to the remaining image to calculate a single test statistic. For 

each combination of iteration number and cutoff frequency, a single test statistic was 

calculated with 6,480 pairs of defect-present and -absent images (12,959 training images to 

estimate the template and 1 testing image as the input image data). This process was 

repeated with each image in the ensemble left out in turn, resulting in a number of test 
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statistics equal to 12,960. ROC analysis [50] using the LABROC code [51] was then applied 

to this set of test statistics to estimate the AUC.

The other two strategies were the two multi-template strategies described in II.B and II.C. 

We first divided the dataset into multiple sub-ensembles, where each sub-ensemble had the 

same defect type. As explained above, the absolute value of the defect volumes and uptakes 

were different in a sub-ensemble, leading to an SKS dataset. However, since the absolute 

activity in each organ was sampled from a relatively continuous distribution, and the organ 

volume was relatively continuous, the signal and background variations in each sub-

ensemble were sampled from a relatively continuous distribution. Thus, based on the 

observations in [20], we expected each SKS sub-ensemble to have an approximately MVN 

distribution. This agreed with empirical observations in this study, as shown in Fig. 4. Note 

that the entire ensemble had a multi-modal distribution. However, the sub-ensemble 

following the above partitioning strategy was approximately normally distributed.

We also tested the homoscedasticity, i.e. the equality of the covariance matrix under the 

defect absent and defect present cases, for each of the sub-ensembles. Sample images of 

covariance matrices under the two hypotheses for the six sub-ensembles are shown in Fig. 5. 

Visually, the homoscedasticity condition was approximately satisfied. We also tested the 

homoscedasticity condition based on two metrics defined in (1) and (2). The CMD values 

for all sub-ensembles and all reconstruction parameters for Tc and Tl are summarized in 

Table II. The mean CMD for all sub-ensembles and all reconstruction parameters was close 

to 0, which indicated good similarities between the two covariance matrices up to a scale. 

The determinant ratio values for all sub-ensembles and all reconstruction parameters for Tc 

and Tl are summarized in Table III. Since the mean of this determinant ratio was very close 

to 1, the average scale difference between the two covariance matrices for each sub-

ensemble was small.

Based on the above, we concluded the sub-ensembles were approximately homoscedastic. 

Thus, using this partitioning strategy based on defect types yielded sub-ensembles that 

approximately satisfied the MVN and homoscedasticity condition. The results in IV.A also 

empirically indicate this.

For the multi-template LD with pooled test statistics strategy, we estimated the LD test 

statistics using the above leave-one-out strategy for each sub-ensemble. The resulting sets of 

test statistics from all the sub-ensembles were pooled and used to compute the overall AUC. 

Thus, the ROC analysis was performed only once.

For the multi-template HO with averaged AUCs strategy, HO test statistics were obtained 

using the above leave-one-out strategy, the AUC was computed for each sub-ensemble, and 

the weighted sum of the AUCs for all sub-ensembles was calculated, where the weight was 

the fraction of cases in each sub-ensemble.

For each sub-ensemble and each combination of iteration number and cutoff frequency, a 

single test statistic was calculated with 1,080 pairs of defect-present and -absent images 

(2,159 training images and 1 testing image) for the two multi-template strategies.
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A diagram illustrating the three observer strategies is shown in Fig. 6.

The overall goal was to optimize the number of iterations of the OS-EM algorithm and the 

cutoff frequency of the post-reconstruction-low-pass-filter for Tc and Tl images. For all 

three strategies, the reconstruction parameters that achieved the highest AUC values for the 

entire ensemble were deemed optimal.

