
Systems characterization of differential plasma metabolome 
perturbations following thrombotic and non-thrombotic 
myocardial infarction

Patrick J. Trainor, MS, MA,
Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Diabetes 
and Obesity Center, University of Louisville

Bradford G. Hill, PhD,
Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Diabetes 
and Obesity Center, University of Louisville

Samantha M. Carlisle, MS,
Department of Pharmacology and Toxicology, University of Louisville

Eric C. Rouchka, DSc,
Department of Computer Engineering and Computer Science, University of Louisville

Shesh N. Rai, PhD,
Department of Bioinformatics and Biostatistics, University of Louisville

Aruni Bhatnagar, PhD, and
Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Diabetes 
and Obesity Center, University of Louisville

Andrew P. DeFilippis, MD, MSc
Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Diabetes 
and Obesity Center, University of Louisville, KentuckyOne/Jewish Hospital, Johns Hopkins 
University

Abstract

Myocardial infarction (MI) is an acute event characterized by myocardial necrosis. Thrombotic MI 

is caused by spontaneous atherosclerotic plaque disruption that results in a coronary thrombus; 

Non-thrombotic MI occurs secondary to oxygen supply-demand mismatch. We sought to 

characterize the differential metabolic perturbations associated with these subtypes utilizing a 

Corresponding Author: Andrew P. DeFilippis, MD, MSc, APDeFi01@louisville.edu, University of Louisville, 580 S. Preston St., 
Louisville, KY 40202. 

Compliance with ethical standards:
All authors declare that they have no conflicts of interest. All procedures performed in studies involving human participants were in 
accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration 
and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in 
the study.

Disclosures:
Sample measurements were made by Metabolon, Duram, North Carolina. Coronary aspiration material was evaluated at CVPath 
Institute, Inc., Gaithersburg, Maryland. Coronary angiography was evaluated at the Johns Hopkins Quantitative Angiographic Core 
Laboratory, Baltimore, Maryland. No author has any relationships with industry pertinent to this work.

HHS Public Access
Author manuscript
J Proteomics. Author manuscript; available in PMC 2018 May 08.

Published in final edited form as:
J Proteomics. 2017 May 08; 160: 38–46. doi:10.1016/j.jprot.2017.03.014.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systems approach. Subjects presenting with thrombotic MI, non-thrombotic MI and stable 

coronary artery disease (CAD) were included. Whole blood was collected at two acute time-points 

and at a time-point representing the quiescent stable disease state. Plasma metabolites were 

analyzed by untargeted UPLC-MS/MS and GC-MS. A weighted network was constructed, and 

modules were determined from the resulting topology. To determine perturbed modules, an 

enrichment analysis for metabolites that demonstrated between-group differences in temporal 

change across the disease state transition was then conducted.

Biological Significance—We report evidence of metabolic perturbations of acute MI and 

determine perturbations specific to thrombotic MI. Specifically, a module characterized by 

elevated glucocorticoid steroid metabolites following acute MI showed greatest perturbation 

following thrombotic MI. Modules characterized by elevated pregnenolone metabolites, 

monoacylglycerols, and acylcarnitines were perturbed following acute MI. A module 

characterized by a decrease in plasma amino acids following thrombotic MI was differentially 

perturbed between MI subtypes.
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1. Introduction

Heart disease is the most prevalent cause of global mortality1. While heart disease is a 

ubiquitous disease with respect to prevalence, there is significant heterogeneity in 

outcomes2–4 and in the incidence and presentation of acute events such as acute myocardial 

infarction (AMI)5. Given this heterogeneity, elucidating the metabolic perturbations 

associated with the transition from a stable disease state such as stable coronary artery 

disease (sCAD), to an acute event such as AMI is of critical importance. While myocardial 

necrosis is a pathological characteristic common to all acute myocardial infarctions, there 

are multiple proximate causes of AMI6. A classification system based on etiology has been 

developed and includes 6 types6. Of interest is differentiating AMI caused by spontaneous 

atherosclerotic plaque disruption that results in a coronary thrombus (thrombotic MI), versus 

AMI caused by a deficit in oxygen supply secondary to other non-thrombotic causes such as 

vasospasm or stress cardiomyopathy. This distinction is important as the course of treatment 

differs between types and misclassification may result in negative outcomes such as 

iatrogenic bleeding7.

