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To the Editor

Phosphoglucomutase 3 (PGM3) deficiency is an autosomal recessive syndrome with 

immunologic phenotypes ranging from a hyper-IgE syndrome to severe combined 
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immunodeficiency (SCID). To date, PGM3 deficiency has been described in twenty-nine 

individuals from thirteen families, with the majority (23 individuals from 9 families) 

presenting with a hyper-IgE phenotype (1–5). Hypomorphic PGM3 mutations result in 

altered glycan expression, making this deficiency a congenital disorder of glycosylation 

(CDG). Among individuals with partially preserved immune function and associated serum 

IgE elevations, the phenotype is complex and includes severe atopic disease, Th17-

associated autoimmunity, and infectious susceptibility, in addition to connective tissue and 

neurologic abnormalities. PGM3 converts N-acetylglucosamine-6-phosphate (GlcNAc-6-P) 

to GlcNAc-1-P. The fundamental defect in PGM3 deficiency appears to arise from 

inadequate production of GlcNAc-1-P. The resulting reduction in substrate for the 

subsequent enzymatic step in the hexosamine biosynthetic pathway causes a secondary 

deficiency of uracil diphosphate (UDP)-GlcNAc in primary dermal fibroblasts (1) and in 

peripheral blood mononuclear cells (PBMCs) (Fig 1A).

UDP-GlcNAc is fundamental to normal N-linked glycosylation of proteins. It is 

incorporated into the core structure of all N-linked glycoproteins and is a key component of 

branching structures of complex N-glycans (Fig 1B). N-glycan complexity has been shown 

to have dramatic effects on T cell function including altering the activation threshold of the 

TCR and promoting CTLA-4-mediated growth arrest (6, 7). Diminished intracellular 

concentrations of UDP-GlcNAc seen in PGM3 deficiency have been associated with altered 

N-glycosylation of serum proteins but alterations in cellular glycan expression have not yet 

been characterized (1).

Complete loss of function in PGM3 is embryonically lethal in mice (8). To date, all 

individuals identified with PGM3 deficiency express mutant protein, thus limiting the ability 

to screen for this disorder using conventional protein detection assays. Furthermore, 

functional enzymatic activity assays are complicated and require specialized expertise. To 

get around these obstacles, we exploited predicted glycan differences to develop a lectin-

based flow cytometric assay that can quantify expression of complex branched N-glycans 

and successfully identify PGM3 deficient individuals (see the Online Repository Methods 

for a complete description of assays).

N-glycan branching was measured using a fluorescein-conjugated plant lectin, L-

phytohemagglutinin (L-PHA), which has specificity for 2,6-branched complex N-glycans 

with bisecting N-acetylglucosamine (GlcNAc) (Fig 1B) (9). The dependence of L-PHA 

staining on N-glycan expression was confirmed by treatment of peripheral blood 

mononuclear cells (PBMCs) with PNGaseF – an enzyme that hydrolyzes nearly all N-

glycans – resulting in a significant reduction in staining intensity (Fig 1C).

We examined PBMCs isolated from PGM3 deficient individuals and controls, as well as 

from other disorders with significant elevations in IgE (atopic dermatitis, DOCK8 

deficiency, and dominant negative STAT3 mutations resulting in loss of function) and from 

patients with congenital disorders of glycosylation (CDGs) (caused by autosomal recessive 

loss of function mutations in ALG13, PMM2, ALG12, or MOGS) and deglycosylation 

(NGLY1). Patient ages, allergic disease prevalence, serum IgE, and absolute eosinophil 

counts are listed in Table I. Phosphomannomutase-2 (PMM2) facilitates conversion of 
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phosphorylated mannose in a manner similar to PGM3, potentially limiting mannose 

substrate for all N-glycans, but not specifically limiting N-glycan branching or complexity 

(E1). Asparagine-linked glycosylation homologs 13 and 12 (ALG13/ALG12) assist in the 

addition of sugars to the N-glycan core structure, and therefore are predicted to affect total 

N-glycosylation expression (E2). Mannosyl-oligosaccharide glucosidase (MOGS) and N-

glycanase 1 (NGLY1) are glycosidases involved in glycoprotein quality control, and defects 

may result in accumulation of high-mannose type glycans for the former (E3, E4).

Despite having reduced UDP-GlcNAc pools, L-PHA staining in PGM3-deficient PBMCs en 
masse displayed no discernable difference from controls or other genetic disorders (Fig 1D). 