IV. Results

A. Effect of Using the LD Observer Instead of the HO Observer for Multiple Sub-ensembles

The effect of using the LD instead of the HO for the six sub-ensembles obtained using the 

partitioning method in III.C can be seen in Figs. 7 and 8. Fig. 7 shows the test statistic 

distributions for the six different sub-ensembles using the HO. We observed that the ranges 

of the test statistic values for different sub-ensembles were different. The distributions for 

the LD are shown in Fig. 8. Note that the histograms of test statistic of the two classes for all 

sub-ensembles cross when the value of the test statistic is approximately zero (not strictly 

zero because the feature vectors in each sub-ensemble were not strictly MVN distributed and 

homoscedastic, and the histograms were generated from a finite number of samples). This 

indirectly indicates that sub-ensembles obtained using the partitioning method based on 

defect type in this study approximately satisfy the MVN and homoscedasticity condition.

B. Comparison of the AUCs Using the Three Observer Strategies

For each set of reconstruction parameters, we computed AUC values using the three 

observer strategies. The calculated AUC was highest for the multi-template LD with pooled 

test statistics strategy and lowest for the conventional single-template HO strategy for all the 

sets of reconstruction parameters investigated. The mean, minimum, and maximum of the 

differences in the AUC values over all reconstruction parameters between the multi-template 

LD with pooled test statistics strategy and single and multi-template HO strategy and 

between the two multi-template strategies for Tc and Tl images are summarized in Tables IV 

and V, respectively. The differences between the multi-template strategies and single-

template HO strategy are not surprising because the signal uncertainty in the entire dataset 

was larger than in the sub-ensembles.

The AUC values obtained using the optimal parameters for each observer strategy are shown 

in Fig. 9. Note that the multi-template LD with pooled test statistics strategy gave the highest 

AUC value of the three strategies. The p-values for a two-tailed t-test of the differences 

between the three strategies estimated using bootstrapping were smaller than 0.05 for both 

Tc and Tl, indicating that the differences were statistically significant. The differences in the 

AUC values between the strategies were all greater than 0.01. We considered a difference of 

0.01 in the AUC to be clinically important, since the AUC differences for images 

reconstructed with and without scatter or detector response compensation were 0.01 in 

similar studies [52], and these combinations of compensations have been adopted and 

recognized as clinically significant. The differences between the three strategies were larger 

for Tc than Tl because the optimal parameters obtained by the three observer strategies were 

more different for Tc and more similar for Tl, as shown in Section IV.C.
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C. Comparison of the Optimal Parameters Obtained by the Three Observer Strategies

The optimal parameters for the entire dataset obtained by the three different observer 

strategies are shown in Fig. 10 for Tc (left) and Tl (right). In these plots, the cross shows the 

parameter set that gave the highest AUC values; the filled circles show sets of parameters 

where the difference in AUC values with respect to the optimal one were not statistically 

significant (p-value > 0.05); the contour line surrounds combinations of parameters for 

which the AUC values differed by 0.01 or less. Parameter combinations inside this curve 

were considered to be near-optimal.

For Tc, the two multi-template observer strategies were optimal for lower iteration numbers 

and higher cutoff frequencies than with the conventional HO strategy. One explanation is 

that a higher iteration number, which improves image resolution, is preferred by the single-

template HO strategy when there is more background variability since higher resolution 

tends to reduce the effects on myocardial intensity of variations in anatomy and uptake in 

neighboring organs; a lower cutoff frequency was needed to reduce the noise when the 

iteration number was high.

For Tl, the near-optimal parameter ranges using the three observer strategies were similar. 

This was different than for Tc and can be explained as follows. The observer templates for 

the three strategies would be the same when the distributions of feature vector values were 

the same for different sub-ensembles. The positions of the feature vector distributions were 

largely determined by the pixel values near the defect position. For the anterior defect, this 

was largely the myocardium, as activity in neighboring structures was small. For the inferior 

defect, the liver also made a significant contribution because of its high uptake and 

proximity to the defect. Assuming that the contribution to the feature vector values from the 

myocardium in the two locations was the same, the positions of the feature vector 

distributions for an anterior compared to an inferior defect were determined largely by the 

liver contribution. The activity in the liver relative to the myocardium for Tc was greater 

than for Tl by a factor of 1.29. Thus, there was a greater absolute shift in the positions of the 

feature vector distributions for Tc for the anterior versus inferior defect locations, as seen in 

Fig. 11. The conventional HO observer is more sensitive to differences in the positions of the 

distributions of test statistics from the two locations, for reasons described above. Thus the 

conventional HO strategy would be more different from the other two observers for Tc than 

for Tl, resulting in the possibility of differences in the optimal parameter combinations.