The pathophysiology of thrombotic MI can be conceptualized as a “perfect storm” in which 

a vulnerable atherosclerotic plaque ruptures or is disrupted in the presence of thrombogenic 

blood8. While plaque rupture or disruption is a prerequisite for coronary thrombosis, it is not 

sufficient. The insufficiency has been demonstrated by autopsy study of cases of sudden 
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cardiac death in which evidence of a healing thrombus (as opposed to pathological) was 

found in 69% of cases9. This characterization of thrombotic MI suggests that a biological 

processes or metabolic response distinct from a plaque rupture or disruption may provide 

sufficient amplification for pathological thrombosis. Elucidation of such amplifying factors 

in thrombotic MI includes identifying metabolites that are differentially abundant at the time 

of thrombotic MI compared to a quiescent stable disease state. To demonstrate specificity for 

thrombotic MI, these factors must not be differentially abundant secondary to downstream 

ischemia/necrosis or medical and pharmacological interventions that individuals undergoing 

MI receive. Furthermore, to the authors knowledge, an examination of the metabolic 

perturbations following AMI differentiated by etiological subtype (thrombotic versus non-

thrombotic) has not yet been conducted. We have thus executed such a study evaluating the 

plasma metabolome of subjects experiencing AMI differentiated by subtype at the acute 

event state and the quiescent stable disease state.

Metabolic phenotyping is well suited for studying disease state transitions as changes in 

metabolite concentrations are dependent on genetic factors, environmental influences, and 

gene-environment interactions10. Since blood plasma functions as a liquid carrier, plasma 

contains enzymes, lipoproteins, hormones, nutrients, metabolic waste products, and many 

other small molecules dissolved or in suspension11 it has the advantage of being a repository 

of metabolic changes from all tissues and therefore reflective of the state of the entire 

organism at the time of sampling. However, attributing the root cause of changes in 

metabolite concentration in plasma or serum across state transitions is not straightforward. 

Developing a mechanistic reconstruction of metabolic pathway impacts is complicated by 

the following: (1) plasma contains intermediates and products of multiple metabolic 

pathways, (2) the tissue source of metabolites in plasma may not be known, and (3) curated 

metabolic pathway models may not generalize to plasma when a preponderance of the 

model is localized to unobserved cellular compartments such as mitochondria. 

Consequently, a data-dependent network reconstruction of the plasma metabolome for 

determining related sets of metabolites was conducted. This is consistent with the function 

of metabolites as substrates, products, and regulatory factors within discrete biological 

processes.

In this study, we recruited three patient groups: (1) subjects presenting with acute thrombotic 

MI, (2) subjects presenting with acute non-thrombotic MI, and (3) subjects presenting with 

stable CAD undergoing cardiac catheterization. Plasma metabolites were extracted from 

whole blood collected from each subject during both the acute/procedural phase and at a 

follow-up time-point (approximately 3 months later) regarded as a subject’s quiescent stable 

disease phase. We used a data-dependent strategy to identify “modules” of related 

metabolites based on network topology. The methodology used for discovering metabolite 

modules belongs to a class of techniques known as “weighted network analysis”12 and was 

originally developed as a framework for analyzing gene co-expression networks13. After 

module discovery, we then sought to evaluate whether any of the modules were significantly 

associated with the transition from the stable disease state to the acute disease state and 

demonstrated phenotype specificity. We report multiple modules enriched for related 

metabolites that distinguish acute MI from stable CAD, a module enriched for metabolites 
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differing between thrombotic MI and non-thrombotic MI, and a module enriched for 

differences across all three groups.

2. Methods

A graphical overview of the analytical approach utilized in this study is presented in the 

graphical abstract (Figure 1).

2.1. Study cohort

A patient cohort was recruited to allow for determining the unique plasma metabolomic 

signature of AMI differentiated by proximate cause14. A novel criteria was developed for 

discriminating between thrombotic and non-thrombotic MI patients as widely accepted 

guidelines for such discrimination were unavailable. This criteria was sufficiently stringent 

to minimize misclassification through the elimination of borderline/non-definitive cases. In 

addition to enrolling AMI patients, subjects with stable coronary artery disease presenting 

for an elective procedure requiring cardiac catheterization were enrolled. As thrombotic MI 

is defined with respect to a present characteristic (thrombosis) while non-thrombotic MI is 

defined by an absence of a characteristic, our cohort was suitable for demonstrating 

specificity for MI secondary to thrombosis with proper control. Specifically, the non-

thrombotic MI group was utilized to control for the presence of metabolic changes 

associated with ischemia and myocardial necrosis. The stable CAD group was used to 

control for the presence of underlying constitutive atherosclerotic disease factors that would 

be present in thrombotic MI subjects but may not be present in non-thrombotic MI subjects. 

Both groups were utilized to control for metabolic changes associated with cardiac 

catheterization. Participants were recruited from two hospitals following approval by the 

University of Louisville Institutional Review Board. Participants were provided with written 

informed consent and the study was conducted in accordance with the ethical standards 

defined in the 1964 Helsinki declaration. A total of 11 thrombotic MI, 12 non-thrombotic 

MI, and 15 stable CAD subjects were eligible and enrolled in the study. Further details on 

the human subject cohort and enrollment criterion are provided in the Supplement 

(Supplementary Table 1).