However, examining distinct leukocyte populations (for gating strategy see Fig E2), 

significant but relatively modest reductions were observed in multiple cell populations, most 

significantly within the CD8+ CD45RO− and CD45RO+ pools, with the notable exception of 

CD19+ B cells. While statistically significant, L-PHA staining intensity of these PGM3 

deficient cell populations overlapped with one or more control population, therefore none of 

these differences was large enough to discern every individual with PGM3 deficiency clearly 

from the other disorders (Fig 1E, F; E1). However, closer inspection of CD4+ CD45RO− 

cells, revealed a marked reduction in N-glycan complexity in PGM3 deficiency compared to 

all other samples, clearly distinguishing PGM3 deficiency from all other disorders of hyper-

IgE as well as all other CDGs tested (Fig 1E, G). These differences appeared specific to 

detection of 2,6-branching complex N-glycans since staining with concanavalin A (Con A), 

a lectin which binds alpha-linked mannose residues present on all N-glycans, failed to 

demonstrate such a defect (Fig E3). Despite the marked reductions seen in CD4+ CD45RO− 

cells, the complex N-glycan expression in the CD4+ CD45RO+ population appeared 

relatively unperturbed. We hypothesize the differences seen between these populations is 

related to metabolic changes that are known to occur with lymphocyte activation.

We have developed a lectin-based flow cytometric assay that can clearly identify PGM3 

deficiency by examining extracellular L-PHA staining of CD4+ CD45RO− T cells. It is 

possible that other glycosylation disorders could result in a similar glycan pattern, and 

follow-up sequencing remains necessary. However, we predict that similar glycosylation 

defects in lymphocytes will likely be associated with clinical phenotypes resembling PGM3 

deficiency. Thus, this and other lectin-based flow cytometry may also aid in screening for 

and identifying CDGs associated with immune dysregulation. This assay is easy to perform 

with low cost, using a lectin conjugate and conjugated antibodies standard to flow cytometry 

labs, and can help stratify individuals for subsequent targeted or genomic sequencing.

Hematopoietic stem cell transplantation (HSCT) has demonstrated efficacy in PGM3 

deficiency-associated SCID. Because of the high morbidity associated with the hyper-IgE 

phenotype, HSCT may also be considered for this presentation in the future. Lectin-based 

flow cytometry-screening could aid in early diagnosis without delaying HSCT in this 

clinical context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used

PGM3 Phosphoglucomutase-3

CDG congenital disorder of glycosylation

SCID severe combined immunodeficiency

GlcNAc N-acetylglucosamine

UDP uracil diphosphate

HSCT hematopoietic stem cell transplant

DOCK8 dedicator of cytokinesis 8

STAT3 signal transducer and activator of transcription 3

PMM2 phosphomannomutase-2

ALG13 asparagine-linked glycosylation homolog 13

ALG12 asparagine-linked glycosylation homologs 12

MOGS mannosyl-oligosaccharide glucosidase

NGLY1 N-glycanase 1

L-PHA L-phytohemagglutinin

PBMC peripheral blood mononuclear cell

MFI mean fluorescence intensity

Con A concanavalin A
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Figure 1. Reduced naïve CD4 N-glycan complexity identifies PGM3 deficiency from other 
congenital glycosylation and hyper-IgE disorders
(A) Intracellular UDP-HexNAc in PGM3 deficient (n = 6) and control PBMCs (n = 6). 

Unpaired t-test; **P<0.01. (B) Schematic of complex N-glycan formation with L-PHA 

binding site shown as a red dashed box. (C) L-PHA staining intensity of PBMCs before and 

after PNGAseF treatment (n = 5). Mann-Whitney test; **P<0.01. (D) L-PHA staining 

intensity of PBMCs from controls (n = 32), individuals with atopic dermatitis (AD, n = 22), 

DOCK8 deficiency (n = 4), STAT3 loss-of-function (STAT3 LOF, n = 5), PGM3 deficiency 

(n = 7), ALG13 deficiency (n = 1), PMM2 deficiency (n = 3), ALG12 deficiency (n = 1), 

NGLY1 deficiency (n = 9), and MOGS deficiency (n = 1). Representative (E) and combined 

(F, G) L-PHA staining of CD45RO+ and CD45RO− CD4+ cells. Shaded area in (G) 
delineates the upper 99% confidence interval (CI) of PGM3 deficient cells and the closest 

lower 99% CI (STAT3 LOF). Mann-Whitney test; **P<0.01, ****P<0.0001.
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