Note that a similar argument applies to the different defect types at the same location. In this 

case, the differences in the positions of the feature vector distributions were a function of the 

uptake in the myocardium. Since the myocardium had a Tc activity that was greater by a 

factor of 1.97 than Tl, the absolute difference in the positions of the feature vector 

distributions would be greater for Tc than for Tl. The conventional HO strategy would have 

greater difficulty dealing with this larger difference, and thus there would be a greater 

difference for the single-template strategy compared to the other two observers for Tc than 

for Tl.

To determine which observer strategy gave the truly optimal parameters for the combination 

of all defect types, we compared the performance for each defect type using the optimal 
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parameters obtained by the three observer strategies. The optimal parameters obtained by 

each strategy are shown by the crosses in Fig. 10. Note that for each sub-ensemble 

(corresponding to each defect type in this study), the AUCs in Table VI were calculated 

using the single-template HO strategy, since the data in each sub-ensemble were 

approximately MVN and homoscedastic. The results are shown in Table VI. For each defect 

type, the AUC values obtained with the optimal parameters from the multi-template LD with 

pooled test statistics strategy were always greater than or equal to the AUCs obtained using 

parameters optimal for the conventional HO strategy. The largest differences in AUC values 

between the multi-template and the single-template strategies were for defect types 5 and 6, 

the defects with the largest extent and lowest severity. This is likely because detecting defect 

types 1–4, which had higher contrasts, was easier (as shown in Fig. 3), and the AUC was 

thus less sensitive to changes in the reconstruction parameters. The AUC values for the two 

multi-template strategies were comparable: for some defect types (defect types 1, 5, 6), the 

multi-template LD strategy gave higher AUCs, but not for other defect types; for all mixed 

defect types, the two multi-templates strategies were comparable (as shown in Fig. 10), the 

optimal parameters obtained by the two multi-template strategies were within the optimal 

parameter ranges of each other.

V. Discussion

We have developed and evaluated two multi-template strategies to classify non-MVN 

distributed data using a sub-ensemble-based approach. In order to use either of them to rank 

different systems in place of human observers, correlation of task performance calculated by 

these model observers and human performance on the corresponding task must be studied.

An important observation in this study was that good correlation of different model 

observers in a one-dimensional parameter space did not imply good correlation in a 

multidimensional parameter space. More specifically, in this study, we were optimizing two 

reconstruction parameters: the iteration number of the OS-EM algorithm and the cutoff 

frequency of a post reconstruction low-pass filter. We observed that the three observer 

strategies had very good correlations when comparing only the ranking of different values 

for one parameter with the other parameter fixed, as shown in Figs 12 and 13. However, the 

three strategies achieved different optimal parameters when we simultaneously optimized 

both parameters, as shown in Fig. 10. This happens when the ranking of different values for 

one parameter changes with the other parameter(s). The result is significant since it implies 

that the correlation of different observers in a one-dimensional parameter space, as studied 

previously [16, 23, 24], may not indicate the correlation in a multi-dimensional parameter 

space.