2.2. Plasma metabolomics

Whole blood was collected from study subjects immediately prior to cardiac catheterization 

(denoted T0) and 6-hours post catheterization (denoted T6). These samples represented 

acute phase time-points for MI subjects. To represent a subject’s quiescent phase, whole 

blood was again collected at a follow-up time-point approximately 3 months after the 

cardiac catheterization procedure. Plasma samples were then prepared for identification and 

quantification of metabolite relative abundances by Metabolon, Inc (Research Triangle Park, 

NC). The metabolite extraction process was conducted using the Microlab STAR® system, 

an automated liquid handling workstation (Hamilton Company, Reno, NV). After adding a 

recovery standard, methanol was added to precipitate proteins and vigorous shaking was 

applied using a GenoGrinder 2000 (Glen Mills, Metuchen, NJ). The resulting extract 

containing metabolites was divided into five aliquots—one each for positive and negative ion 

mode ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 
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with electrospray ionization, one for polar metabolite quantification (UPLC-MS/MS with 

negative ion mode electrospray ionization), and one for gas chromatography-mass 

spectrometry (GC-MS) analysis. UPLC-MS/MS analysis was conducted using a Waters 

ACQUITY UPLC (Milford, MA) and a Thermo Scientific (Waltham, MA) Q-Exactive high 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization 

(HESI-II) source and Orbitrap mass analyzer operated with a scanning range from 80–1000 

m/z and 35,000 mass resolution. Separate Waters UPLC BEH C18 (2.1×100mm, 1.7 μm) 

columns were used for positive and negative ion optimized conditions using water and 

methanol containing 0.1% formic acid (positive ion optimization) or water and acetonitrile 

with 10mM ammonium formate (negative ion optimization). The aliquots for GC-MS 

analysis were dried under vacuum for a minimum of 18 hours and derivatized under dried 

nitrogen using bistrimethyl-silyltrifluoroacetamide. Each aliquot was then separated on a 5% 

diphenyl/95% dimethyl polysiloxane fused silica column (20 m × 0.18 mm ID; 0.18 um film 

thickness) with helium as the carrier gas and a temperature ramp from 60° to 340°C in a 

17.5 min period. GC-MS analysis was then conducted utilizing a Thermo-Finnigan Trace 

DSQ fast-scanning single-quadrupole mass spectrometer with electron impact ionization. 

The scan range was from 50–750 m/z and had unit mass resolving power. Molecular 

identification was performed by matching on retention index, mass to charge ratio, and 

spectral data from Metabolon’s library of known standards and unknown molecules that 

were detected in other projects. Unless specified as “tentative identification” all metabolites 

were identified as Metabolomics Standards Initiative (MSI) level 1 or MSI level 2 (denoted 

with a *). After identification of peaks, molecular abundances were quantified using area-

under-the-curve. If the molecular abundance of a biochemical could not be quantified for a 

sample, the minimum value of the remaining samples was imputed. Raw biochemical data 

was then scaled by dividing each abundance by the median value and log-transformed. The 

acute phase was represented by the average of T0 and T6 abundances to increase the 

stability of estimates and to reduce the effects of differential time from event onset 

(unknown) to catheterization.

2.3. Statistical analysis

2.3.1. Cohort characteristics—Cohort characteristics were summarized by study group. 

Relevant summary statistics (mean, standard deviation, median, and interquartile range) 

were produced for summarizing continuous characteristics by study group. For 

approximately normally distributed continuous characteristics, one-way analysis of variance 

(ANOVA) F -test p-values are reported for comparing distributions across study groups. For 

continuous characteristics that were not approximately normally distributed, Kruskal-Wallis 

test p-values are reported. Frequencies, percentages, and Fisher’s exact test p-values are 

reported for comparing categorical characteristics between study groups.

2.3.2. Weighted network analysis of plasma metabolites—To define groups of 

functionally related metabolites, henceforth referred to as modules, a weighted network 

analysis was conducted12. While directly observing the topology of a metabolic pathway in 

circulation is often not feasible (e.g. pathways that are localized to cellular compartments), a 

weighted network approach allows for discovering modules of metabolites that exhibit 

significant topological overlap and are thus more likely to be related via a common 
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biological process or related via disease-associated regulation such as the response to 

ischemia. An imprecise conceptual definition of topological overlap is the degree to which 

two metabolites share a common set of neighbor metabolites with respect to a network 

constructed from adjacencies. Adjacency was determined by examining the strength of the 

abundance correlation between pairs of metabolites. A weighted network was constructed 

using the “Weighted Gene Co-Expression Network Analysis” (WGCNA) methodology 

pioneered by Zhang and Horvath13. While this methodology was originally formulated for 

examining gene co-expression networks, the methodology is sufficiently general for 

examining metabolite co-abundance. Our application of this methodology consisted of the 

following steps: (1) generating a scale-free weighted network from the acute-phase 

metabolite abundances averaged within-subject, (2) detection of modules from the weighted 

network using they Dynamic Hybrid Cutting algorithm15, (3) determination of univariate 

statistical significance for each metabolite—the change from the quiescent stable disease 

state to acute event was compared between groups, (4) determination of which metabolite 

modules were enriched for disease state-associated metabolite changes using the univariate 

significance determined in the previous step. For determining statistical significance, the 