An unresolved question is the relative merit of the two multi-template strategies. In terms of 

AUCs, the multi-template LD with pooled test statistics strategy provided higher values. In 

terms of optimal parameter range, the two strategies obtained similar optimal parameter 

ranges for the data used in this study. However, it is possible that differences in ranking of 

different image systems could be observed for other tasks, and this remains a topic where a 

future investigation is required.
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One advantage of the multi-template LD with pooled test statistics strategy is that it requires 

fewer ROC analysis operations compared to the multi-template HO with averaged AUCs 

strategy. This could be important when there are a small number of cases available for 

certain sub-ensembles since AUC estimation methods are often not reliable for a small 

number of cases. The effect of having only a small number of cases on the performance of 

the two multi-template strategies is another topic requiring investigation.

In addition, the multi-template LD with pooled test statistics strategy is also more 

theoretically sound for the following reason. For the multi-template HO with averaged 

AUCs strategy, the AUC values for each defect type are averaged to give the overall AUC 

value, which is equivalent to averaging the ROC curves to give an overall ROC curve. This 

is equivalent to averaging true positive fraction (TPF) values at the same false positive 

fraction (FPF) value. However, the exact meaning of averaging the TPFs for a given FPF is 

difficult to define, since the FPF values for different ROC curves arise from different 

decision threshold values. Thus, the meaning of averaged ROC curves is not clear. For the 

multi-template LD with pooled test statistics strategy, the pooling of the test statistics is 

justified based on pooling of the likelihood ratios and the fact that the shifting provided by 

the LD gives the maximum overall AUC; a single ROC curve is estimated for the entire 

ensemble of test statistics, thus avoiding the questionable averaging of ROC curves used by 

the multi-template HO strategy.

An area requiring future work is the development of general methods to partition the data 

into MVN and homoscedastic sub-ensembles. In this paper, we described two feasible 

methods based on knowing characteristics of the variations of the signal and background. 

The first method is to partition the data into SKE sub-ensembles. This method is general, but 

can be impractical if there are large numbers of signal variations. The second method, and 

the one investigated in this work, was to partition the data into SKS sub-ensembles with 

signal variations that were small in comparison to background variations, and with signal 

and background variations sampled from a relatively continuous distribution. Other partition 

methods undoubtedly exist and may be needed for other applications. One potentially 

general approach is to use data-centric methods to form the ensembles. For example, 

clustering-based techniques have been proposed for image segmentation [53, 54]. These 

methods treat the data as a Gaussian mixture model to partition the data into individual 

Gaussian components. A similar technique could be developed to partition non-MVN 

channel-output data. Such an approach would be easier in the channel output domain since 

the number of channels is far smaller than the number of voxels in images where this 

clustering approach has been used for segmentation. As observed above, the non-MVN data 

in our experiments could be treated as a Gaussian mixture model, and thus a clustering 

approach like this would likely be appropriate.

An important question is what values of CMD and the determinant ratio are small enough to 

indicate sufficient homoscedasticity of the sub-ensembles in this study. The results in 

Section IV indirectly indicate that the homoscedasticity condition is satisfied sufficiently 

well with the values of the CMD and determinant ratio observed in this study. Thus, a CMD 

value of 0.03 and a determinant ratio of 1.25 may be regarded as a sufficient condition in 

similar studies. Whether these thresholds are sufficient in all cases or whether other values 
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would have been acceptable has not been addressed in this work. Detailed studies of the 

necessary levels of CMD and determinant ratio to provide homoscedasticity are needed.

It must also be emphasized that the investigated multi-template strategies are general 

strategies to handle non-MVN data, and are not limited to feature vectors generated using 

the anthropomorphic channels evaluated in this paper. The advantages of the strategies apply 

to other potentially non-MVN data, such as feature vectors from other anthropomorphic or 

efficient channels or even projection data. These multi-template strategies are also less 

computationally expensive when the number of sub-ensembles is much smaller than the 

possible number of signal types compared to the previous multi-template strategies for SKS 

and SKEV tasks.

VI. Conclusion

We have proposed a novel multi-template linear observer strategy for analyzing detection 

performance in datasets that are not MVN distributed. The strategy consists of dividing the 

data into sub-ensembles that are MVN and homoscedastic, applying different Linear 

Discriminant (LD) templates on the different sub-ensembles, and finally pooling the test 

statistics. We also adapted another multi-template strategy, initially proposed in the context 

of SKEV tasks, for non-MVN distributed data based on the sub-ensemble approach. Both of 

these multi-template strategies were compared to the conventional single-template HO 

strategy. The strategies were compared by applying them to optimize reconstruction 

parameters for the non-MVN data from a realistic simulated myocardial perfusion SPECT 

dataset. The two multi-template strategies yielded more optimal reconstruction parameters 

compared to the single-template HO strategy in terms of higher AUC for each sub-ensemble. 

The novel multi-template LD with pooled test statistics strategy is more theoretically 

justified and provided a higher AUC for the entire ensemble than the adapted multi-template 

strategy. The theory and results we presented provide strong evidence in favor of using the 

proposed multi-template LD strategy to classify non-MVN data such as that arising from the 

clinically realistic task with background and signal variations used in this study.
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Appendix A

Here we prove the homoscedasticity condition will be approximately satisfied if the signal 

variations are relatively small compared to the background variations and the signal and 

background are uncorrelated.

Suppose B and S are the vectors of background and signal data. The covariance matrices of 

B and S are expressed in the following two equations:

(A1)
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(A2)

where E[.] denotes the expectation of the corresponding vector or matrix.

The covariance matrix of B+S is expressed as

(A3)

When B and S are not correlated, we have

(A4)

Based on (A3) and (A4),

(A5)

When KS ≪ KB, KB+S ≈ KB, which means the covariance matrices of the background with 

and without the signal are approximately equal if the signal variations are relatively small 

compared to the background variations and if the signal and background are uncorrelated.

Appendix B

Here we prove Theorem 1 in II.C.

Let t be the decision threshold. For the jth sub-ensemble, the true-positive fraction (TPF) and 

false-positive fraction (FPF) can be expressed as

(B1)

and

(B2)

where λ is the test statistic value.
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Let Pj be the prevalence of the jth sub-ensemble. If we pool the test statistics from all sub-

ensembles we obtain

(B3)

and

(B4)

Note that

(B5)

Using the definition of the error function [55]

(B6)

and equations (B1)–(B4), we have

(B7)

and

(B8)

According to the definition of the AUC [31]

(B9)

Using equations (B7)–(B9) and the following property of the error function [55]
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(B10)

we can write the AUC as

(B11)

where we have written the AUC as a function of c2, c3,⋯, cN, since we are interested in 

finding the values of c2, c3,⋯, cN that maximize the AUC.

Using (B5) and expanding the terms in (B11), we can write the AUC as

(B12)

Note that the first and second terms in the above can be made independent of the constants 

c2, c3,⋯, cN by a change of variables. For example, in the first term, we could simply replace 

t − ci by t′. Thus, these terms can be ignored when maximizing the AUC. Denoting the last 

term by k (c2, c3,⋯, cN), we have:

(B13)

Replacing  by t′, and using the following property of the error function [55]
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(B14)

we can write equation (B13) as

(B15)

Differentiating the above expression with respect to c2, c3,⋯, cN and equating the result to 

zero yields the critical points at which k (c2, c3,⋯, cN), or alternatively, the AUC is 

maximized or minimized. Thus, differentiating the above expression with respect to any 

general cI, where I = 2,…, N, yields

(B16)

The above expression is equal to zero when the exponential terms are equal, which occurs 

when cI = c1(I = 2,…, N). In Appendix D, Hessian matrix of k (c2, c3,⋯,cN) is proved to be 

strictly negative definite at any (c2, c3,⋯,cN). Thus, when ci = cj (∀i, j ∈ [1, N]), the term k 
(c2, c3,⋯,cN), and hence the AUC, is maximized.

Appendix C

Here we prove theorem 2 in II.C.