Gene Set Enrichment Analysis algorithm (GSEA)16, 17 was modified to accommodate the 

test statistic employed. The GSEA algorithm returns a weighted Kolmogorov–Smirnov-like 

statistic that can be used to determine if a gene or metabolite list ranked by statistical 

significance is differentially abundant for phenotype correlations based on list position17. 

We have modified the algorithm for our task of determining significance-weighted 

enrichment of pairwise comparisons in metabolite abundances across time. As three 

statistical tests were conducted for each module, we report q-values for protecting the False 

Discovery Rate (FDR) rather than unadjusted p-values18. Further details of the construction 

of the weighted network, module discovery procedure, and determination of statistical 

significance are provided in the supplement.

3. Results

Descriptive statistics for the patient subject cohort are presented in Table 1. The prevalence 

of diabetes differed between study groups (p = 0.03) with 40.0% in the stable CAD group, 

0.0% in the non-thrombotic MI group, and 18.2% in the thrombotic MI group. Likewise, the 

prevalence of dyslipidemia was significantly different between study groups (p = 0.003 with 

86.7% in the stable CAD group, 33.3% in the non-thrombotic MI group, and 54.5% in the 

thrombotic MI group. History of atherosclerosis (MI, CAD, percutaneous coronary 

intervention [PCI], and coronary artery bypass graft [CABG]), baseline troponin, peak 

troponin, at least one vessel with >50% coronary stenosis indicator, and ST elevation on an 

electrocardiogram (EKG) at baseline each differed significantly between study groups; each 

of these characteristics were used to define study group phenotypes and therefore differences 

were an artifact of study group inclusion criteria. Baseline glucose and heart rate differed 

between study groups (p = 0.03 and p = 0.01, respectively). Finally, the proportion of 

subjects who underwent PCI at the time of enrollment differed between study groups (p < 

0.0001) with 13.3% of the stable CAD subjects undergoing PCI compared to 0.0% of non-

thrombotic MI subjects, and 100.0% of the thrombotic MI subjects.
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From the 1,032 metabolites quantified, 25 unique modules covering 504 plasma metabolites 

were detected from the weighted plasma metabolome network. The results of the module 

discovery process can be visualized in Figure 2. This dendrogram shows the degree of co-

localization of metabolites within the weighted network and the propensity of metabolites in 

a cluster to have overlapping sets of neighbors. Clusters determined from analysis of the 

dendrogram by the Dynamic Hybrid Tree Cutting algorithm are shown as colored bands. 

The significance of each of these identified metabolite modules was determined by 

quantifying the enrichment of each module for quiescent to acute metabolite abundance 

changes that differed between study groups using a GSEA procedure. As an example, a 

module that was enriched for quiescent to acute abundance changes that differed between 

thrombotic and non-thrombotic MI subjects would indicate that this module contained 

significantly more metabolites that were differentially perturbed between MI subtypes than 

would be expected by chance alone. Supplemental Figure 1 shows the maximum enrichment 

score attained by each of the metabolite modules in the GSEA procedure for determining 

statistical significance. Of these modules, 5 modules comprised of 115 plasma metabolites 

differed significantly (q < 0.05 between two or more groups. These modules are 

characterized by biochemical composition in Table 2. As can be seen in Figure 3 (Venn 

diagram), 4/5 modules were enriched for differences between MI (thrombotic or non-

thrombotic) and stable CAD, while 1 module was enriched for differences between all three 

groups, and 1 module was enriched for differences between thrombotic and non-thrombotic 

MI. Graphical summaries for each of these significant modules are presented as 

Supplemental Figure 2. These figures show the co-location and degree of shared neighbors 

(topological overlap) between the metabolites by a dendrogram while a heatmap shows the 

average metabolite abundances across time (from quiescent to acute) and by study group.

Figure 4 presents all the plasma metabolites that were members of significantly enriched 

modules as a circos plot. In this plot, the abundance change from the quiescent to acute state 

in stable CAD is provided as a reference line. The abundance changes across time are then 

presented for the acute MI groups in comparison. Pairwise topological overlap across 

modules is presented after thresholding. This indicates that some metabolites, notably those 

in the module characterized by glucocorticoids and C21 steroid metabolites, exhibit 

connections across modules. Module E, which differed between both acute MI groups and 

the stable CAD group, consisted of eight 1-monoacylglycerols and 2-monoacylgylcerols in 

addition to N-palmitoyl glycine. Each of the metabolites of Module E, with the exception of 

N-palmitoyl glycine, exhibited increased metabolite abundance following MI compared to 

the quiescent stable disease state. Specifically, these metabolites had acute to quiescent 

abundance ratios greater than 1 in the acute MI groups. Module K consisted of 9 

pregnenelone metabolites and two unknowns. The metabolites of Module K generally 

exhibited increased metabolite relative abundances in the acute phase in acute MI but not 

stable CAD subjects. Pregnenolone sulfate was a singular exception which did not have an 

abundance ratio greater than 1 in the non-thrombotic MI group. Module Y, which also 

differed between both acute MI groups and the stable CAD group primarily consisted of 

unknown metabolites (18). The known metabolites consisted of ethylmalonate, 3-

methyladipate, 3-methylglutarylcarnitine, acetylcarnitine, and hydroxybutyrylcarnitine. 

Module V was significantly enriched for differences between the acute MI groups. This 
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module consisted of 10 amino acids and four gamma-glutamyl amino acids. Each of the 

amino acids/dipeptides in Module V demonstrated decreased abundance following MI in the 

thrombotic MI group, except for gamma-glutamyltryptophan. This decrease in plasma amino 

acids was not observed following non-thrombotic MI or in the stable CAD subjects. This 

module is presented in Figure 5.

One module, Module L, was enriched for pairwise temporal differences between each of the 

study groups in metabolite abundance change. Module L consisted of cortisol, 

dihydrocortisol, corticosterone, C21-steroid metabolites, and 3 unknowns. A systematic 

trend was noted with acute to quiescent abundance ratios being greatest in the thrombotic MI 

study group, relatively smaller ratios in the non-thrombotic MI group compared to the 

thrombotic MI study group, and relatively smaller ratios in the stable CAD group relative to 

the non-thrombotic MI group. Qualitatively, this indicates elevation of these metabolites 

following MI with greater elevation in thrombotic as opposed to non-thrombotic subjects 

with little change observed in stable CAD subjects.

4. Discussion

This study achieved two objectives. First, we identified groups of related metabolites in a 

medium-specific (blood plasma) and state-specific manner by interrogating the topology of a 

weighted network constructed from the plasma metabolome. Second, we utilized the 

identified modules to examine the differential metabolic perturbations associated with 

thrombotic MI and non-thrombotic MI.

Module Discovery and Enrichment Analysis

Given that metabolic processes are linked biochemical reactions, evaluating metabolic 

changes associated with a disease state transition requires defining sets of “related” 

metabolites. Once a set is defined, disease state changes may be evaluated using appropriate 

multivariate statistics or by conducting an enrichment analysis. In this analysis, we have 

used the network topology of an unbiased data-dependent weighted network to determine 

the relatedness of metabolites. This approach is predicated on the assumption that while the 

pairwise correlations between metabolites in a metabolic pathway may decrease 

dramatically with reaction distance, pairwise topological overlap should be preserved. 

Interestingly, many of the modules that we “discovered” exhibited a degree of structural 

homogeneity, which we submit evidences the robustness of this approach for determining 

relatedness. For example, all of the metabolites in Module V are amino acids or gamma-

glutamyl amino acids and 8/9 metabolites in Module E are monoacylglycerols. Of the 

enriched modules, we found that the majority (4/5: Modules E, K, L, and Y) exhibited 

differences between thrombotic MI and stable CAD; and between non-thrombotic MI and 

stable CAD. Within these modules a consistent pattern emerged: individual metabolites were 

elevated following acute MI relative to stable CAD. Given that this qualitative pattern was 

similar in both MI groups in comparison to stable CAD, we hypothesize that the state 

changes observed in these modules are indicative of myocardial ischemia, necrosis, and/or 

reperfusion injury. Two out of five of the significantly enriched modules exhibited quiescent 

stable disease to acute event state changes that differed between the acute MI subgroups. We 
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hypothesize that the changes observed within these modules may indicate plaque disruption 

and/or resultant thrombosis as opposed to the effect of ischemia, necrosis, or reperfusion.

Steroid Hormones

Two of the four modules we hypothesize to contain metabolites indicative of myocardial 

ischemia and necrosis were characterized by steroid hormone metabolites. Module K was 

characterized by pregnenolone metabolites such as pregnenolone sulfate, 21-

hydroxypregnenolone disulfate, pregnenediol-3-glucuronine, and pregnen-diol disulfate 

(pregnanediol). The increase in pregnenolome metabolites may be due to stimulation of the 

hypothalamic-pituitary-adrenal axis following acute MI. Stimulation of this axis has been 

noted following acute MI with levels of both adrenocorticotropic hormone (ACTH)19 and 

copeptin20 increasing acutely. Changes in circulating levels of ACTH have been observed 

within hours of acute myocardial infarction19, 21. ACTH is a pituitary hormone that regulates 

steroid hormone biosynthesis that has both short-term (by increasing bioavailability of 

cholesterol) and long-term regulatory effects (by stimulating transcription of steroidogenic 

enzymes)22. The ACTH-stimulated increased bioavailability of cholesterol and steroidogenic 

enzymes may explain the increased abundance of pregnenolone metabolites following acute 

myocardial infarction. As pregnenolone is the precursor to mineralocorticoids, 

glucocorticoids, androgens, and estrogens23 and the synthesis of pregnenolone from 

cholesterol is the rate-limiting step in steroidogenesis22, the increased availability of 

pregnenolone may increase the flux of metabolites through other steroid hormone 

biosynthetic pathways.