For the jth sub-ensemble, assuming the input data are MVN distributed and homoscedastic, 

the probability distribution of the data vectors is

(C1)
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Then, from equation (C1), if , we can derive that pr (g|H0) = pr (g|H1), and pr 
(λ(g)|H0) = pr (λ(g) H1). This means that the distributions of the test statistics of the two 

hypotheses are equal (i.e., the test statistic distributions cross) when .

The LD test statistic defined by equation (4) at the point  is given by

(C2)

where .

Now, we have shown that shifting the HO test statistics by the term 

 leads to the distributions of the test statistics being 

equal at the point where the test statistic is zero.

Appendix D

Here we prove that the Hessian matrix of k (c2, c3,⋯, cN)is negative definite.

The Hessian matrix of k (c2, c3,⋯, cN) is

(D1)

where

(D2)
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and

(D3)

In order to simplify the equations, we write

(D4)

As proved in Appendix E, Xij > 0.

The Hessian matrix can be written as

From (D4) we see that

(D6)

Let ; using (D5) and (D6), we have

(D7)

When Y ≠ 0, we have  and  since Xij > 0.

So YT HY < 0, ∀Y ≠ 0, which means the Hessian matrix of k (c2,…,cN) is negative definite.
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Appendix E

Here we prove that Xij defined in (D4) is positive.

At the critical point, ci = cj = c1, ∀i, j ≥ 2, and since μj > 0, from (D4), we have Xij > 0.

At a non-critical point, suppose ci − cj > 0, ∀i, j ≥ 2.

(D5)

When ci − cj < μi + μj, we have

(E1)

and

(E2)

From (E1), (E2) and (D4), we have Xij > 0.

When ci − cj ≥ μi + μj, we have

(E3)
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(E4)

From (E3), (E4), and (D4), we have

(E5)

So for ci − cj > 0, ∀i, j ≥ 2, Xij > 0.

Similarly, we can prove that for ci−cj < 0, ∀i, j ≥ 2, Xij >0.

So, at any point, Xij > 0.
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Fig. 1. 
Illustration of linear observer test statistic distributions for the N sub-ensembles before 

shifting.
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Fig. 2. 
Illustration of linear observer test statistic distributions for the N sub-ensembles after 

shifting.
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Fig. 3. 
Sample images of six defect types 1–6 (from left to right) from the short axis view of 

myocardium, red arrows indicate defect locations.
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Fig. 4. 
Thirty bin histograms of the first channel feature value distribution for the entire ensemble 

(left) and for the SKS sub-ensemble corresponding to defect type 1, which contains the full 

mixture of anatomies present in the whole patient population (right) for Tc images at 

iteration number 5 (4 subsets/iteration) and cutoff frequency 0.1 pixel−1.
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Fig. 5. 
Covariance matrices under the two hypotheses (top row: defect-absent, bottom row: defect-

present) for the six sub-ensembles (the 1st to the 6th columns are corresponding to defect 

type 1 to 6, respectively) for Tc images at iteration number 5 (4 subsets/iteration) and cutoff 

frequency 0.1 pixel−1.
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Fig. 6. 
Diagram illustrating the data flow for the three observer strategies investigated. Sj stands for 

the jth sub-ensemble (1≤j≤N), where N is the total number of sub-ensembles. , Kgj, and 

ηj denote the mean data vector, the covariance matrix of the data, and the term defined in 

Equation (6) for the jth sub-ensemble, respectively.
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Fig. 7. 
Sixty-four bin histograms of HO test statistics for different defect types for Tc at iteration 

number 1 (4 subsets/iteration) and cutoff frequency 0.1 pixel−1. The graphs, from top to 

bottom, are for defect types 1–6, respectively.
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Fig. 8. 
Sixty-four bin histograms of LD test statistics for different defect types for Tc at iteration 

number 1 (4 subsets/iteration) and cutoff frequency 0.1 pixel−1. The graphs, from top to 

bottom, are for defect types 1–6, respectively
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Fig. 9. 
AUC values with the optimal parameters obtained by three observer strategies.
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Fig. 10. 
Optimal parameters for all defect types for Tc (left) and Tl (right) using (top to bottom): 

single-template HO, multi-template HO with averaged AUCs, and multi-template LD with 

pooled test statistics strategies. The crosses represent the set of parameters that achieved the 

maximum AUC. The filled circles represent the parameter points where the difference in 