Further evidence of increased flux through steroid hormone biosynthetic pathways for which 

pregnenolone is a precursor is exhibited in Module L. This module contained C21 

corticosteroid metabolites (cortisol, corticosterone, dihydrocortisol [tentative ID], and 

tentatively identified aldosterone conjugates). This module was enriched for pairwise 

differences between all three study groups; both acute MI groups showed increases in these 

hormones following acute events, with significantly greater increases observed in thrombotic 

MI versus non-thrombotic MI. We posit two non-mutually exclusive mechanisms explaining 

this observation. First, corticosteroid elevation may be an acute response to thrombosis via 

platelet-activating factor (PAF). PAF is a phospholipid signaling molecule that acts through a 

G-protein coupled receptor and is implicated in thrombotic and inflammatory cascades24. 

PAF stimulates platelet activation and aggregation as well as participates in a pathway that 

results in leukocyte adherence to endothelial surfaces24. Interestingly, cross-regulation of 

PAF and glucocorticoids has been demonstrated in animal models. Adding PAF to the 

perfused adrenal glands of canines25 and guinea pigs26 has been shown to increase 

glucocorticoid output. Shimada, Hirose, Matsumoto and Aikawa26 have also shown that 

glucocorticoids suppress the production of PAF and have suggested that this negative-

feedback mechanism might represent an adaptive host response. Further evidence of this was 

observed in a case-control study of patients who died within 30 days of acute MI versus 

those who survived. Reynolds, et al.27 observed significantly lower cortisol levels in patients 

who died—this effect was especially significant in the bottom quartile after adjusting for age 

and cardiac troponin concentration. Corticosteroid elevation as a response to PAF and 

related regulatory mechanisms would suggest that such elevation should be observed in 
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thrombotic MI but not in non-thrombotic MI. However, our results show relative temporal 

elevation in non-thrombotic MI to an extent greater that that observed in stable CAD 

subjects but less than that observed in thrombotic MI subjects. This finding highlights the 

challenge in determining whether corticosteroid elevation following thrombotic MI is 

indicative of an amplified stress response in thrombotic MI relative to non-thrombotic MI or 

a response to thrombosis.

Monoacylglycerols and Lipase activity

Consistent with the observed increase in pregnenolone and corticosteroid hormone 

metabolites, increased ACTH following acute MI may explain the increased abundance of 

monoacylglycerols. All the monoacylglycerols in Module E demonstrated increased 

concentrations in plasma following thrombotic and non-thrombotic MI relative to the stable 

quiescent state. This pattern of elevation was not observed in stable CAD subjects. The 

concentration of fatty acids in blood is regulated by the enzyme hormone-sensitive lipase 

(HSL)23 which are stimulated by ACTH as well as catecholamines, beta adrenergic agonists, 

and glucagon via cyclic AMP dependent protein kinase (PKA)28. HSL catalyzes the 

hydrolysis of the C1 and C3 fatty acids from triacylglycerol which results in 

monoacylglycerols that can then be hydrolyzed by monoacylglycerol lipase29, 30. HSL also 

catalyzes the hydrolysis of other substrates including monoacylglycerol, diacylglycerol, and 

cholesteryl esters28. In addition to ACTH stimulated lipolysis resulting in increased plasma 

fatty acid and monoacylglycerol concentrations, cortisol has also been shown to stimulate 

lipolysis in a human study in which short-duration hypercortisolemia (excess cortisol) was 

induced31.

Plasma Amino Acids

The remaining module that was enriched for differences between the acute MI subgroups in 

quiescent to acute event metabolite changes was Module V. This module was characterized 

by amino acids and gamma-glutamyl amino acids; the trend observed in this module was for 

these metabolites to be depressed following thrombotic MI but not in non-thrombotic MI or 

in stable CAD subjects. A decrease in circulating amino acids coincident with increased 

levels corticosteroids following thrombotic myocardial infarction is a surprising finding. It 

has been established that protein catabolism increases following secretion of 

glucocorticoids31, 32. Hypercortisolemia induced catabolism of proteins has been shown to 

increase the flux of certain amino acids33. It is thus unlikely that a decrease in plasma amino 

acids following acute myocardial infarction results from the glucocorticoid response 

observed in thrombotic MI. Rather, glucocorticoid induced protein catabolism may mask a 

more precipitous general decrease in circulating amino acids. A decrease in plasma amino 

acids may indicate increased catabolism of amino acids to furnish adenosine triphosphate 

(ATP) for the ischemic heart. All of the amino acids in the module can be catabolized to 

produce ATP; nine out of ten can be catabolized to furnish precursors of gluconeogenesis, 

and four can be used as substrates for ketogenesis23. Under ischemic conditions, the heart 

must utilize metabolic substrates that do not require oxygen34; hence, the inability to oxidize 

fatty acids may lead to increased utilization of amino acids. If plasma amino acids decrease 

specifically as a result of increased catabolism to meet the energy needs of the ischemic 

heart, then this signal should also be found in non-thrombotic MI subjects. However, we did 
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not observe this result. A decrease in plasma amino acid concentrations observed in 

thrombotic but not non-thrombotic MI subjects would be consistent with an increase in 

protein synthesis in activated platelets. Weyrich et al.35 provide a thorough review of 

evidence showing that platelets synthesize proteins, and that platelet activation results in 

signal dependent translation of factors central to thrombosis such as tissue factor (TF)36 and 

plasminogen activator inhibitor-1 (PAI-1)37. Given the important clinical consequence of 

thrombosis, this finding of diminished circulating amino acids following thrombotic MI 

deserves further exploration.

Limitations

The process utilized to define modules has the limitation that a substantial number of 

metabolites quantified were not assigned to a module. Metabolites may not have been 

assigned to a module either because they did not exhibit enough topological overlap with 

other metabolites or because a group of metabolites with a high degree of topological 

overlap was too small in number. Consequently, the temporal change in these metabolites 

from quiescent stable disease state to acute event were not evaluated. We justify not 

considering these metabolites as our objective was to understand how systems of metabolites 

reflect metabolic perturbations. Another limitation of this analysis was the small cohort size. 

A larger sample size would facilitate examining how other covariates such as gender, race, 

and other comorbidities mediate the metabolic changes associated with acute myocardial 

infarction. Our use of each subject as his/her own reference controls for many potential 

confounders (e.g. a subject’s gender and race does not change across study time-points) and 

increased statistical power relative to an unpaired design.

Conclusion

We successfully identified modules of topologically related metabolites and analyzed these 

modules to determine plasma metabolome perturbations that are associated with thrombotic 

and non-thrombotic MI. We observed evidence of hypothalamic-pituitary-adrenal axis 

activation following acute myocardial infarction and evidence that this activation may be 

greater in thrombotic as opposed to non-thrombotic MI. Further, a precipitous increase in 

monoacylglycerol abundance was observed in plasma following acute MI indicating an 

increase of triacylglycerol hydrolysis common to both types of acute MI. We report a novel 

finding that a decrease in plasma amino acids and gamma-glutamyl amino acids is 

associated with thrombotic but not non-thrombotic MI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical Abstract: (A) Study phenotypes. Thrombotic MI subjects presented with a 

pathological thrombus that occluded blood flow in a coronary artery. Non-thrombotic MI 

subjects presented with myocardial infarction secondary to other causes—all involving an 

oxygen supply deficit. Stable coronary artery disease subjects were included to ensure that 

constitutive atherosclerotic disease factors were controlled for in examining thrombotic MI. 

(B) Metabolite abundances were evaluated across time, with sampling in the acute phase 

compared to a follow-up time-point representing the quiescent stable disease state 

approximately 3 months following MI. (C) Modules of related metabolites were determined 

by constructing a weighted network from the plasma metabolome and interrogating the 

network for clusters. (D) Modules were evaluated for enrichment of metabolites that 

demonstrated differential change across time (change that differed between study groups). 

Light blue arrows indicate chronology of analytical approach.
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Figure 2. Metabolite module discovery
Hierarchical clustering dendrogram of the 1,032 metabolites quantified by untargeted mass 

spectrometry. After constructing a weighted network, 25 modules were identified by the 

Dynamic Hybrid Tree Cutting Algorithm. Lower join heights indicate that metabolites in a 

cluster were co-located within the network and had overlapping sets of neighbors. 504 

Individual metabolites were uniquely assigned to one module (shown as a colored panel) or 

remained unassigned (colored in light grey).
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Figure 3. 
Venn diagram of modules with significant enrichment.
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Figure 4. Significantly enriched modules
Circle plot showing the normalized relative change from the quiescent stable disease state to 

the acute event state for metabolites in the 5 modules enriched for differences across groups. 

Stable CAD values are used as a reference and are represented by a solid black line. 