AUC with respect to the maximum AUC was not statistically significant. The contour line 

indicates the region where AUC values differed from the optimal one by no more than 0.01, 

a difference considered clinically important. We used 4 subsets/iteration during the OS-EM 

reconstructions.
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Fig. 11. 
Thirty bin feature vector histograms of Channel 4 outputs for Tc (left) and Tl (right) for 

defect types 1 (top, anterior defect with 5% extent and 50% severity) and 2 (bottom, inferior 

defect with 5% extent and 50% severity) using 5 iterations (4 subsets/iteration) and a cutoff 

frequency of 0.1 pixel−1.
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Fig. 12. 
AUC plot for Tc of three observer strategies for different cutoff frequencies (pixel−1) at 

iterations 2 (upper) and 60 (lower). We used 4 subsets/iteration during the OS-EM 

reconstructions.
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Fig. 13. 
AUC plot for Tc of three observer strategies for different iteration numbers at cutoff 

frequencies 0.08 (upper) and 0.24 (lower) pixel-1. We used 4 subsets/iteration during the 

OS-EM reconstructions.
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TABLE I

Defect Parameters

Defect type Location Extent (%) Severity (%)

1 Anterior 5 50

2 Inferior 5 50

3 Anterior 10 25

4 Inferior 10 25

5 Anterior 25 10

6 Inferior 25 10
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TABLE II

Mean, minimum, and Maximum CMD for all sub-ensembles and all reconstruction parameters

Mean Minimum Maximum

Tc 0.0293 0.0004 0.1488

Tl 0.0144 0.0005 0.0602
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TABLE III

Mean, minimum, and maximum determinant ratio for all sub-ensembles and all reconstruction parameters

Mean Minimum Maximum

Tc 1.25 1.01 2.19

Tl 1.08 1.01 1.25
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TABLE IV

Differences Between AUC Values for the Multi-template LD with Pooled Test Statistics and Single-Template 

HO Strategies

Mean Minimum Maximum

Tc 0.054±0.005 0.033±0.004 0.082±0.005

Tl 0.029±0.006 0.024±0.006 0.042±0.006

The values after ± are the standard deviations of the AUCs.
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TABLE V

Differences Between AUC Values for the Multi-template LD with Pooled Test Statistics and Multi-Template 

HO with averaged AUCs Strategies

Mean Minimum Maximum

Tc 0.025±0.004 0.005±0.006 0.038±0.005

Tl 0.015±0.006 0.003±0.006 0.023±0.006

The values after ± are the standard deviations of the AUCs.
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TABLE VI

Comparison of AUCs for Tc for Individual Sub-ensemble Using the Optimal Parameters Obtained Using the 

Three Observer Strategies

Sub-ensemble/defect type Single-template HO Multi-template HO with averaged 
AUCs

Multi-template LD with pooled test 
statistics

1 0.968±0.003 0.980±0.002 0.977±0.003

2 0.949±0.004 0.937±0.005 0.949±0.004a

3 0.954±0.004 0.950±0.004a 0.957±0.004a

4 0.899±0.006 0.877±0.007 0.900±0.006a

5 0.709±0.011 0.793±0.009 0.774±0.010

6 0.674±0.011 0.724±0.011 0.702±0.011

The AUC for each sub-ensemble was calculated using the single-template HO strategy and values after ± are the standard deviations of the AUCs.

a
The AUC difference compared to the single-template strategy was either not statistically significant (p > 0.05) or not clinically important 

(difference < 0.01).
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