Thrombotic MI values are represented by a red line while non-thrombotic MI are 

represented by a blue line. Colored lines that span the center of the circle represents pairwise 

metabolite topological overlap above a fixed threshold.
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Figure 5. 
Clustering dendrogram of metabolites in Module V. Remaining modules are depicted 

similarly in the Supplement. The dendrogram indicates proximity with respect to 

overlapping sets of neighbors between metabolites. Average log-transformed relative change 

from the quiescent stable disease state to the acute event state for each metabolite is shown 

below the dendrogram by study group.
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Table 1

Cohort Characteristics

Variable Thrombotic MI (N=11) Non-Thrombotic MI (N=12) Stable CAD (N=15) p-value

Age (mean ± SD) yrs 60.0 ± 17.7 56.3 ± 16.6 61.3 ± 8.9 0.66

Males (%) 63.6 41.7 53.3 0.17

Caucasian Race (%) 90.9 66.7 93.3 0.60

Current Smoker (%) 36.4 50.0 20.0 0.66

History of Dyslipidemia (%) 54.5 33.3 86.7 0.003

History of Diabetes Mellitus (%) 18.2 0.0 40.0 0.03

History of Hypertension (%) 63.6 75.0 93.3 0.35

History of Atherosclerosis (%) (MI, CAD, 
PCI, CABG)

27.3 33.3 100.0 <0.0001

History of Congestive Heart Failure (%) 0.0 8.3 6.7 1.00

History of Chronic Renal Failure (%) 0.0 8.3 0.0 0.66

History of Stroke (%) 0.0 25.0 0.0 0.05

HR at time of presentation (mean ± SD) 80.6 ± 10.1 88.3 ± 27.5 65.9 ± 9.6 0.01

SBP at time of presentation (mean ± SD) 138.1 ± 30.6 124.0 ± 31.9 133.4 ± 16.5 0.43

DBP at time of presentation (mean ± SD) 84.2 ± 20.3 81.2 ± 25.1 70.3 ± 15.3 0.19

MAP at time of presentation (mean ± SD) 102.2 ± 22.7 95.4 ± 26.9 91.4 ± 14.3 0.45

BMI at time of presentation (mean ± SD) 29.3 ± 7.2 27.8 ± 6.7 33.0 ± 7.1 0.15

Time (hours) from presentation to T0 (median 
± IQR)

1.4 ± 1.4 17.6 ± 9.8 NA <0.0001

Time (hours) symptoms to T0 (median ± IQR) 8.4 ± 26.1 20.2 ± 17.6 NA 0.19

Baseline Troponin (median ± IQR) 0.48 ± 5.64 1.64 ± 2.23 0.01 ± 0.00 <0.0001

Peak Troponin (median ± IQR) 46.57 ± 71.00 2.06 ± 4.14 0.01 ± 0.00 <0.0001

Glucose at Baseline (median ± IQR) 143.0 ± 71.0 103.5 ± 32.5 115.0 ± 44.0 0.03

Creatinine at Baseline (median ± IQR) 0.90 ± 0.42 0.80 ± 0.65 0.90 ± 0.24 0.68

Platelets at Baseline (mean ± SD) 189.4 ± 80.1 217.6 ± 64.9 236.4 ± 54.5 0.21

ST Elevation on EKG at Baseline 90.9 25.0 0.0 <0.0001

At least one vessel with >50% Coronary 
Stenosis on Enrollment Angiogram

100.0 25.0 66.7 0.0004

PCI at time of Enrollment 100.0 0.0 13.3 <0.0001

Aspirin use at time of Enrollment (%) 100.0 91.7 86.7 0.77

P2Y12 Inhibitors use at Enrollment (%) 63.6 50.0 60.0 0.84

Abbreviations used in table

MI: Myocardial Infarction; CAD: Coronary Artery Disease; PCI: percutaneous coronary intervention;

CABG: coronary artery bypass graft; HR: heart rate; SBP: systolic blood pressure;

DBP: diastolic blood pressure; MAP: mean arterial pressure; BMI: body mass index;

IQR: Inter-quartile range; EKG: electrocardiogram
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Table 2
Module enrichment analysis

Significantly enriched modules are presented with the comparisons that were significantly enriched and 

characterized by the metabolites they contain.

Module Significant Comparison Characterized by

E MI (both) vs. sCAD 1- & 2- Monoacylgylcerols

K MI (both) vs. sCAD Pregnenolone metabolites: Pregnenolone sulfate, Pregnanediol, Pregnanediol-3-
glucuronide, 21-Hydroxypregnenolone disulfate

L All Cortisol, Corticosterone, C21-steroid metabolites

V Thrombotic MI vs. Non-Thrombotic MI Amino Acids, Gamma-glutamyl Amino Acids

Y MI (both) vs. sCAD Primarily un-identified compounds. Identified: Acetylcarnitine, Hydroxybutyrlcarnitine, 
3-Methylglutarylcarnitine, Ethylmalonic acid, 3-Methyladipic acid
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